Initial Sugar Concentration on Sensory Characteristics of Raw Pu-Erh Tea Kombucha and Multi-Omics Analysis of the Fermentation Process Under Optimal Sugar Concentration
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. RAPT Kombucha Sample Preparation
2.3. Volatile Compound Analysis of RAPT Kombucha
2.4. Sensory Evaluation of RAPT Kombucha
2.5. Microbial Analysis of RAPT Kombucha by Plate Count Methodology and Illumina High-Throughput Sequencing
2.6. Macrogenomic and Non-Targeted Metabolomic Analysis of Kombucha Fermentation Under Optimal Initial Sugar Content
2.6.1. Microbial Analysis of RAPT Kombucha by Illumina High-Throughput Sequencing
2.6.2. Non-Targeted Metabolomic Analysis by UPLC-Q-TOF-MS
2.6.3. Metabolomics Data Analysis and Function Annotation
2.7. Statistical Analysis
3. Results
3.1. Volatile Profiles of Different RAPT Kombucha Samples
3.2. Sensory Characteristics of Different RAPT Kombucha Samples
3.3. Illumina High-Throughput Sequencing Analysis of S3 and S4
3.4. Metagenomic and Metabolomic Analysis Under Optimal Initial Sugar Concentration
3.4.1. Metagenomic Analysis
3.4.2. Non-Targeted Metabolomic Analysis
3.4.3. Multivariate Statistical Analysis
3.5. Analysis of Differential Metabolites Under Optimal Sugar Concentration
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yao, L.; Zhang, J.; Lu, J.; Chen, D.; Song, S.; Wang, H.; Sun, M.; Feng, T. Revealing the influence of microbiota on the flavor of kombucha during natural fermentation process by metagenomic and GC-MS analysis. Food Res. Int. 2023, 169, 112909. [Google Scholar] [CrossRef] [PubMed]
- Mohd Ariff, R.; Chai, X.Y.; Chang, L.S.; Fazry, S.; Othman, B.A.; Babji, A.S.; Lim, S.J. Recent trends in Kombucha: Conventional and alternative fermentation in development of novel beverage. Food Biosci. 2023, 53, 102714. [Google Scholar] [CrossRef]
- Vargas, B.K.; Fabricio, M.F.; Záchia Ayub, M.A. Health effects and probiotic and prebiotic potential of Kombucha: A bibliometric and systematic review. Food Biosci. 2021, 44, 101332. [Google Scholar] [CrossRef]
- Bortolomedi, B.M.; Paglarini, C.S.; Brod, F.C.A. Bioactive compounds in kombucha: A review of substrate effect and fermentation conditions. Food Chem. 2022, 385, 132719. [Google Scholar] [CrossRef]
- Barakat, N.; Beaufort, S.; Rizk, Z.; Bouajila, J.; Taillandier, P.; El Rayess, Y. Kombucha analogues around the world: A review. Crit. Rev. Food Sci. Nutr. 2023, 63, 10105–10129. [Google Scholar] [CrossRef]
- Kim, J.; Adhikari, K. Current Trends in Kombucha: Marketing Perspectives and the Need for Improved Sensory Research. Beverages 2020, 6, 15. [Google Scholar] [CrossRef]
- Tran, T.; Grandvalet, C.; Verdier, F.; Martin, A.; Alexandre, H.; Tourdot-Marechal, R. Microbiological and technological parameters impacting the chemical composition and sensory quality of kombucha. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2050–2070. [Google Scholar] [CrossRef]
- Bishop, P.; Pitts, E.R.; Budner, D.; Thompson-Witrick, K.A. Kombucha: Biochemical and microbiological impacts on the chemical and flavor profile. Food Chem. Adv. 2022, 1, 100025. [Google Scholar] [CrossRef]
