Optimization of Plum Wine Brewing Process and Effects of Different Clarifying Agents on Its Quality and Stability
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Brewing of Plum Wine
2.3. Single-Factor Experiment
2.4. Response Surface Method to Optimize
2.5. Clarification Experiment
2.5.1. Clarifying Agent Methods
2.5.2. Other Clarification Methods
2.6. Stability Experiment
2.7. Determination of Main Physical and Chemical Indicators
2.7.1. Determination of Polyphenol
2.7.2. Determination of Flavonoids
2.7.3. Measurement of DPPH Free Radical Scavenging Rate
2.7.4. Measurement of Clarification Effect
2.7.5. Determination of Alcohol, Total Acid and Total Sugar
2.8. Statistical Analysis
3. Results and Discussion
3.1. Results of Optimization of Plum Wine Fermentation Process
3.1.1. Results of Single-Factor Experiments
- (a)
- Effect of fermentation temperature on fermentation
- (b)
- Effect of fermentation time on fermentation
- (c)
- Effect of yeast addition on fermentation
- (d)
- Effect of initial pH on fermentation
- (e)
- Effect of initial sugar content on fermentation
3.1.2. Fitting Response Surface Models
3.1.3. Response Surface Analysis
3.1.4. Regression Model Validation
3.2. Effect of Clarifying Agent Treatments on Plum Wine
3.2.1. Determination of the Most Applicable Amount of Different Clarifying Agents
3.2.2. Determination of Optimum Action Time for Different Clarifying Agents
3.2.3. Effect of Optimum Amount of Clarifying Agent on the Quality of Plum Wine
3.2.4. Effect of Optimum Amount of Clarifying Agent on Stability of Plum Wine
3.3. Effects of Other Clarification Treatments on Plum Wine
3.3.1. Effect of Other Clarification Methods on the Quality of Plum Wine
3.3.2. Effect of Other Clarification Methods on the Stability of Plum Wine
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vitalis, F.; Tjandra Nugraha, D.; Aouadi, B.; Aguinaga Bósquez, J.P.; Bodor, Z.; Zaukuu, J.-L.Z.; Kocsis, T.; Zsom-Muha, V.; Gillay, Z.; Kovacs, Z. Detection of Monilia Contamination in Plum and Plum Juice with NIR Spectroscopy and Electronic Tongue. Chemosensors 2021, 9, 355. [Google Scholar] [CrossRef]
- Bahrin, A.A.; Moshawih, S.; Dhaliwal, J.S.; Kanakal, M.M.; Khan, A.; Lee, K.S.; Goh, B.H.; Goh, H.P.; Kifli, N.; Ming, L.C. Cancer protective effects of plums: A systematic review. Biomed. Pharmacother. 2021, 146, 112568. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Lian, Y.; Zhao, C.; Du, H.; Han, Y.; Gao, W.; Xiao, H.; Zheng, J. Dietary Fibers from Fruits and Vegetables and Their Health Benefits via Modulation of Gut Microbiota. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1514–1532. [Google Scholar] [CrossRef]
- Miljić, U.; Puškaš, V.; Velićanski, A.; Mašković, P.; Cvetković, D.; Vujić, J. Chemical composition and in vitro antimicrobial and cytotoxic activities of plum (Prunus domestica L.) wine. J. Inst. Brew. 2016, 122, 342–349. [Google Scholar] [CrossRef]
- Balak, J.; Drábová, L.; Maťátková, O.; Doležal, M.; Marsík, D.; Jarosova Kolouchova, I. Differences in Volatile Profiles and Sensory Characteristics in Plum Spirits on a Production Scale. Fermentation 2024, 10, 235. [Google Scholar] [CrossRef]
