A Green Synthesis of Fluorescent Carbon Dots and Their Application to the Determination of Sunset Yellow
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Preparation of Fluorescent Carbon Dots
2.3. Microstructure Characterization of Fluorescent Carbon Dots [33]
2.4. Determination of Quantum Yield of Fluorescent Carbon Dots
2.5. Detection of Sunset Yellow
2.6. Selectivity Test of Sunset Yellow
2.7. Data Processing
3. Results and Discussion
3.1. Quantum Yield of AP-CDs
3.2. Optical Characterization of AP-CDs
3.3. Microstructural Characterization of AP-CDs
3.4. Optimization of Sunset Yellow Detection Conditions
3.4.1. Buffer Solution pH
3.4.2. Concentration of AP-CDs
3.4.3. Stability Analysis
3.4.4. Selective Validation
3.4.5. Standard Curve
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rui, S.; Song, L.; Lan, J.; Wang, D.; Feng, S.; Lu, J.; Wang, S.; Zhao, Q. Recent advances in carbon dots-based nanoplatforms: Physicochemical properties and biomedical applications. Chem. Eng. J. 2023, 476, 146593. [Google Scholar] [CrossRef]
- Wang, D.; Dong, H.; Ren, L.; Jiang, Y.; Xi, L.; Li, X.; Cui, F.; Li, T.; Li, J. Carbon dots in health protection: Mechanisms and applications. Food Chem. 2025, 492, 145544. [Google Scholar] [CrossRef]
- Chen, T.; Jia, L.; Xu, S.; Shi, Y.; Jiang, J.; Ge, S.; Rezakazemi, M.; Huang, R. Lignin-derived carbon quantum dots: Advancing renewable nanomaterials for energy and photocatalysis. J. Energy Chem. 2025, 106, 271–290. [Google Scholar] [CrossRef]
- Wu, J.; Chen, T.; Ge, S.; Fan, W.; Wang, H.; Zhang, Z.; Lichtfouse, E.; Van Tran, T.; Liew, R.K.; Rezakazemi, M.; et al. Synthesis and applications of carbon quantum dots derived from biomass waste: A review. Environ. Chem. Lett. 2023, 21, 3393–3424. [Google Scholar] [CrossRef]
- Liu, H.; Zhong, X.; Pan, Q.; Zhang, Y.; Deng, W.; Zou, G.; Hou, H.; Ji, X. A review of carbon dots in synthesis strategy. Coord. Chem. Rev. 2024, 498, 215468. [Google Scholar] [CrossRef]
- Lin, X.; Xiong, M.; Zhang, J.; He, C.; Ma, X.; Zhang, H.; Kuang, Y.; Yang, M.; Huang, Q. Carbon dots based on natural resources: Synthesis and applications in sensors. Microchem. J. 2021, 160, 105604. [Google Scholar] [CrossRef]
- Chen, J.; Gong, Z.; Tang, W.; Row, K.H.; Qiu, H. Carbon dots in sample preparation and chromatographic separation: Recent advances and future prospects. Trac-Trends Anal. Chem. 2021, 134, 116135. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, D.; Wei, Y.; Dong, X.; Yang, R.; Li, H.; Wei, M.; Yu, J.; Zhong, L.; Xu, Y. Advances in Synthesis of the Graphene Quantum Dots from Varied Raw Materials. Arab. J. Chem. 2023, 17, 105533. [Google Scholar] [CrossRef]
- Chen, W.; Lv, G.; Hu, W.; Li, D.; Chen, S.; Dai, Z. Synthesis and applications of graphene quantum dots: A review. Nanotechnol. Rev. 2018, 7, 157–185. [Google Scholar] [CrossRef]
- Sharma, V.D.; Vishal, V.; Chandan, G.; Bhatia, A.; Chakrabarti, S.; Bera, M.K. Green, sustainable, and economical synthesis of fluorescent nitrogen-doped carbon quantum dots for applications in optical displays and light-emitting diodes. Mater. Today Sustain. 2022, 19, 100184. [Google Scholar] [CrossRef]
