Caulerpa cylindracea: First Insight into Its Nutritional Potential
Abstract
1. Introduction
2. Materials and Methods
2.1. Seaweed Harvest and Preparation
2.2. Determination of Proximal Nutritional Values
2.3. Determination of Amino Acid Content
2.4. Determination of Fatty Acid Content
2.5. Determination of Mineral Content
2.6. Determination of Vitamin Content
2.7. Data Analysis
3. Results
3.1. Proximate Composition
3.2. Protein Content and Amino Acids
3.3. Mineral Content
3.4. Vitamin Content
3.5. Fatty Acid Content
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Agirbasli, Z.; Cavas, L. In Silico Evaluation of Bioactive Peptides from the Green Algae Caulerpa. J. Appl. Phycol. 2017, 29, 1635–1646. [Google Scholar] [CrossRef]
- Paul, N.A.; Neveux, N.; Magnusson, M.; de Nys, R. Comparative Production and Nutritional Value of “Sea Grapes”—The Tropical Green Seaweeds Caulerpa lentillifera and C. Racemosa. J. Appl. Phycol. 2014, 26, 1833–1844. [Google Scholar] [CrossRef]
- Schiano, V.; Cutignano, A.; Maiello, D.; Carbone, M.; Ciavatta, M.L.; Polese, G.; Fioretto, F.; Attanasio, C.; Palladino, A.; Felline, S.; et al. An Alkaloid from a Highly Invasive Seaweed Increases the Voracity and Reproductive Output of a Model Fish Species. Mar. Drugs 2022, 20, 513. [Google Scholar] [CrossRef]
- Iveša, N.; Burić, P.; Buršić, M.; Kovačić, I.; Paliaga, P.; Pustijanac, E.; Šegulja, S.; Modrušan, A.; Bilić, J.; Millotti, G. A Review on Nutrients, Phytochemicals, Health Benefits and Applications of the Green Seaweed Caulerpa racemosa (Forsskål) J. Agardh. J. Appl. Phycol. 2024, 36, 3451–3473. [Google Scholar] [CrossRef]
- Crocetta, F.; Al Mabruk, S.A.A.; Azzurro, E.; Bakiu, R.; Bariche, M.; Batjakas, I.E.; Bejaoui, T.; Ben Souissi, S.J.; Cauchi, J.; Corsini-Foka, M.; et al. New Alien Mediterranean Biodiversity Records (November 2021). Mediterr. Mar. Sci. 2021, 22, 724–746. [Google Scholar] [CrossRef]
- Stabili, L.; Fraschetti, S.; Acquaviva, M.I.; Cavallo, R.A.; De Pascali, S.A.; Fanizzi, F.P.; Gerardi, C.; Narracci, M.; Rizzo, L. The Potential Exploitation of the Mediterranean Invasive Alga Caulerpa Cylindracea: Can the Invasion Be Transformed into a Gain? Mar. Drugs 2016, 14, 210. [Google Scholar] [CrossRef]
- Žuljević, A.; Antolić, B.; Onofri, V. First Record of Caulerpa racemosa (Caulerpales: Chlorophyta) in the Adriatic Sea. J. Mar. Biol. Assoc. United Kingd. 2003, 83, 711–712. [Google Scholar] [CrossRef]
- Iveša, L.; Devescovi, M. Seasonal Vegetation Patterns of the Introduced Caulerpa racemose (Caulerpales, Chlorophyta) in the Northern Adriatic Sea (Vrsar, Croatia). Period. Biol. 2006, 108, 111–116. [Google Scholar]
- Iveša, L.; Djakovac, T.; Devescovi, M. Spreading Patterns of the Invasive Caulerpa cylindracea Sonder along the West Istrian Coast (Northern Adriatic Sea, Croatia). Mar. Environ. Res. 2015, 107, 1–7. [Google Scholar] [CrossRef]
- Iveša, N. (Juraj Dobrila University of Pula, Faculty of Natural Sciences, Pula, Croatia). Personal communication, 2025. [Google Scholar]