- Tang, F.; Cai, W.; Shan, C.; Guo, Z.; Hou, Q.; Zhang, Z.; Dong, Y. Dynamic changes in quality of jujube wine during fermentation. J. Food Process. Preserv. 2020, 44, e14704. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Q.; Weng, L.; Zou, L.; Jiang, H.; Qiu, J.; Fu, J. Analysis of sucrose addition on the physicochemical properties of blueberry wine in the main fermentation. Front. Nutr. 2023, 9, 1092696. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Liu, X.; Wu, S.; Zhou, J.; Wang, Y.; Wu, C. Effect of metal ions on haze formation in blackberry wine. LWT 2024, 191, 115628. [Google Scholar] [CrossRef]
- Jaeckels, N.; Meier, M.; Dietrich, H.; Will, F.; Decker, H.; Fronk, P. Influence of polysaccharides on wine protein aggregation. Food Chem. 2016, 200, 38–45. [Google Scholar] [CrossRef]
- Temerdashev, Z.A.; Abakumov, A.G.; Bolshov, M.A.; Brezhneva, Y.V.; Gipich, E.Y. The effect of organic fining agents on the elemental composition of young Cabernet Sauvignon wine. J. Food Compos. Anal. 2025, 147, 108055. [Google Scholar] [CrossRef]
- Ren, M.; Liu, S.; Li, R.; You, Y.; Huang, W.; Zhan, J. Clarifying effect of different fining agents on mulberry wine. Int. J. Food Sci. Technol. 2020, 55, 1578–1585. [Google Scholar] [CrossRef]
- Cerreti, M.; Liburdi, K.; Benucci, I.; Spinelli, S.E.; Lombardelli, C.; Esti, M. Optimization of pectinase and protease clarification treatment of pomegranate juice. LWT-Food Sci. Technol. 2017, 82, 58–65. [Google Scholar] [CrossRef]
- Chagas, R.; Monteiro, S.; Ferreira, R.B. Assessment of Potential Effects of Common Fining Agents Used for White Wine Protein Stabilization. Am. J. Enol. Vitic. 2012, 63, 574–578. [Google Scholar] [CrossRef]
- Li, W.; Zhang, Z.; Zhao, Y.; Li, W.; Wang, L.; Shang, Q.; Du, J.; Jin, L. Effect of Protease Combined with Heat Treatment on the Volatile Composition and Aroma Quality in Liqueur Wine. Molecules 2023, 28, 5129. [Google Scholar] [CrossRef]
- Zhu, Z.; Guan, Q.; Koubaa, M.; Barba, F.J.; He, J. Preparation of Highly Clarified Anthocyanin-Enriched Purple Sweet Potato Juices by Membrane Filtration and Optimization of Their Sensorial Properties. J. Food Process. Preserv. 2017, 41, e12929. [Google Scholar] [CrossRef]
- Pu, Y.; Ding, T.; Wang, W.; Xiang, Y.; Ye, X.; Li, M.; Liu, D. Effect of harvest, drying and storage on the bitterness, moisture, sugars, free amino acids and phenolic compounds of jujube fruit (Zizyphus jujuba cv. Junzao). J. Sci. Food Agric. 2018, 98, 628–634. [Google Scholar] [CrossRef]
- Skendi, A.; Papageorgiou, M.; Stefanou, S. Preliminary Study of Microelements, Phenolics as well as Antioxidant Activity in Local, Homemade Wines from North-East Greece. Foods 2020, 9, 1607. [Google Scholar] [CrossRef]
- Tekos, F.; Makri, S.; Skaperda, Z.-V.; Patouna, A.; Terizi, K.; Kyriazis, I.D.; Kotseridis, Y.; Mikropoulou, E.V.; Papaefstathiou, G.; Halabalaki, M.; et al. Assessment of Antioxidant and Antimutagenic Properties of Red and White Wine Extracts In Vitro. Metabolites 2021, 11, 436. [Google Scholar] [CrossRef]
- GB/T 15038-2006; Analytical Methods for Wine and Fruit Wine Products. General Administration of Quality Supervision, Inspection and Quarantine: Beijing, China, 2006.