- Tejwan, N.; Saha, S.K.; Das, J. Multifaceted applications of green carbon dots synthesized from renewable sources. Adv. Colloid Interface Sci. 2020, 275, 102046. [Google Scholar] [CrossRef]
- Ma, L.; Liao, S.; Liu, J.; Ma, Y. Green synthesis of High-Yield red fluorescent carbon dots from Amaranth for sensitive water detection in organic solvents. Microchem. J. 2025, 209, 112654. [Google Scholar] [CrossRef]
- Jasim, S.A.; Rachchh, N.; Pallathadka, H.; Sanjeevi, R.; Bokov, D.O.; Bobonazarovna, S.F.; Jabbar, H.S.; Mahajan, S.; Mustafa, Y.F.; Alhadrawi, M. Recent advances in carbon-based materials derived from diverse green biowaste for sensing applications: A comprehensive overview from the perspective of synthesis method and application. RSC Adv. 2024, 14, 39787–39803. [Google Scholar] [CrossRef]
- Sahana, S.; Gautam, A.; Singh, R.; Chandel, S. A recent update on development, synthesis methods, properties and application of natural products derived carbon dots. Nat. Product. Bioprospect. 2023, 13, 51. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Guo, Y.; Mao, D.; Li, Y.; Li, T.; Li, R.A.; Wang, Q. Preparation, regulatory mechanism, and full-spectrum fluorescence synthesis of ginkgo-derived trichromatic carbon dots. Diam. Relat. Mat. 2025, 155, 112272. [Google Scholar] [CrossRef]
- Hu, G.; Ge, L.; Li, Y.; Mukhtar, M.; Shen, B.; Yang, D.; Li, J. Carbon dots derived from flax straw for highly sensitive and selective detections of cobalt, chromium, and ascorbic acid. J. Colloid Interface Sci. 2020, 579, 96–108. [Google Scholar] [CrossRef]
- Tripti, T.; Arpita, A.; Kumar, S.; Kumar, P. Optimization of Photocatalytic Degradation Conditions of Rose Bengal Dye Using Biomass-Derived Carbon Dots. Water Air Soil Pollut. 2025, 236, 471. [Google Scholar] [CrossRef]
- Wang, C.; Shi, H.; Yang, M.; Yan, Y.; Liu, E.; Ji, Z.; Fan, J. Facile synthesis of novel carbon quantum dots from biomass waste for highly sensitive detection of iron ions. Mater. Res. Bull. 2020, 124, 110730. [Google Scholar] [CrossRef]
- Zulfajri, M.; Abdelhamid, H.N.; Sudewi, S.; Dayalan, S.; Rasool, A.; Habib, A.; Huang, G.G. Plant Part-Derived Carbon Dots for Biosensing. Biosensors 2020, 10, 68. [Google Scholar] [CrossRef]
- Guo, Y.; Lu, J.; Wang, J.; Song, Y.; Li, R.; Tian, L. Solid-state electrochemiluminescence sensor of luminol based on polymer donor PM6 and ZIF-8 for sensitive detection of sunset yellow in sports drinks. Microchem. J. 2024, 207, 112180. [Google Scholar] [CrossRef]
- Li, S.; Liu, P.; Wang, Y.; Li, Y.; Ren, Y.; Yang, Q.; Ma, Y. Porous g-C3N4 tubes in-situ anchored by waste biomass-derived carbon dots for photocatalytic reduction of sunset yellow and Escherichia coli in juice. Appl. Surf. Sci. 2025, 682, 161584. [Google Scholar] [CrossRef]
- Mulai, T.; Kumar, J.E.; Tripathy, A.; Sahoo, M.K. Degradation of higher concentration of food colouring dye by classical fenton oxidation: A statistical optimization. Next Res. 2025, 2, 100535. [Google Scholar] [CrossRef]