- Najdek, M.; Korlević, M.; Paliaga, P.; Markovski, M.; Ivančić, I.; Iveša, L.; Felja, I.; Herndl, G.J. Effects of the Invasion of Caulerpa Cylindracea in a Cymodocea Nodosa Meadow in the Northern Adriatic Sea. Front. Mar. Sci. 2020, 7, 602055. [Google Scholar] [CrossRef]
- Jelić Mrčelić, G.; Krstulović Šifner, S.; Nerlović, V. A Comparison between the Production of Edible Macroalgae Worldwide and in the Mediterranean Sea. Oceans 2024, 5, 442–465. [Google Scholar] [CrossRef]
- Pacheco, D.; Araújo, G.S.; Cotas, J.; Gaspar, R.; Neto, J.M.; Pereira, L. Invasive Seaweeds in the Iberian Peninsula: A Contribution for Food Supply. Mar. Drugs 2020, 18, 560. [Google Scholar] [CrossRef]
- Qudus B Aroyehun, A.; Abdul Razak, S.; Palaniveloo, K.; Nagappan, T.; Suraiza Nabila Rahmah, N.; Wee Jin, G.; Chellappan, D.K.; Chellian, J.; Kunnath, A.P. Bioprospecting Cultivated Tropical Green Algae, Caulerpa racemosa (Forsskal) J. Agardh: A Perspective on Nutritional Properties, Antioxidative Capacity and Anti-Diabetic Potential. Foods 2020, 9, 1313. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, Y.; Xu, R.; Tian, J.; Li, T.; Chen, S. Comparative Analysis of the Nutrient Composition of Caulerpa lentillifera from Various Cultivation Sites. Foods 2025, 14, 474. [Google Scholar] [CrossRef]
- Armeli Minicante, S.; Bongiorni, L.; De Lazzari, A. Bio-Based Products from Mediterranean Seaweeds: Italian Opportunities and Challenges for a Sustainable Blue Economy. Sustainability 2022, 14, 5634. [Google Scholar] [CrossRef]
- Reynolds, D.; Caminiti, J.; Edmundson, S.; Gao, S.; Wick, M.; Huesemann, M. Seaweed Proteins Are Nutritionally Valuable Components in the Human Diet. Am. J. Clin. Nutr. 2022, 116, 855–861. [Google Scholar] [CrossRef]
- Pereira, L.; Cotas, J.; Gonçalves, A.M. Seaweed Proteins: A Step towards Sustainability? Nutrients 2024, 16, 1123. [Google Scholar] [CrossRef] [PubMed]
- Defranoux, F.; Noè, S.; Cutignano, A.; Casapullo, A.; Ciavatta, M.L.; Carbone, M.; Mollo, E.; Gianguzza, P. Chemoecological Study of the Invasive Alga Caulerpa Taxifolia Var. Distichophylla from the Sicilian Coast. Aquat. Ecol. 2022, 56, 447–457. [Google Scholar] [CrossRef]
- Vitale, R.M.; D’Aniello, E.; Gorbi, S.; Martella, A.; Silvestri, C.; Giuliani, M.E.; Fellous, T.; Gentile, A.; Carbone, M.; Cutignano, A.; et al. Fishing for Targets of Alien Metabolites: A Novel Peroxisome Proliferator-Activated Receptor (PPAR) Agonist from a Marine Pest. Mar. Drugs 2018, 16, 431. [Google Scholar] [CrossRef]
- Mollo, E.; Cimino, G.; Ghiselin, M.T. Alien Biomolecules: A New Challenge for Natural Product Chemists. Biol. Invasions 2015, 17, 941–950. [Google Scholar] [CrossRef]
- Tanna, B.; Choudhary, B.; Mishra, A. Metabolite Profiling, Antioxidant, Scavenging and Anti-Proliferative Activities of Selected Tropical Green Seaweeds Reveal the Nutraceutical Potential of Caulerpa spp. Algal Res. 2018, 36, 96–105. [Google Scholar] [CrossRef]