- Wang, Z.; Hao, Q.; An, X.; Chitrakar, B.; Li, J.; Zhao, Z.; Ao, C.; Sun, J. Optimization of Mopan Persimmon Wine Fermentation with Pectinase and Analysis of Its Mechanism of Action. Foods 2023, 12, 1246. [Google Scholar] [CrossRef]
- Liu, Y.; Wei, Y.; Li, H.; Li, F.; Song, M.; Li, Z.; Zhang, T.; Han, S.; Pan, C. Optimization of fermentation technology for composite fruit and vegetable wine by response surface methodology and analysis of its aroma components. RSC Adv. 2022, 12, 35616–35626. [Google Scholar] [CrossRef]
- Carmelo, V.; Bogaerts, P.; SaCorreia, I. Activity of plasma membrane H+-ATPase and expression of PMA1 and PMA2 genes in Saccharomyces cerevisiae cells grown at optimal and low pH. Arch. Microbiol. 1996, 166, 315–320. [Google Scholar] [CrossRef] [PubMed]
- Razmovski, R.; Vucurovic, V. Bioethanol production from sugar beet molasses and thick juice using Saccharomyces cerevisiae immobilized on maize stem ground tissue. Fuel 2012, 92, 1–8. [Google Scholar] [CrossRef]
- Sun, S.; Huang, S.; Shi, Y.; Shao, Y.; Qiu, J.; Sedjoah, R.-C.A.-A.; Yan, Z.; Ding, L.; Zou, D.; Xin, Z. Extraction, isolation, characterization and antimicrobial activities of non-extractable polyphenols from pomegranate peel. Food Chem. 2021, 351, 129232. [Google Scholar] [CrossRef]
- dos Santos, D.M.; Bukzem, A.d.L.; Campana-Filho, S.P. Response surface methodology applied to the study of the microwave-assisted synthesis of quaternized chitosan. Carbohydr. Polym. 2016, 138, 317–326. [Google Scholar] [CrossRef]
- Ates, F.; Erginel, N. Optimization of bio-oil production using response surface methodology and formation of polycyclic aromatic hydrocarbons (PAHs) at elevated pressures. Fuel Process. Technol. 2016, 142, 279–286. [Google Scholar] [CrossRef]
- Chen, H.; Chen, Y.; Ye, X.; Liu, D.; Chen, J. Turbidity, antioxidant compounds, color, and dynamics of clarification of bayberry juice using various polysaccharide-based clarifying agents. J. Food Process. Preserv. 2019, 43, e13980. [Google Scholar] [CrossRef]
- Patel, V.B.; Chatterjee, S.; Dhoble, A.S. A review on pectinase properties, application in juice clarification, and membranes as immobilization support. J. Food Sci. 2022, 87, 3338–3354. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Ma, X.; Dong, X.; Feng, Z.; Dong, Y. Characterisation of floc size, effective density and sedimentation under various flocculation mechanisms. Water Sci. Technol. 2020, 82, 1261–1271. [Google Scholar] [CrossRef]
- Droppo, I.G.; Exall, K.; Stafford, K. Effects of chemical amendments on aquatic floc structure, settling and strength. Water Res. 2007, 42, 169–179. [Google Scholar] [CrossRef] [PubMed]