- State, R.G.; van Staden, J.K.F.; Staden, R.S. Review—Recent Trends on the Electrochemical Sensors Used for the Determination of Tartrazine and Sunset Yellow FCF from Food and Beverage Products. J. Electrochem. Soc. 2022, 169, 17509. [Google Scholar] [CrossRef]
- Soutelino, M.E.M.; Vieira, G.D.P.; Goulart, M.B.; Miranda, K.C.; Da Conceição, R.P.; Pimentel, T.C.; Cruz, A.G.D.; Rocha, R.D.S. Natural food dyes on dairy products: A critical approach between 2012–2023 literature regarding the technological and functional aspects, health benefits and future trends. Trends Food Sci. Technol. 2024, 146, 104370. [Google Scholar] [CrossRef]
- Leulescu, M.; Palarie, I.; Rotaru, A.; Moanta, A.; Cioatera, N.; Popescu, M.; Iacobescu, G.; Morintale, E.; Bojan, M.; Ciocilteu, M.; et al. Sunset Yellow: Physical, thermal and bioactive properties of the widely employed food, pharmaceutical and cosmetic orange azo-dye material. J. Therm. Anal. Calorim. 2023, 148, 1265–1287. [Google Scholar] [CrossRef]
- Hosseini, S.F.; Heidari, T.; Zendegi-Shiraz, A.; Ameri, M. Application of chemometrics based on digital image analysis for simultaneous determination of tartrazine and sunset yellow in food samples. Food Chem. 2025, 470, 142619. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Wu, T.; Zeng, W.; Zhou, S.; Zhang, W.; Ma, J. A new ratiometric molecularly imprinted electrochemical sensor for the detection of Sunset Yellow based on gold nanoparticles. Food Chem. 2023, 413, 135600. [Google Scholar] [CrossRef]
- Xu, L.; Yang, F.; Dias, A.C.P.; Zhang, X. Development of quantum dot-linked immunosorbent assay (QLISA) and ELISA for the detection of sunset yellow in foods and beverages. Food Chem. 2022, 385, 132648. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Wang, Y.; Tan, J.; Tang, S.; Jiang, Z.; Di, S.; Geng, Y. Simultaneous determination of synthetic edible pigments in beverages by titania-based RP-HPLC. Arab. J. Chem. 2020, 13, 3875–3881. [Google Scholar] [CrossRef]
- Zhao, K.; Mao, C.; Ding, R.; Song, D.; Ge, L.; Lisak, G. Simultaneous speciation of inorganic arsenic (III and V) utilizing gold-manganese oxide nanoparticles modified electrochemical sensors. Electrochim. Acta 2024, 502, 144796. [Google Scholar] [CrossRef]
- Hou, J.; Chen, Q.; Meng, X.; Liu, H.; Feng, W. Synthesis of green fluorescent carbon dots and their application in mercury ion detection. RSC Adv. 2024, 14, 36273–36280. [Google Scholar] [CrossRef]
- Zuo, J.; Jiang, T.; Zhao, X.; Xiong, X.; Xiao, S.; Zhu, Z. Preparation and Application of Fluorescent Carbon Dots. J. Nanomater. 2015, 2015, 787862. [Google Scholar] [CrossRef]
- Jorns, M.; Pappas, D. A Review of Fluorescent Carbon Dots, Their Synthesis, Physical and Chemical Characteristics, and Applications. Nanomaterials 2021, 11, 1448. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Yang, X.; Li, G.; Zhao, C.; Liao, X. Green Synthesis of Fluorescent Carbon Dots for Selective Detection of Tartrazine in Food Samples. J. Agric. Food. Chem. 2015, 63, 6707–6714. [Google Scholar] [CrossRef] [PubMed]