- Nagappan, T.; Vairappan, C.S. Nutritional and Bioactive Properties of Three Edible Species of Green Algae, Genus Caulerpa (Caulerpaceae). J. Appl. Phycol. 2014, 26, 1019–1027. [Google Scholar] [CrossRef]
- Tapotubun, A.M.; Matrutty, T.E.A.A.; Riry, J.; Tapotubun, E.J.; Fransina, E.G.; Mailoa, M.N.; Riry, W.A.; Setha, B.; Rieuwpassa, F. Seaweed Caulerpa Sp Position as Functional Food. IOP Conf. Ser. Earth Environ. Sci. 2020, 517, 012021. [Google Scholar] [CrossRef]
- Syakilla, N.; George, R.; Chye, F.Y.; Pindi, W.; Mantihal, S.; Wahab, N.A.; Fadzwi, F.M.; Gu, P.H.; Matanjun, P. A Review on Nutrients, Phytochemicals, and Health Benefits of Green Seaweed, Caulerpa lentillifera. Foods 2022, 11, 2832. [Google Scholar] [CrossRef]
- Tahar, A.; Zghida, H.; Pereira, D.T.; Korbee, N.; Treichel, H.; Figueroa, F.L.; Achour, L. Biochemical Composition and Alkaline Extraction Optimization of Soluble Bioactive Compounds from the Green Algae Caulerpa Cylindraceae. Mar. Drugs 2025, 23, 208. [Google Scholar] [CrossRef] [PubMed]
- Blažina, M.; Iveša, L.; Najdek, M. Caulerpa Racemosa: Adaptive Varieties Studied by Fatty Acid Composition (Northern Adriatic Sea, Vrsar, Croatia). Eur. J. Phycol. 2009, 44, 183–189. [Google Scholar] [CrossRef]
- Mimić, G.; Podraščanin, Z.; Basarin, B. Change Detection of the Köppen Climate Zones in Southeastern Europe. Atmos. Sci. Lett. 2024, 25, e1270. [Google Scholar] [CrossRef]
- Kumar, A.; Hanjabam, M.D.; Kishore, P.; Uchoi, D.; Panda, S.K.; Mohan, C.O.; Chatterjee, N.S.; Zynudheen, A.A.; Ravishankar, C.N. Exploitation of Seaweed Functionality for the Development of Food Products. Food Bioprocess Technol. 2023, 16, 1873–1903. [Google Scholar] [CrossRef]
- Neto, R.T.; Marçal, C.; Queirós, A.S.; Abreu, H.; Silva, A.M.S.; Cardoso, S.M. Screening of Ulva rigida, Gracilaria sp., Fucus vesiculosus and Saccharina latissima as Functional Ingredients. Int. J. Mol. Sci. 2018, 19, 2987. [Google Scholar] [CrossRef]
- Stuthmann, L.E.; Brix da Costa, B.; Springer, K.; Kunzmann, A. Sea Grapes (Caulerpa lentillifera J. Agardh, Chlorophyta) for Human Use: Structured Review on Recent Research in Cultivation, Nutritional Value, and Post-Harvest Management. J. Appl. Phycol. 2023, 35, 2957–2983. [Google Scholar] [CrossRef]
- Ratana-Arporn, P.; Chirapart, A. Nutritional Evaluation of Tropical Green Seaweeds Caulerpa lentillifera and Ulva Reticulata. Kasetsart J.-Nat. Sci. 2006, 40, 75–83. [Google Scholar]
- Choudhary, B.; Khandwal, D.; Gupta, N.K.; Patel, J.; Mishra, A. Nutrient Composition, Physicobiochemical Analyses, Oxidative Stability and Antinutritional Assessment of Abundant Tropical Seaweeds from the Arabian Sea. Plants 2023, 12, 2302. [Google Scholar] [CrossRef]
- Sobuj, M.K.A.; Rahman, S.; Ali, M.d.Z. A Review on Commercially Important Seaweed Resources from the Bangladesh Coast. Food Chem. Adv. 2024, 4, 100655. [Google Scholar] [CrossRef]
- Rizzo, L.; Vega Fernández, T. Can the Invasive Seaweed Caulerpa Cylidracea Represent a New Trophic Resource in the Mediterranean Sea? Water 2023, 15, 2115. [Google Scholar] [CrossRef]