- Tastan, O.; Baysal, T. Clarification of pomegranate juice with chitosan: Changes on quality characteristics during storage. Food Chem. 2015, 180, 211–218. [Google Scholar] [CrossRef]
- Chirug, L.; Okun, Z.; Ramon, O.; Shpigelman, A. Iron ions as mediators in pectin-flavonols interactions. Food Hydrocoll. 2018, 84, 441–449. [Google Scholar] [CrossRef]
- Wu, F.; Lin, B.; Chen, J.; Zheng, F.; Yang, Y.; Rasheed, U.; Chen, G. Mechanistic Insights into the Antioxidant Potential of Sugarcane Vinegar Polyphenols: A Combined Approach of DPPH-UPLC-MS, Network Pharmacology and Molecular Docking. Foods 2024, 13, 3379. [Google Scholar] [CrossRef] [PubMed]
- Ricci, A.; Versari, A.; Ragni, L.; Parpinello, G.P. Effect of an innovative sorbent material coupled to continuous flow process in the protein and oxidative stability of white wines. Food Chem. 2024, 446, 138868. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Ye, J.; Li, C.; Guo, Y.; Jiang, W.; Yang, X.; Wei, Y.; Jiang, S.; Chen, Y.; Shao, X. Characterization and formation process analysis of peach fruit woolliness under low-temperature storage. Food Chem. 2025, 492, 145597. [Google Scholar] [CrossRef]
- dos Santos, L.N.; Santos, A.S.; das Gracas Fernandes Dantas, K.; Ferreira, N.R. Adsorption of Cu (II) Ions Present in the Distilled Beverage (Sugar Cane Spirit) Using Chitosan Derived from the Shrimp Shell. Polymers 2022, 14, 573. [Google Scholar] [CrossRef] [PubMed]
- Baris, F.; Marin, A.C.; Pinheiro, A.C.D.A.S.; Tappi, S.; Chinnici, F. Efficacy of fungoid chitosans from Aspergillus niger and Agaricus bisporus in controlling the oxidative browning of model white wines. Innov. Food Sci. Emerg. Technol. 2023, 86, 103381. [Google Scholar] [CrossRef]
- Arriagada-Carrazana, J.P.; Sáez-Navarrete, C.; Brodeu, E. Membrane filtration effects on aromatic and phenolic quality of Cabernet Sauvignon wines. J. Food Eng. 2005, 68, 363–368. [Google Scholar] [CrossRef]
Treatment Groups | Chitosan (g/L) | Gelatin (g/L) | Bentonite (g/L) | PVPP (g/L) | Pectinase (g/L) |
---|---|---|---|---|---|
1 | 0 | 0 | 0 | 0 | 0 |
2 | 0.15 | 0.1 | 0.2 | 0.2 | 0.05 |
3 | 0.3 | 0.2 | 0.4 | 0.4 | 0.1 |
4 | 0.45 | 0.4 | 0.6 | 0.6 | 0.15 |
5 | 0.6 | 0.6 | 0.8 | 0.8 | 0.2 |
6 | 0.75 | 0.8 | 1 | 1 | 0.25 |
Levels | Factors | ||||
---|---|---|---|---|---|
A Fermentation Temperature (°C) | B Fermentation Time (d) | C Yeast Addition (%) | D Initial pH | E Initial Sugar Content (%) | |
−1 | 26 | 9 | 0.6 | 3.2 | 25 |
0 | 30 | 11 | 0.8 | 3.4 | 28 |
1 | 34 | 13 | 1 | 3.6 | 31 |
Test Number | A Fermentation Temperature (°C) | B Fermentation Time (d) | C Yeast Addition (%) | D Initial pH | E Initial Sugar Content (%) | F Alcohol Content (%vol) |
---|---|---|---|---|---|---|
1 | 30 | 11 | 0.6 | 3.4 | 25 | 9.71 ± 0.08 |
2 | 30 | 11 | 0.8 | 3.4 | 28 | 13.51 ± 0.09 |