- Aldakhil, F.; Alarfaj, N.A.; Al-Tamimi, S.A.; El-Tohamy, M.F. Hydrothermal synthesis of modified lignin-based carbon dots derived from biomass waste for fluorescence determination of valsartan. RSC Adv. 2024, 14, 19969–19982. [Google Scholar] [CrossRef]
- Huang, Y.; Lai, P.; Hsu, C. Surface oxygen plasma modification of screen-printed carbon electrode for quantitative determination of sunset yellow and tartrazine in foods. Eur. Food Res. Technol. 2022, 248, 881–892. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, B.; Yu, Z.; Zi, Y. Luminescence quenching effect for the interaction of prulifloxacin with trypsin–Britton–Robinson buffer solution system. J. Lumin. 2010, 130, 360–364. [Google Scholar] [CrossRef]
- Niu, H.; Yang, X.; Wang, Y.; Li, M.; Zhang, G.; Pan, P.; Qi, Y.; Yang, Z.; Wang, J.; Liao, Z. Electrochemiluminescence Detection of Sunset Yellow by Graphene Quantum Dots. Front. Chem. 2020, 8, 505. [Google Scholar] [CrossRef]
- Wu, W.; Mu, L.; Luo, X.; Zhang, Y.; Huang, J.; Peng, H.; Tao, J. Effect of temperature on synthesis of carbon quantum dots and biochar through one-step hydrothermal treatment of distillers’ grains. Ind. Crop. Prod. 2025, 227, 120832. [Google Scholar] [CrossRef]
- Zheng, Y.; Zheng, J.; Wang, J.; Yang, Y.; Lu, T.; Liu, X. Facile Preparation of Stable Solid-State Carbon Quantum Dots with Multi-Peak Emission. Nanomaterials 2020, 10, 303. [Google Scholar] [CrossRef]
- Sun, X.; Ma, M.; Tian, R.; Wang, D. Rapid Determination of Sunset Yellow and Lemon Yellow in Beverages Based on Carbon Dots of Peanut Shells. Anal. Lab. 2023, 42, 860–865. [Google Scholar] [CrossRef]
- Das, S.; Ngashangva, L.; Goswami, P. Carbon Dots: An Emerging Smart Material for Analytical Applications. Micromachines 2021, 12, 84. [Google Scholar] [CrossRef]
- Le, T.H.; Lee, H.J.; Kim, J.H.; Park, S.J. Detection of Ferric Ions and Catecholamine Neurotransmitters via Highly Fluorescent Heteroatom Co-Doped Carbon Dots. Sensors 2020, 20, 3470. [Google Scholar] [CrossRef]
- Kang, C.; Huang, Y.; Yang, H.; Yan, X.F.; Chen, Z.P. A Review of Carbon Dots Produced from Biomass Wastes. Nanomaterials 2020, 10, 2316. [Google Scholar] [CrossRef] [PubMed]
- An, Y.; Liu, C.; Li, Y.; Chen, M.; Zheng, Y.; Tian, H.; Shi, R.; He, X.; Lin, X. Application of high-efficiency green fluorescent carbon dots prepared by acid catalysis in multicolour LEDs. RSC Adv. 2021, 11, 38033–38039. [Google Scholar] [CrossRef]
- Hu, Y.; Ji, W.; Sun, J.; Liu, X.; Zhou, R.; Yan, J.; Zhang, N. Simple and eco-friendly synthesis of crude orange-peel-derived carbon nanoparticles for detection of Fe3+ and ascorbic acid. Luminescence 2021, 36, 1385–1394. [Google Scholar] [CrossRef]
- Li, L.; Wang, X.; Fu, Z.; Cui, F. One-step hydrothermal synthesis of nitrogen- and sulfur-co-doped carbon dots from ginkgo leaves and application in biology. Mater. Lett. 2017, 196, 300–303. [Google Scholar] [CrossRef]
- Magagula, L.P.; Masemola, C.M.; Ballim, M.A.; Tetana, Z.N.; Moloto, N.; Linganiso, E.C. Lignocellulosic Biomass Waste-Derived Cellulose Nanocrystals and Carbon Nanomaterials: A Review. Int. J. Mol. Sci. 2022, 23, 4310. [Google Scholar] [CrossRef]