- Galil, B.S.; Marchini, A.; Occhipinti-Ambrogi, A. East Is East and West Is West? Management of Marine Bioinvasions in the Mediterranean Sea. Estuar. Coast. Shelf Sci. 2018, 201, 7–16. [Google Scholar] [CrossRef]
- Tsiamis, K.; Azzurro, E.; Bariche, M.; Çinar, M.E.; Crocetta, F.; De Clerck, O.; Galil, B.; Gómez, F.; Hoffman, R.; Jensen, K.R.; et al. Prioritizing Marine Invasive Alien Species in the European Union through Horizon Scanning. Aquat. Conserv. Mar. Freshw. Ecosyst. 2020, 30, 794–845. [Google Scholar] [CrossRef]
- Giakoumi, S.; Katsanevakis, S.; Albano, P.G.; Azzurro, E.; Cardoso, A.C.; Cebrian, E.; Deidun, A.; Edelist, D.; Francour, P.; Jimenez, C.; et al. Management Priorities for Marine Invasive Species. Sci. Total Environ. 2019, 688, 976–982. [Google Scholar] [CrossRef] [PubMed]
- Ismail, M.F.; Ramaiya, S.D.; Zakaria, M.H.; Ikhsan, N.F.M.; Awang, M.A. Mineral Content and Phytochemical Properties of Selected Caulerpa Species from Malaysia. Malays. J. Sci. 2020, 39, 115–131. [Google Scholar] [CrossRef]
- Berling, C.L.; Soares, I.S.; Fasolin, L.H.; Picone, C.S.F. Desalination and Composition of Seaweed (Gracilaria subsp.) and Drift Macroalgae in the Brazilian Coast for Enhanced Resource Utilization. In 15th SLACAN-Latin American Symposium on Food Science and Nutrition; Galoá: São Paulo, Brazil, 2023; pp. 303–304. [Google Scholar]
- Park, S.; Kim, D.; Kim, S.; Choi, G.; Yoo, H.; Park, S.; Cho, S. Optimization of Desalting Conditions for the Green Seaweed Codium Fragile for Use as a Functional Food with Hypnotic Effects. Foods 2024, 13, 3287. [Google Scholar] [CrossRef]
- Rodríguez-Bernaldo de Quirós, A.; López-Hernández, J. An Overview on Effects of Processing on the Nutritional Content and Bioactive Compounds in Seaweeds. Foods 2021, 10, 2168. [Google Scholar] [CrossRef]
- Phisalaphong, M.; Thu Ha, N.T.; Siripong, P. Desalting of Aqueous Extract of Acanthus ebracteatus Vahl. by Nanofiltration. Sep. Sci. Technol. 2006, 41, 455–470. [Google Scholar] [CrossRef]
- de Gaillande, C.; Payri, C.; Remoissenet, G.; Zubia, M. Caulerpa Consumption, Nutritional Value and Farming in the Indo-Pacific Region. J. Appl. Phycol. 2017, 29, 2249–2266. [Google Scholar] [CrossRef]
- Robledo, D.; Pelegrín, Y.F. Chemical and Mineral Composition of Six Potentially Edible Seaweed Species of Yucatán. Bot. Mar. 1997, 40, 301–306. [Google Scholar] [CrossRef]
- Kumar, M.; Gupta, V.; Kumari, P.; Reddy, C.R.K.; Jha, B. Assessment of Nutrient Composition and Antioxidant Potential of Caulerpaceae Seaweeds. J. Food Compos. Anal. 2011, 24, 270–278. [Google Scholar] [CrossRef]
- Renaud, S.M.; Luong-Van, J.T. Seasonal Variation in the Chemical Composition of Tropical Australian Marine Macroalgae. In Proceedings of the Eighteenth International Seaweed Symposium, Bergen, Norway, 20–25 June 2004; Anderson, R., Brodie, J., Onsøyen, E., Critchley, A.T., Eds.; Springer Netherlands: Dordrecht, The Netherlands, 2007; pp. 155–161. [Google Scholar]