- de Miranda, J.F.; Ruiz, L.F.; Silva, C.B.; Uekane, T.M.; Silva, K.A.; Gonzalez, A.G.M.; Fernandes, F.F.; Lima, A.R. Kombucha: A review of substrates, regulations, composition, and biological properties. J. Food Sci. 2022, 87, 503–527. [Google Scholar] [CrossRef]
- Tran, T.; Verdier, F.; Martin, A.; Alexandre, H.; Grandvalet, C.; Tourdot-Maréchal, R. Oxygen management during kombucha production: Roles of the matrix, microbial activity, and process parameters. Food Microbiol. 2022, 105, 104024. [Google Scholar] [CrossRef]
- Zheng, Y.; Liu, Y.; Han, S.; He, Y.; Liu, R.; Zhou, P. Comprehensive evaluation of quality and bioactivity of kombucha from six major tea types in China. Int. J. Gastron. Food Sci. 2024, 36, 100910. [Google Scholar] [CrossRef]
- Cohen, G.; Sela, D.A.; Nolden, A.A. Sucrose Concentration and Fermentation Temperature Impact the Sensory Characteristics and Liking of Kombucha. Foods 2023, 12, 3116. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Adade, S.Y.-S.S.; Wang, Z.; Wu, J.; Jiao, T.; Li, H.; Chen, Q. On-line monitoring of total sugar during kombucha fermentation process by near-infrared spectroscopy: Comparison of linear and non-linear multiple calibration methods. Food Chem. 2023, 423, 136208. [Google Scholar] [CrossRef] [PubMed]
- Huang, R. Exploring Kombucha: Production, Microbiota Biotransformation, Flavor, Health Benefits and Potential Risks. ACS Food Sci. Technol. 2024, 4, 1610–1625. [Google Scholar] [CrossRef]
- Rocha-Guzmán, N.E.; González-Laredo, R.F.; Moreno-Jiménez, M.R.; Gallegos-Infante, J.A.; Mancera-Rodríguez, J.; Rosales-Villarreal, M.C. Kombucha analogs from maqui juice: Consortium age and sugar concentration effects on anthocyanin stability and its relationship with antioxidant activity and digestive enzyme inhibition. Food Chem. 2023, 421, 136158. [Google Scholar] [CrossRef]
- Phetxumphou, K.; Vick, R.; Blanc, L.; Lahne, J. Processing Condition Effects on Sensory Profiles of Kombucha through Sensory Descriptive Analysis. J. Am. Soc. Brew. Chem. 2023, 81, 99–108. [Google Scholar] [CrossRef]
- Zhang, J.; Ma, H.; Wang, H.; Sun, M.; Yu, C.; Liu, Q.; He, Z.; Song, S.; Feng, T.; Yao, L. Flavor and sensory profile of kombucha fermented with raw Pu-erh tea and evaluation of the antioxidant properties. LWT 2024, 200, 116220. [Google Scholar] [CrossRef]
- Neffe-Skocińska, K.; Sionek, B.; Ścibisz, I.; Kołożyn-Krajewska, D. Acid contents and the effect of fermentation condition of Kombucha tea beverages on physicochemical, microbiological and sensory properties. CyTA J. Food 2017, 15, 601–607. [Google Scholar] [CrossRef]
- Meng, Y.; Wang, X.; Li, Y.; Chen, J.; Chen, X. Microbial interactions and dynamic changes of volatile flavor compounds during the fermentation of traditional kombucha. Food Chem. 2024, 430, 137060. [Google Scholar] [CrossRef]
- Tian, W.; Zhao, S.; Wang, Q.; Wang, W.; He, J.; Dong, B.; Zhao, G. Influence of spatial and temporal diversity and succession of microbial communities on physicochemical properties and flavor substances of soy sauce. Food Chem. 2025, 463, 141041. [Google Scholar] [CrossRef]
- Li, S.; Wang, S.; Wang, L.; Liu, X.; Wang, X.; Cai, R.; Yuan, Y.; Yue, T.; Wang, Z. Unraveling symbiotic microbial communities, metabolomics and volatilomics profiles of kombucha from diverse regions in China. Food Res. Int. 2023, 174, 113652. [Google Scholar] [CrossRef]