- Wang, L.; Choi, W.M.; Chung, J.S.; Hur, S.H. Multicolor Emitting N-Doped Carbon Dots Derived from Ascorbic Acid and Phenylenediamine Precursors. Nanoscale Res. Lett. 2020, 15, 222. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Zhang, D.; Li, M.; Lin, G.; Sun, S.; Sun, G.; Fang, Y. Preparation and application in Fe(III) detection of nitrogen phosphorus co-doped sugarcane bagasse carbon quantum dots. Fine Chem. 2024, 41, 2616–2621. [Google Scholar] [CrossRef]
- Ma, L.; Ma, C.; Chen, G.; Gu, J.; Yang, T.; Li, L.; Gao, H.; Xiong, Y.; Wu, Y.; Zhu, C.; et al. Nitrogen and Sulfur co-doped Carbon dots as an “on-off-on“ Fluorescent Sensor for the Detection of Hg2+ and Ampicillin. J. Fluoresc. 2025, 35, 1807–1817. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Chen, R.; Sun, L.; Wang, Y.; Liu, Q.; Zhang, Q.; Xiao, C.; Xie, Y. Hole Polaron-Mediated Suppression of Electron–Hole Recombination Triggers Efficient Photocatalytic Nitrogen Fixation. Adv. Mater. 2024, 36, 2408778. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Wang, X.; Yuan, L.; Yu, L.; Shao, C.; Jia, H.; Lu, S. Nitrogen-doped biomass-derived carbon dots for fluorescence determination of sunset yellow. Anal. Methods 2024, 16, 2063–2070. [Google Scholar] [CrossRef]
- Chen, J. Study on Preparation of Luminescent Solar Concentrator Based Study on Preparation of Luminescent Solar Concentrator Based. Master’s Thesis, Wuhan University of Technology, Wuhan, China, 2022. [Google Scholar]
- Li, N.; Lei, F.; Xu, D.; Li, Y.; Liu, J.; Shi, Y. One-step synthesis of N, P Co-doped orange carbon quantum dots with novel optical properties for bio-imaging. Opt. Mater. 2021, 111, 110618. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, K.; Shi, N.; Li, R.; Zhang, J.; Zhao, J.; Geng, L.; Lei, Y. Dual functions of nitrogen and phosphorus co-doped carbon dots for drug-targeted delivery and two-photon cell imaging. Arab. J. Chem. 2023, 16, 104671. [Google Scholar] [CrossRef]
- Tu, Y.; Wang, S.; Yuan, X.; Xiang, Y.; Qin, K.; Wei, Y.; Zhang, Q.; Chen, X.; Ji, X. Facile hydrothermal synthesis of nitrogen, phosphorus-doped fluorescent carbon dots for live/dead bacterial differentiation, cell imaging and two nitrophenols detection. Dye. Pigment. 2021, 184, 108761. [Google Scholar] [CrossRef]
- Liu, J.; Liu, X.; Xia, W. Effects of Modified Nanoparticles Loaded with Eugenol on Properties of Zein Films. J. Food Sci. Technol. 2023, 41, 123–135. [Google Scholar]
- Liu, Y.; Fang, Y.; Zhang, H.; Pang, J. Preparation of Functional Carbon Quantum Dots of Soybean Protein. Biomass Chem. Eng. 2024, 58, 39–42. [Google Scholar]
- Li, J.; Zhou, Y.; Li, Z.; Wang, T.; Sun, Q.; Le, T.; Jirimutu. A novel fluorescent sensing platform based on nitrogen-doped carbon quantum dots for rapid and sensitive detection of aflatoxin B1 in corn flour. LWT-Food Sci. Technol. 2023, 185, 115130. [Google Scholar] [CrossRef]
- Yuncu, H.; Nadaroglu, H.; Bozkurt, E. Eco-friendly synthesis of Carbon Quantum Dots (CQDs) from hazelnut husk for sensitive Aflatoxin B1 (AFB1) detection. Toxicol. Rep. 2024, 13, 101824. [Google Scholar] [CrossRef]