- Rameshkumar, S.; Ramakritinan, C.M.; Yokeshbabu, M. Proximate Composition of Some Selected Seaweeds from Palk Bay and Gulf of Mannar, Tamilnadu, India. Asian J. Biomed. Pharm. Sci. 2013, 3, 1. [Google Scholar]
- Hong, D.D.; Hien, H.M.; Son, P.N. Seaweeds from Vietnam Used for Functional Food, Medicine and Biofertilizer. J. Appl. Phycol. 2007, 19, 817–826. [Google Scholar] [CrossRef]
- Bhuiyan, K.A.; Qureshi, S.; Mustafa Kamal, A.H.; AftabUddin, S.; Siddique, A. Proximate Chemical Composition of Sea Grapes Caulerpa racemosa (J. Agardh, 1873) Collected from a Sub-Tropical Coast. Virol. Mycol. 2016, 5, 1000158. [Google Scholar]
- Magdugo, R.P.; Terme, N.; Lang, M.; Pliego-Cortés, H.; Marty, C.; Hurtado, A.Q.; Bedoux, G.; Bourgougnon, N. An Analysis of the Nutritional and Health Values of Caulerpa Racemosa (Forsskål) and Ulva Fasciata (Delile)—Two Chlorophyta Collected from the Philippines. Molecules 2020, 25, 2901. [Google Scholar] [CrossRef] [PubMed]
- Chin, Y.Y.; Chang, K.A.; Ng, W.M.; Eng, Z.P.; Chew, L.Y.; Neo, Y.P.; Yan, S.W.; Wong, C.L.; Kong, K.W.; Ismail, A. A Comparative Evaluation of Nutritional Composition and Antioxidant Properties of Six Malaysian Edible Seaweeds. Food Chem. Adv. 2023, 3, 100426. [Google Scholar] [CrossRef]
- Warnasooriya, V.; Gunawardena, S.; Weththasinghe, P.; Jayawardana, B.; Qader, M.; Liyanage, R. Nutritional Properties, Antioxidant Activity, and Heavy Metal Accumulation in Selected Marine Macro-Algae Species of Sri Lanka. Nutraceuticals 2024, 4, 50–64. [Google Scholar] [CrossRef]
- Kasmiati, K.; Syahrul, S.; Badraeni, B.; Rahmi, M.H. Proximate and Mineral Compositions of the Green Seaweeds Caulerpa Lentilifera and Caulerpa Racemosa from South Sulawesi Coast, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2022, 1119, 012049. [Google Scholar] [CrossRef]
- Kawai, M.; Sekine-Hayakawa, Y.; Okiyama, A.; Ninomiya, Y. Gustatory Sensation of L- and d-Amino Acids in Humans. Amino Acids 2012, 43, 2349–2358. [Google Scholar] [CrossRef]
- Poojary, M.M.; Orlien, V.; Olsen, K. Conventional and Enzyme-Assisted Green Extraction of Umami Free Amino Acids from Nordic Seaweeds. J. Appl. Phycol. 2019, 31, 3925–3939. [Google Scholar] [CrossRef]
- Yamaguchi, S.; Yoshikawa, T.; Ikeda, S.; Ninomiya, T. Measurement of the Relative Taste Intensity of Some L-α-Amino Acids and 5′-Nucleotides. J. Food Sci. 1971, 36, 846–849. [Google Scholar] [CrossRef]
- Chua, W.C.L.; Yeo, A.Y.Y.; Yuan, W.; Lee, Y.Y.; Ikasari, L.; Dharmawan, J.; Delahunty, C.M. Flavour Characterization of Twelve Species of Edible Algae. Algal Res. 2024, 80, 103540. [Google Scholar] [CrossRef]
- Milinovic, J.; Mata, P.; Diniz, M.; Noronha, J.P. Umami Taste in Edible Seaweeds: The Current Comprehension and Perception. Int. J. Gastron. Food Sci. 2021, 23, 100301. [Google Scholar] [CrossRef]
- Henry-Unaeze, H.N. Update on Food Safety of Monosodium L-Glutamate (MSG). Pathophysiology 2017, 24, 243–249. [Google Scholar] [CrossRef]