3 | 30 | 9 | 0.8 | 3.6 | 28 | 10.05 ± 0.06 |
4 | 26 | 9 | 0.8 | 3.4 | 28 | 9.21 ± 0.11 |
5 | 34 | 11 | 0.6 | 3.4 | 28 | 9.24 ± 0.07 |
6 | 30 | 11 | 0.8 | 3.2 | 31 | 11.03 ± 0.09 |
7 | 30 | 9 | 0.8 | 3.4 | 25 | 9.66 ± 0.12 |
8 | 30 | 11 | 0.8 | 3.4 | 28 | 13.44 ± 0.13 |
9 | 26 | 11 | 0.8 | 3.4 | 25 | 10.33 ± 0.08 |
10 | 30 | 13 | 0.8 | 3.4 | 25 | 10.22 ± 0.06 |
11 | 34 | 11 | 1 | 3.4 | 28 | 11.67 ± 0.09 |
12 | 30 | 13 | 0.8 | 3.6 | 28 | 12.02 ± 0.12 |
13 | 34 | 9 | 0.8 | 3.4 | 28 | 9.91 ± 0.08 |
14 | 30 | 9 | 0.8 | 3.4 | 31 | 10.44 ± 0.09 |
15 | 34 | 11 | 0.8 | 3.4 | 25 | 10.07 ± 0.15 |
16 | 34 | 11 | 0.8 | 3.2 | 28 | 9.99 ± 0.05 |
17 | 30 | 13 | 1 | 3.4 | 28 | 11.38 ± 0.12 |
18 | 34 | 11 | 0.8 | 3.4 | 31 | 11.56 ± 0.07 |
19 | 30 | 11 | 0.8 | 3.6 | 31 | 11.49 ± 0.12 |
20 | 26 | 11 | 0.8 | 3.6 | 28 | 10.42 ± 0.06 |
21 | 30 | 11 | 0.8 | 3.4 | 28 | 12.89 ± 0.06 |
22 | 30 | 9 | 1 | 3.4 | 28 | 10.28 ± 0.13 |
23 | 30 | 13 | 0.6 | 3.4 | 28 | 10.08 ± 0.04 |
24 | 34 | 11 | 0.8 | 3.6 | 28 | 11.08 ± 0.11 |
25 | 26 | 11 | 1 | 3.4 | 28 | 9.85 ± 0.07 |
26 | 30 | 11 | 0.6 | 3.6 | 28 | 10.29 ± 0.10 |
27 | 30 | 13 | 0.8 | 3.4 | 31 | 11.26 ± 0.08 |
28 | 30 | 13 | 0.8 | 3.2 | 28 | 10.07 ± 0.05 |
29 | 30 | 11 | 1 | 3.2 | 28 | 10.67 ± 0.09 |
30 | 26 | 13 | 0.8 | 3.4 | 28 | 9.74 ± 0.15 |
31 | 30 | 11 | 0.8 | 3.2 | 25 | 9.51 ± 0.13 |
32 | 26 | 11 | 0.6 | 3.4 | 28 | 10.03 ± 0.09 |
33 | 30 | 11 | 0.8 | 3.4 | 28 | 13.14 ± 0.04 |
34 | 30 | 11 | 0.8 | 3.4 | 28 | 13.26 ± 0.06 |
35 | 30 | 11 | 1 | 3.4 | 25 | 10.53 ± 0.09 |
36 | 30 | 11 | 0.8 | 3.6 | 25 | 11.15 ± 0.14 |
37 | 30 | 11 | 0.6 | 3.4 | 31 | 10.31 ± 0.11 |
38 | 30 | 11 | 0.6 | 3.2 | 28 | 9.35 ± 0.08 |
39 | 30 | 11 | 1 | 3.6 | 28 | 11.62 ± 0.06 |
40 | 26 | 11 | 0.8 | 3.4 | 31 | 9.86 ± 0.09 |
41 | 30 | 11 | 1 | 3.4 | 31 | 12.04 ± 0.14 |
42 | 30 | 9 | 0.8 | 3.2 | 28 | 10.19 ± 0.11 |
43 | 30 | 9 | 0.6 | 3.4 | 28 | 9.42 ± 0.09 |
44 | 34 | 13 | 0.8 | 3.4 | 28 | 10.65 ± 0.12 |
45 | 26 | 11 | 0.8 | 3.2 | 28 | 9.44 ± 0.08 |
46 | 30 | 11 | 0.8 | 3.4 | 28 | 13.21 ± 0.07 |
Sum of Squares | Degrees of Freedom | Mean Square | F-Value | p-Value | Significance | |
---|---|---|---|---|---|---|
Models | 65.57 | 20 | 3.28 | 94.81 | <0.0001 | ** |
A | 1.75 | 1 | 1.75 | 50.58 | <0.0001 | ** |
B | 2.45 | 1 | 2.45 | 70.83 | <0.0001 | ** |
C | 5.77 | 1 | 5.77 | 166.93 | <0.0001 | ** |
D | 3.87 | 1 | 3.87 | 111.96 | <0.0001 | ** |
E | 2.9 | 1 | 2.9 | 83.83 | <0.0001 | ** |
AB | 0.011 | 1 | 0.011 | 0.3189 | 0.5773 | |
AC | 1.7 | 1 | 1.7 | 49.25 | <0.0001 | ** |
AD | 0.003 | 1 | 0.003 | 0.0875 | 0.7698 | |
AE | 0.9604 | 1 | 0.9604 | 27.78 | <0.0001 | ** |
BC | 0.0484 | 1 | 0.0484 | 1.4 | 0.2479 | |
BD | 1.09 | 1 | 1.09 | 31.58 | <0.0001 | ** |
BE | 0.0169 | 1 | 0.0169 | 0.4888 | 0.4909 | |