- Wang, T.; Luo, H.; Jing, X.; Yang, J.; Huo, M.; Wang, Y. Synthesis of Fluorescent Carbon Dots and Their Application in Ascorbic Acid Detection. Molecules 2021, 26, 1246. [Google Scholar] [CrossRef]
- Fatahi, Z.; Esfandiari, N.; Ehtesabi, H.; Bagheri, Z.; Tavana, H.; Ranjbar, Z.; Latifi, H. Physicochemical and cytotoxicity analysis of green synthesis carbon dots for cell imaging. Excli J. 2019, 18, 454–466. [Google Scholar] [CrossRef]
- Wang, A.; Zheng, Z.; Li, R.; Hu, D.; Lu, Y.; Luo, H.; Yan, K. Biomass-derived porous carbon highly efficient for removal of Pb(II) and Cd(II). Green Energy Environ. 2019, 4, 414–423. [Google Scholar] [CrossRef]
- Mohanta, T.; Behuria, H.G.; Sahu, S.K.; Jena, A.K.; Sahu, S. Green synthesis of N,S-doped carbon dots for tartrazine detection and their antibacterial activities. Analyst 2023, 148, 5597–5604. [Google Scholar] [CrossRef] [PubMed]
- Zhu, R.; Jin, L.; Yang, B.; Ma, Y.; Zhou, Y.; Xiao, R.; Meng, Y.; Hou, Y.; Xie, B.; Jiang, X.J. Synthesis of Bio-Base Fluorescence Carbon Dots for Selective Detection of Tartrazine and Sunset Yellow in Food Samples. J. Fluoresc. 2024, 35, 3415–3425. [Google Scholar] [CrossRef]
- Lane, M.J.; Mcnair, J.N.; Rediske, R.R.; Briggs, S.; Sivaganesan, M.; Haugland, R. Simplified Analysis of Measurement Data from A Rapid E. coli qPCR Method (EPA Draft Method C) Using A Standardized Excel Workbook. Water 2020, 12, 775. [Google Scholar] [CrossRef]
- Evaluation of Certain Food Additives and Contaminants. Eightieth Report of the Joint FAO/WHO Expert Committee on Food Additives; World Health Organization Technical Report Series; World Health Organization: Geneva, Switzerland, 2016.
- EFSA Panel on Food Additives and Nutrient Sources Added to Food. Scientific Opinion on the re-evaluation of Sunset Yellow FCF (E 110) as a food additive. Efsa J. 2009, 7, 1330. [Google Scholar] [CrossRef]
Samples | Fluorescence Intensity (F) | Absorbance (A) | Refractive Index (η) | Quantum Yield (φ) |
---|---|---|---|---|
quinine sulfate | 47,888.051 | 0.07877 | 1.33 | 0.54 |
AP-CDs | 13,970.44 | 0.07851 | 1.3329 | 0.159 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Wang, Y.; Zou, J.; Tan, S.; Yan, F.; Yang, B.; Li, C.; Wu, S. A Green Synthesis of Fluorescent Carbon Dots and Their Application to the Determination of Sunset Yellow. Foods 2025, 14, 3221. https://doi.org/10.3390/foods14183221
Wang Y, Wang Y, Zou J, Tan S, Yan F, Yang B, Li C, Wu S. A Green Synthesis of Fluorescent Carbon Dots and Their Application to the Determination of Sunset Yellow. Foods. 2025; 14(18):3221. https://doi.org/10.3390/foods14183221
Chicago/Turabian StyleWang, Yujing, Yiran Wang, Jiaxu Zou, Shuxin Tan, Feiyu Yan, Benxu Yang, Chao Li, and Shufen Wu. 2025. "A Green Synthesis of Fluorescent Carbon Dots and Their Application to the Determination of Sunset Yellow" Foods 14, no. 18: 3221. https://doi.org/10.3390/foods14183221
APA StyleWang, Y., Wang, Y., Zou, J., Tan, S., Yan, F., Yang, B., Li, C., & Wu, S. (2025). A Green Synthesis of Fluorescent Carbon Dots and Their Application to the Determination of Sunset Yellow. Foods, 14(18), 3221. https://doi.org/10.3390/foods14183221