- Djuricic, I.; Calder, P.C. Beneficial Outcomes of Omega-6 and Omega-3 Polyunsaturated Fatty Acids on Human Health: An Update for 2021. Nutrients 2021, 13, 2421. [Google Scholar] [CrossRef]
- Alagawany, M.; Elnesr, S.S.; Farag, M.R.; El-Sabrout, K.; Alqaisi, O.; Dawood, M.A.O.; Soomro, H.; Abdelnour, S.A. Nutritional Significance and Health Benefits of Omega-3, -6 and -9 Fatty Acids in Animals. Anim. Biotechnol. 2022, 33, 1678–1690. [Google Scholar] [CrossRef] [PubMed]
- Oppedisano, F.; Macrì, R.; Gliozzi, M.; Musolino, V.; Carresi, C.; Maiuolo, J.; Bosco, F.; Nucera, S.; Caterina Zito, M.; Guarnieri, L.; et al. The Anti-Inflammatory and Antioxidant Properties of n-3 PUFAs: Their Role in Cardiovascular Protection. Biomedicines 2020, 8, 306. [Google Scholar] [CrossRef] [PubMed]
- Simopoulos, A.P. An Increase in the Omega-6/Omega-3 Fatty Acid Ratio Increases the Risk for Obesity. Nutrients 2016, 8, 128. [Google Scholar] [CrossRef] [PubMed]
- Wells, M.L.; Potin, P.; Craigie, J.S.; Raven, J.A.; Merchant, S.S.; Helliwell, K.E.; Smith, A.G.; Camire, M.E.; Brawley, S.H. Algae as Nutritional and Functional Food Sources: Revisiting Our Understanding. J. Appl. Phycol. 2017, 29, 949–982. [Google Scholar] [CrossRef]
- Susanto, E.; Fahmi, A.S.; Hosokawa, M.; Miyashita, K. Variation in Lipid Components from 15 Species of Tropical and Temperate Seaweeds. Mar. Drugs 2019, 17, 630. [Google Scholar] [CrossRef]
- Lozano Muñoz, I.; Díaz, N.F. Minerals in Edible Seaweed: Health Benefits and Food Safety Issues. Crit. Rev. Food Sci. Nutr. 2020, 62, 1592–1607. [Google Scholar] [CrossRef]
- Peng, Y.; Xie, E.; Zheng, K.; Fredimoses, M.; Yang, X.; Zhou, X.; Wang, Y.; Yang, B.; Lin, X.; Liu, J.; et al. Nutritional and Chemical Composition and Antiviral Activity of Cultivated Seaweed Sargassum Naozhouense Tseng et Lu. Mar. Drugs 2013, 11, 20–32. [Google Scholar] [CrossRef]
- Roohani, N.; Hurrell, R.; Kelishadi, R.; Schulin, R. Zinc and Its Importance for Human Health: An Integrative Review. J. Res. Med. Sci. 2013, 18, 144–157. [Google Scholar] [PubMed]
- Sapkota, M.; Knoell, D.L. Essential Role of Zinc and Zinc Transporters in Myeloid Cell Function and Host Defense against Infection. J. Immunol. Res. 2018, 2018, 4315140. [Google Scholar] [CrossRef]
- Mišurcová, L.; Machů, L.; Orsavová, J. Chapter 29-Seaweed Minerals as Nutraceuticals. In Advances in Food and Nutrition Research; Kim, S.-K., Ed.; Marine Medicinal Foods; Academic Press: Cambridge, MA, USA, 2011; Volume 64, pp. 371–390. [Google Scholar]
- Hagan, M.; Anyangwe, N. Vitamin Content in Seaweeds: A Systematic Review on Water-Soluble and Fat-Soluble Vitamins for Adult Daily Intake. Funct. Food Sci. 2023, 3, 305–316. [Google Scholar] [CrossRef]
- Watanabe, F.; Yabuta, Y.; Bito, T.; Teng, F. Vitamin B12-Containing Plant Food Sources for Vegetarians. Nutrients 2014, 6, 1861–1873. [Google Scholar] [CrossRef] [PubMed]