CD | 0 | 1 | 0 | 0.0007 | 0.9788 | |
CE | 0.207 | 1 | 0.207 | 5.99 | 0.0218 | * |
DE | 0.3481 | 1 | 0.3481 | 10.07 | 0.004 | * |
A2 | 25.11 | 1 | 25.11 | 726.23 | <0.0001 | ** |
B2 | 21.48 | 1 | 21.48 | 621.16 | <0.0001 | ** |
C2 | 17.38 | 1 | 17.38 | 502.69 | <0.0001 | ** |
D2 | 13.7 | 1 | 13.7 | 396.22 | <0.0001 | ** |
E2 | 12.28 | 1 | 12.28 | 355.18 | <0.0001 | ** |
Residuals | 0.8644 | 25 | 0.0346 | |||
Lack of fit | 0.6177 | 20 | 0.0309 | 0.626 | 0.7935 | |
Pure error | 0.2467 | 5 | 0.0493 | |||
Cor Total | 66.43 | 45 | ||||
C.V.% | 1.73 | |||||
R2 | 0.9870 | |||||
Adjusted R2 | 0.9766 | |||||
Predicted R2 | 0.9575 |
A Fermentation Temperature (°C) | B Fermentation Time (d) | C Yeast Addition (%) | D Initial pH | E Initial Sugar Content (%) | F Alcohol Content (%vol) | |
---|---|---|---|---|---|---|
Predicted conditions | 30.754 | 11.355 | 0.856 | 3.442 | 28.672 | 13.491 |
Experimental conditions | 31 | 12 | 0.86 | 3.5 | 28.5 | 13.7 |
Polyphenol (mg/L) | Flavonoids (mg/L) | DPPH (%) | Alcohol Content (%vol) | |
---|---|---|---|---|
Before optimization | 564.3 ± 6.21 a | 340.7 ± 3.11 b | 87 ± 1.17 a | 10.3 ± 0.07 b |
After optimization | 560.22 ± 1.68 a | 360.6 ± 1.22 a | 81.13 ± 1.8 b | 13.7 ± 0.21 a |
Retention rate (%) | 99.3 | 105.8 | 93.3 | 133 |
Transmittance (%) | Polyphenol (mg/L) | Flavonoids (mg/L) | DPPH (%) | Total Sugar (%) | Total Acid (%) | Alcohol Content (%vol) | |
---|---|---|---|---|---|---|---|
Chitosan 0.45 g/L | 89.8 ± 0.7 a | 522.9 ± 1.95 e | 341.07 ± 1.9 c | 74.3 ± 1.13 c | 6.03 ± 0.06 a | 6.07 ± 0.15 b | 13.6 ± 0.1 a |
Gelatin 0.6 g/L | 88.57 ± 0.15 ab | 541.33 ± 1.51 c | 354.19 ± 1.72 b | 75.37 ± 1.48 bc | 5.97 ± 0.21 a | 6.37 ± 0.15 ab | 13.2 ± 0.3 a |
Bentonite 0.6 g/L | 89.13 ± 0.16 a | 535.53 ± 1.01 d | 337.62 ± 1.19 c | 75.4 ± 1.22 bc | 6.4 ± 0.46 a | 6.37 ± 0.15 ab | 13.33 ± 0.12 a |
PVPP 0.6 g/L | 89.37 ± 0.15 a | 543.16 ± 0.29 c | 330.5 ± 1.32 d | 79.17 ± 1.04 ab | 6.07 ± 0.12 a | 6.23 ± 0.15 ab | 13.23 ± 0.12 a |
Pectinase 0.15 g/L | 87.57 ± 0.25 b | 551.07 ± 1.2 b | 326.27 ± 1.1 e | 79.27 ± 1.62 a | 6.23 ± 0.12 a | 6.33 ± 0.12 ab | 13.37 ± 0.15 a |
Original wine | 79.97 ± 1 c | 560.22 ± 1.68 a | 360.6 ± 1.22 a | 81.13 ± 1.8 a | 6.03 ± 0.06 a | 6.53 ± 0.06 a | 13.47 ± 0.21 a |
Protein Stability | Cold Stability | Hot Stability | Iron Stability | Oxidative Stability | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Transmittance (%) | Reduction Rate (%) | Transmittance (%) | Reduction Rate (%) | Transmittance (%) | Reduction Rate (%) | Transmittance (%) | Reduction Rate (%) | Transmittance (%) | Reduction Rate (%) | |
Chitosan 0.45 g/L | 87.4 ± 0.35 a | 2.7 ± 0.006 a | 86.57 ± 0.12 a | 3.6 ± 0.007 ab | 86.33 ± 0.32 cd | 3.9 ± 0.008 a | 88.6 ± 0.1 a | 1.3 ± 0.008 b | 88.9 ± 0.2 a | 1 ± 0.01 a |