- Han, C.; Shi, C.; Liu, L.; Han, J.; Yang, Q.; Wang, Y.; Li, X.; Fu, W.; Gao, H.; Huang, H.; et al. Majorbio Cloud 2024: Update single-cell and multiomics workflows. Imeta 2024, 3, e217. [Google Scholar] [CrossRef]
- Xu, Y.; Yao, L.; Song, S.; Sun, M.; Wang, H.; Yu, C.; Liu, Q.; Feng, T. Revealing the microbial diversity and volatile flavor formation in finger citron kombucha by metagenomic and GC-MS analysis. Food Biosci. 2024, 59, 104087. [Google Scholar] [CrossRef]
- Huang, A.; Jiang, Z.; Tao, M.; Wen, M.; Xiao, Z.; Zhang, L.; Zha, M.; Chen, J.; Liu, Z.; Zhang, L. Targeted and nontargeted metabolomics analysis for determining the effect of storage time on the metabolites and taste quality of keemun black tea. Food Chem. 2021, 359, 129950. [Google Scholar] [CrossRef]
- Liang, L.; Liu, Y.; Liu, Y.; Gan, S.; Mao, X.; Wang, Y. Untargeted metabolomics analysis based on HS-SPME-GC-MS and UPLC-Q-TOF/MS reveals the contribution of stem to the flavor of Cyclocarya paliurus herbal extract. LWT 2022, 167, 113819. [Google Scholar] [CrossRef]
- Feng, T.; Cai, W.; Sun, W.; Yu, S.; Cao, J.; Sun, M.; Wang, H.; Yu, C.; Kang, W.; Yao, L. Co-cultivation effects of Lactobacillus plantarum and Pichia pastoris on the key aroma components and non-volatile metabolites in fermented jujube juice. RSC Adv. 2025, 15, 10653–10662. [Google Scholar] [CrossRef]
- Feng, T.; Sun, J.; Wang, K.; Song, S.; Chen, D.; Zhuang, H.; Lu, J.; Li, D.; Meng, X.; Shi, M.; et al. Variation in Volatile Compounds of Raw Pu-Erh Tea upon Steeping Process by Gas Chromatography? Ion Mobility Spectrometry and Characterization of the Aroma-Active Compounds in Tea Infusion Using Gas Chromatography? Olfactometry? Mass Spectrometry. J. Agric. Food Chem. 2022, 70, 13741–13753. [Google Scholar] [CrossRef] [PubMed]
- Landis Elizabeth, A.; Fogarty, E.; Edwards John, C.; Popa, O.; Eren, A.M.; Wolfe Benjamin, E. Microbial Diversity and Interaction Specificity in Kombucha Tea Fermentations. mSystems 2022, 7, e00157–00122. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Bi, J.; Chen, Q.; Wu, X.; Lyu, Y.; Meng, X. Assessment of sugar content, fatty acids, free amino acids, and volatile profiles in jujube fruits at different ripening stages. Food Chem. 2019, 270, 344–352. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, Y.; Shi, Y.; Zhang, M.; Liu, Y.; Che, Z.; Lin, H.; Lv, G.; Zhu, Q.; Dong, S.; et al. Flavor quality evaluation of Pixian Douban fermented in the closed system of multi-scale temperature and flow fields. LWT 2022, 163, 113598. [Google Scholar] [CrossRef]
- Gülhan, M.F. A New Substrate and Nitrogen Source for Traditional Kombucha Beverage: Stevia rebaudiana Leaves. Appl. Biochem. Biotechnol. 2023, 195, 4096–4115. [Google Scholar] [CrossRef]
- Diez-Ozaeta, I.; Astiazaran, O.J. Recent advances in Kombucha tea: Microbial consortium, chemical parameters, health implications and biocellulose production. Int. J Food Microbiol. 2022, 377, 109783. [Google Scholar] [CrossRef]