- EFSA; NDA. Panel Scientific Opinion on Dietary Reference Values for Cobalamin (Vitamin B12). EFSA J. 2015, 13, 4150. [Google Scholar] [CrossRef]
- Boulom, S.; Robertson, J.; Hamid, N.; Ma, Q.; Lu, J. Seasonal Changes in Lipid, Fatty Acid, α-Tocopherol and Phytosterol Contents of Seaweed, Undaria Pinnatifida, in the Marlborough Sounds, New Zealand. Food Chem. 2014, 161, 261–269. [Google Scholar] [CrossRef]
- Pires-Cavalcante, K.M.d.S.; de Alencar, D.B.; de Sousa, M.B.; Sampaio, A.H.; Saker-Sampaio, S. Seasonal Changes of α-Tocopherol in Green Marine Algae (Caulerpa genus). J. Food Sci. 2011, 76, C775–C781. [Google Scholar] [CrossRef]
- Kohen, R.; Nyska, A. Invited Review: Oxidation of Biological Systems: Oxidative Stress Phenomena, Antioxidants, Redox Reactions, and Methods for Their Quantification. Toxicol. Pathol. 2002, 30, 620–650. [Google Scholar] [CrossRef]
- La Fata, G.; van Vliet, N.; Barnhoorn, S.; Brandt, R.M.C.; Etheve, S.; Chenal, E.; Grunenwald, C.; Seifert, N.; Weber, P.; Hoeijmakers, J.H.J.; et al. Vitamin E Supplementation Reduces Cellular Loss in the Brain of a Premature Aging Mouse Model. J. Prev. Alzheimers Dis. 2017, 4, 226–235. [Google Scholar] [CrossRef] [PubMed]
- Galasso, C.; Gentile, A.; Orefice, I.; Ianora, A.; Bruno, A.; Noonan, D.M.; Sansone, C.; Albini, A.; Brunet, C. Microalgal Derivatives as Potential Nutraceutical and Food Supplements for Human Health: A Focus on Cancer Prevention and Interception. Nutrients 2019, 11, 1226. [Google Scholar] [CrossRef] [PubMed]
- Erol, E.; Didem Orhan, M.; Avsar, T.; Akdemir, A.; Sukran Okudan, E.; Toraman, G.O.A.; Topcu, G. Anti-SARS-CoV-2 and Cytotoxic Activity of Two Marine Alkaloids from Green Alga Caulerpa Cylindracea Sonder in the Dardanelles. RSC Adv. 2022, 12, 29983–29990. [Google Scholar] [CrossRef]
- Vidal, J.P.; Laurent, D.; Kabore, S.A.; Rechencq, E.; Boucard, M.; Girard, J.P.; Escale, R.; Rossi, J.C. Caulerpin, Caulerpicin, Caulerpa Scalpelliformis: Comparative Acute Toxicity Study. Bot. Mar. 1984, 27, 533–538. [Google Scholar] [CrossRef]
- Nursidika, P.; Julianti, E.; Kurniati, N.F. Acute and Repeated-Dose Oral Toxicity Evaluation of Caulerpa racemosa (Forsskål) J. Agardh Ethanolic Extract. J. Pharm. Pharmacogn. Res. 2025, 13, 857–866. [Google Scholar] [CrossRef]
- Handajani, F.; Hidayatullah, A.; Pranitasari, N. The Effect of Caulerpa Cylindracea Extract on Histopathology Depiction of Male Rattus Norvegicus Gaster Mucosa Induced by Indomethacin. Med. Health Sci. J. 2021, 5, 1–6. [Google Scholar] [CrossRef]
- Rahman, N.A.A.; Fazilah, A.; Effarizah, M.E. Toxicity of Nutmeg (Myristicin): A Review. Int. J. Adv. Sci. Eng. Inf. Technol. 2015, 5, 61–64. [Google Scholar] [CrossRef]
- Cao, Z.; Xia, W.; Zhang, X.; Yuan, H.; Guan, D.; Gao, L. Hepatotoxicity of Nutmeg: A Pilot Study Based on Metabolomics. Biomed. Pharmacother. 2020, 131, 110780. [Google Scholar] [CrossRef] [PubMed]
Parameter | Values |
---|---|
Energy value | 154 |
Proteins | 11.8 ± 0.9 |
Carbohydrates | 11.6 |
Sugars | <0.1 |
Fibers | 24.4 ± 4.9 |
Fats | 1.3 ± 0.5 |