Gelatin 0.6 g/L | 86.59 ± 0.26 ab | 2.2 ± 0.004 a | 83.77 ± 0.68 b | 5.4 ± 0.008 a | 87.77 ± 0.15 a | 0.9 ± 0.003 c | 86.83 ± 0.4 bc | 2 ± 0.006 b | 87.93 ± 0.15 ab | 0.7 ± 0.003 a |
Bentonite 0.6 g/L | 86.4 ± 0.26 ab | 3.1 ± 0.002 a | 87.07 ± 0.15 a | 2.3 ± 0.001 bc | 87.37 ± 0.21 ab | 2 ± 0.004 bc | 87.43 ± 0.21 b | 1.9 ± 0.004 b | 87.63 ± 1.12 ab | 1.7 ± 0.011 a |
PVPP 0.6 g/L | 87.3 ± 0.72 a | 2.3 ± 0.009 a | 87.23 ± 0.12 a | 2.4 ± 0.002 bc | 86.9 ± 0.35 bc | 2.8 ± 0.004 ab | 87.5 ± 0.26 b | 2.1 ± 0.004 b | 88.63 ± 0.06 a | 0.8 ± 0.002 a |
Pectinase 0.15 g/L | 85.9 ± 0.26 b | 1.9 ± 0.001 a | 87.03 ± 0.12 a | 0.6 ± 0.002 c | 85.87 ± 0.38 d | 1.9 ± 0.002 bc | 86.7 ± 0.1 c | 1 ± 0.003 b | 87.13 ± 0.21 b | 0.5 ± 0.004 a |
Original wine | 76.6 ± 0.44 c | 4.2 ± 0.017 a | 76.13 ± 0.31 c | 4.8 ± 0.015 a | 77.27 ± 0.25 e | 3.4 ± 0.014 a | 76.17 ± 0.35 d | 4.7 ± 0.016 a | 78.07 ± 0.06 c | 2.4 ± 0.012 a |
Transmittance (%) | Polyphenol (mg/L) | Flavonoids (mg/L) | DPPH (%) | Total Sugar (%) | Total Acid (%) | Alcohol Content (%vol) | |
---|---|---|---|---|---|---|---|
Room temp (14 °C) | 79.8 ± 0.2 f | 560 ± 0.25 c | 359.4 ± 0.57 ab | 80.9 ± 0.15 c | 6 ± 0.06 a | 6.5 ± 0.06 a | 13.5 ± 0.06 a |
Refrigerated (4 °C) | 84.8 ± 0.31 e | 520.3 ± 0.64 e | 340.1 ± 0.31 b | 78.5 ± 0.5 d | 6.1 ± 0.17 a | 6.5 ± 0.1 a | 13.4 ± 0.12 a |
Frozen (−14 °C) | 87.6 ± 0.06 c | 460.5 ± 0.46 g | 307 ± 0.2 c | 71.8 ± 0.2 g | 6 ± 0.06 a | 6.5 ± 0 a | 13.4 ± 0.12 a |
Membrane filtration (0.22 μm) | 96.4 ± 0.42 a | 440.3 ± 0.55 h | 290.2 ± 0.15 c | 74.2 ± 0.21 f | 6.2 ± 0.35 a | 6.4 ± 0.06 a | 13.4 ± 0.06 a |
Membrane filtration (0.45 μm) | 93.2 ± 0.26 b | 469.7 ± 0.42 f | 309.7 ± 0.25 c | 77 ± 0.15 e | 6.2 ± 0.06 a | 6.4 ± 0.06 a | 13.4 ± 0.12 a |
Heat treatment (80 °C, 10 min) | 85.7 ± 0.35 d | 560 ± 0.3 c | 370 ± 0.15 a | 84.1 ± 0.15 b | 6.2 ± 0.35 a | 6.5 ± 0.06 a | 13.4 ± 0.06 a |
Heat treatment (80 °C, 20 min) | 87.7 ± 0.32 c | 573.9 ± 0.31 b | 349.8 ± 20.93 b | 87 ± 0.25 a | 6.1 ± 0.15 a | 6.4 ± 0.06 a | 13.4 ± 0.12 a |
Heat treatment (80 °C, 30 min) | 86.2 ± 0.31 c | 533.9 ± 0.1 d | 377.9 ± 0.31 a | 87.1 ± 0.21 a | 6.1 ± 0.12 a | 6.5 ± 0.06 a | 13.4 ± 0.1 a |
Original wine | 79.8 ± 0.06 f | 581.9 ± 0.15 a | 359.8 ± 0.29 ab | 80.8 ± 0.15 c | 6.3 ± 0.31 a | 6.5 ± 0.1 a | 13.4 ± 0.06 a |
Protein Stability | Cold Stability | Hot Stability | Iron Stability | Oxidative Stability | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Transmittance (%) | Reduction Rate (%) | Transmittance (%) | Reduction Rate (%) | Transmittance (%) | Reduction Rate (%) | Transmittance (%) | Reduction Rate (%) | Transmittance (%) | Reduction Rate (%) | |