- Villarreal-Soto, S.A.; Bouajila, J.; Pace, M.; Leech, J.; Cotter, P.D.; Souchard, J.-P.; Taillandier, P.; Beaufort, S. Metabolome-microbiome signatures in the fermented beverage, Kombucha. Int. J. Food Microbiol. 2020, 333, 108778. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Wang, X.; Mu, Y.; Zhao, M.; Liu, Y.; Yi, H.; Zhang, L.; Zhang, Z. Characterization of SCOBY-fermented kombucha from different regions and its effect on improving blood glucose. Food Biosci. 2024, 61, 104946. [Google Scholar] [CrossRef]
- Kim, J.H.; An, H.J.; Garrido, D.; German, J.B.; Lebrilla, C.B.; Mills, D.A. Proteomic analysis of Bifidobacterium longum subsp. infantis reveals the metabolic insight on consumption of prebiotics and host glycans. PLoS ONE 2013, 8, e57535. [Google Scholar] [CrossRef] [PubMed]
- Adesioye, F.A.; Makhalanyane, T.P.; Biely, P.; Cowan, D.A. Phylogeny, classification and metagenomic bioprospecting of microbial acetyl xylan esterases. Enzym. Microb. Technol. 2016, 93-94, 79–91. [Google Scholar] [CrossRef]
- Wang, L.; Liu, Y.; Yang, F.; Li, J.; Chen, B.; Du, G. Microbiome analysis and random forest algorithm-aided identification of the diacetyl-producing microorganisms in the stacking fermentation stage of Maotai-flavor liquor production. Food Biotechnol. 2019, 33, 338–352. [Google Scholar] [CrossRef]
- Ojo, A.O.; de Smidt, O. Microbial Composition, Bioactive Compounds, Potential Benefits and Risks Associated with Kombucha: A Concise Review. Fermentation 2023, 9, 472. [Google Scholar] [CrossRef]
OAV a | ||||||
---|---|---|---|---|---|---|
No. | Compounds | Threshold (μg/kg) | S1 | S2 | S3 | S4 |
C2 | Linalool | 0.22 | nd | 371.91 | 80.82 | 41.95 |
C4 | Eucalyptol | 1.1 | nd | 4.06 | nd | nd |
C11 | Geraniol | 1.1 | nd | 3.51 | 5.98 | nd |
A1 | Ethyl acetate | 5 | nd | nd | 4.06 | 3.15 |
B8 | Butanoic acid | 0.063 | nd | 127.62 | nd | nd |
G3 | beta-Damascenone | 0.002 | nd | nd | nd | 270.42 |
E3 | 4-Ethylphenol | 13 | nd | 9.64 | nd | 1.32 |
F6 | 2,4-Decadienal | 0.027 | nd | nd | nd | 30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, L.; Ma, H.; Yao, L.; Cao, H.; Feng, T.; Wang, H.; Yu, C.; Sun, M. Initial Sugar Concentration on Sensory Characteristics of Raw Pu-Erh Tea Kombucha and Multi-Omics Analysis of the Fermentation Process Under Optimal Sugar Concentration. Foods 2025, 14, 3216. https://doi.org/10.3390/foods14183216
Yao L, Ma H, Yao L, Cao H, Feng T, Wang H, Yu C, Sun M. Initial Sugar Concentration on Sensory Characteristics of Raw Pu-Erh Tea Kombucha and Multi-Omics Analysis of the Fermentation Process Under Optimal Sugar Concentration. Foods. 2025; 14(18):3216. https://doi.org/10.3390/foods14183216
Chicago/Turabian StyleYao, Lingyun, Hui Ma, Lingyang Yao, Haining Cao, Tao Feng, Huatian Wang, Chuang Yu, and Min Sun. 2025. "Initial Sugar Concentration on Sensory Characteristics of Raw Pu-Erh Tea Kombucha and Multi-Omics Analysis of the Fermentation Process Under Optimal Sugar Concentration" Foods 14, no. 18: 3216. https://doi.org/10.3390/foods14183216
APA StyleYao, L., Ma, H., Yao, L., Cao, H., Feng, T., Wang, H., Yu, C., & Sun, M. (2025). Initial Sugar Concentration on Sensory Characteristics of Raw Pu-Erh Tea Kombucha and Multi-Omics Analysis of the Fermentation Process Under Optimal Sugar Concentration. Foods, 14(18), 3216. https://doi.org/10.3390/foods14183216