Room temp (14 °C) | 76.37 ± 0.42 f | 4.3 ± 0.007 bc | 75.83 ± 0.06 f | 5 ± 0.003 b | 78.03 ± 0.12 e | 2.2 ± 0.003 bc | 75.4 ± 0.17 e | 5.5 ± 0.004 b | 78.7 ± 0.26 f | 1.4 ± 0.004 ab |
Refrigerated (4 °C) | 83.9 ± 0.2 d | 1 ± 0.003 d | 84.1 ± 0.26 d | 0.8 ± 0.004 c | 83.33 ± 0.12 c | 1.7 ± 0.004 bc | 83.6 ± 0.46 d | 1.4 ± 0.006 de | 84.03 ± 0.12 e | 0.9 ± 0.005 b |
Frozen (−14 °C) | 85.6 ± 0.2 bc | 2.2 ± 0.002 cd | 86.33 ± 0.06 bc | 1.4 ± 0.001 c | 86.33 ± 0.21 b | 1.4 ± 0.003 bc | 86.93 ± 0.25 b | 0.7 ± 0.003 e | 87.23 ± 0.21 c | 0.4 ± 0.003 b |
Membrane filtration (0.22 μm) | 89.3 ± 0.1 a | 7.3 ± 0.004 a | 89.43 ± 0.31 a | 7.2 ± 0.006 a | 89.77 ± 0.31 a | 6.8 ± 0.007 a | 88.83 ± 0.29 a | 7.8 ± 0.006 a | 96.27 ± 0.55 a | 0.1 ± 0.004 b |
Membrane filtration (0.45 μm) | 86.5 ± 0.44 b | 7.2 ± 0.006 a | 88.47 ± 0.61 a | 5.1 ± 0.008 b | 90.53 ± 1.26 a | 2.9 ± 0.011 bc | 87.67 ± 0.12 b | 5.9 ± 0.004 ab | 92.97 ± 0.15 b | 0.3 ± 0.002 b |
Heat treatment (80 °C, 10 min) | 80.8 ± 0.46 e | 5.8 ± 0.009 ab | 81.5 ± 0.4 e | 4.9 ± 0.007 b | 80.37 ± 0.76 d | 6.3 ± 0.012 a | 83.33 ± 0.15 d | 2.8 ± 0.005 cd | 85.33 ± 0.06 d | 0.5 ± 0.003 b |
Heat treatment (80 °C, 20 min) | 86.23 ± 0.06 bc | 1.7 ± 0.004 d | 86.73 ± 0.55 b | 1.1 ± 0.006 c | 86.07 ± 0.06 b | 1.9 ± 0.003 bc | 86.93 ± 0.23 b | 0.9 ± 0.005 de | 87.27 ± 0.15 c | 0.5 ± 0.003 b |
Heat treatment (80 °C, 30 min) | 85.53 ± 0.31 c | 0.8 ± 0.005 d | 85.3 ± 0.6 c | 1.1 ± 0.004 c | 85.67 ± 0.06 b | 0.7 ± 0.004 c | 84.83 ± 0.25 c | 1.6 ± 0.003 de | 85.87 ± 0.21 d | 0.4 ± 0.003 b |
Original wine | 76.6 ± 0.44 f | 4.2 ± 0.017 bc | 76.13 ± 0.31 f | 4.8 ± 0.015 b | 77.27 ± 0.25 e | 3.4 ± 0.014 b | 76.17 ± 0.35 e | 4.7 ± 0.016 bc | 78.07 ± 0.06 f | 2.4 ± 0.012 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Zhu, S.; Deng, J.; Li, H.; Fang, L.; Hu, X.; Zhang, X.; Liu, X. Optimization of Plum Wine Brewing Process and Effects of Different Clarifying Agents on Its Quality and Stability. Foods 2025, 14, 3214. https://doi.org/10.3390/foods14183214
Chen J, Zhu S, Deng J, Li H, Fang L, Hu X, Zhang X, Liu X. Optimization of Plum Wine Brewing Process and Effects of Different Clarifying Agents on Its Quality and Stability. Foods. 2025; 14(18):3214. https://doi.org/10.3390/foods14183214
Chicago/Turabian StyleChen, Juan, Sijie Zhu, Jia Deng, Hongmin Li, Lu Fang, Xin Hu, Xueting Zhang, and Xudong Liu. 2025. "Optimization of Plum Wine Brewing Process and Effects of Different Clarifying Agents on Its Quality and Stability" Foods 14, no. 18: 3214. https://doi.org/10.3390/foods14183214
APA StyleChen, J., Zhu, S., Deng, J., Li, H., Fang, L., Hu, X., Zhang, X., & Liu, X. (2025). Optimization of Plum Wine Brewing Process and Effects of Different Clarifying Agents on Its Quality and Stability. Foods, 14(18), 3214. https://doi.org/10.3390/foods14183214