Saturated fatty acids | 0.4 ± 0.1 |
Moisture | 4.8 ± 0.5 |
Ash | 46.1 ± 2.77 |
Salt (NaCl) | 33.8 ± 6.8 |
Amino Acid | Values |
---|---|
Essential amino acids | |
HIS | 160 ± 30 |
ISO | 380 ± 60 |
LEU | 610 ± 100 |
LYS | 480 ± 80 |
MET | 170 ± 30 |
PHE | 430 ± 70 |
THR | 450 ± 70 |
TRP | 142 ± 20 |
VAL | 540 ± 90 |
Non-essential amino acids | |
TYR | 360 ± 60 |
ALA | 520 ± 80 |
PRO | 420 ± 70 |
CYS | 200 ± 30 |
ASP | 270 ± 40 |
GLU | 630 ± 100 |
SER | 440 ± 70 |
GLY | 540 ± 90 |
ARG | 480 ± 80 |
Element | Values |
---|---|
Al | 629 ± 92 |
B | 29.3 ± 3.6 |
Ca | 9010 ± 1270 |
Cd | nd |
Co | nd |
Cr | nd |
Cu | 2.36 ± 0.40 |
Fe | 428 ± 55 |
K | 1220 ± 1600 |
Li | 7.34 ± 0.44 |
Mg | 10,700 ± 1100 |
Mn | 164 ± 21 |
Mo | nd |
Na | over |
Ni | nd |
P | 785 ± 87 |
Pb | Nd (mg/kg) |
S | 19,300 ± 1700 |
Se | nd |
Si | 28.7 ± 5.2 |
Zn | 19.3 ± 2.4 |
Vitamin | Values |
---|---|
Biotin (B7) | 0.031 ± 0.011 |
Folic acid (B9) | 0.060 ± 0.039 |
Niacinamide (B3) | 1.53 ± 0.05 |
Nicotinic acid (B3) | 5.14 ± 0.09 |
Pantothenic acid (B5) | 1.43 ± 0.06 |
Pyridoxal (B6) | 0.59 ± 0.02 |
Pyridoxine (B6) | 0.092 ± 0.004 |
Riboflavin (B2) | 0.996 ± 0.0028 |
Vitamin E (as alpha-tocopherol) | 525 ± 43 |
Cyanocobalamin (B12) | 0.39 ± 0.08 |
Fatty Acid | Composition |
---|---|
Saturated fatty acids | |
C4:0 (Butyric) | <1 (1 ± 1) |
C6:0 (Caproic) | <1 (1 ± 1) |
C8:0 (Octanoic) | <1 (1 ± 1) |
C10:0 (Decanoic) | <1 (1 ± 1) |
C11:0 (Undecanoic) | <1 (1 ± 1) |
C12:0 (Lauric) | <1 (1 ± 1) |
C13:0 (Tridecanoic) | <1 (1 ± 1) |
C14:0 (Myristic) | 1 (1 ± 1) |
C15:0 (Pentadecanoic) | <1 (1 ± 1) |
C16:0 (Palmitic) | 3 (1 ± 1) |
C17:0 (Heptadecanoic) | <1 (1 ± 1) |
C18:0 (Stearic) | <1 (1 ± 1) |
C20:0 (Arachidic) | <1 (1 ± 1) |
C21:0 (Heneicosanoic) | <1 (1 ± 1) |
C22:0 (Behenic) | <1 (1 ± 1) |
C23:0 (Tricosanoic) | <1 (1 ± 1) |
C24:0 (Lignoceric) | <1 (1 ± 1) |
Total saturated fatty acids (sAFA) | 4 (1 ± 1) |
Monounsaturated fatty acids | |
C14:1 (Myristoleic) | <1 (1 ± 1) |
C15:1 (Ginkgolic) | <1 (1 ± 1) |
C16:1n7 (Palmitoleic) | <1 (1 ± 1) |
C17:1 (Heptadecaenoic) | <1 (1 ± 1) |
C18:1n9 (trans-Elaidic) | <1 (1 ± 1) |
C18:1n9 (Oleic) | 2 (1 ± 1) |
C18:1n7 (Vaccenic) | <1 (1 ± 1) |
C20:1 (Eicosenoic) | <1 (1 ± 1) |
C22:1n11 (Gadoleic) | <1 (1 ± 1) |
C22:1n9 (Erucic) | <1 (1 ± 1) |
C24:1n9 (Nervonic) | <1 (1 ± 1) |
Total monounsaturated fatty acids (MUFA) | 3 (1 ± 1) |
Polyunsaturated fatty acids | |
C16:2n4 (Hexadecadienoic) | <1 (1 ± 1) |
C16:3n4 (Hexadecatrienoic) | <1 (1 ± 1) |
C18:2n6 (trans-Linoleic) | <1 (1 ± 1) |
C18:2n6 (Linoleic) | <1 (1 ± 1) |
C18:3n6 (γ-Linolenic) | <1 (1 ± 1) |
C18:3n4 (Octadecatrienoic) | <1 (1 ± 1) |
C18:3n-3 (α-Linolenic, ALA) | 2 (1 ± 1) |
C18:4n3 (Stearidonic) | <1 (1 ± 1) |
C20:2n6 (Eicosadienoic) | <1 (1 ± 1) |
C20:3n6 (Dihomo-γ-linolenic, DGLA) | <1 (1 ± 1) |
C20:3n3 (Eicosatrienoic) | <1 (1 ± 1) |
C20:4n6 (Arachidonic) | 1 (1 ± 1) |
C22:2n6 (Docosadienoic) | <1 (1 ± 1) |
C20:4n3 (Eicosatetraenoic, ETA) | <1 (1 ± 1) |
C20:5n3 (Eicosapentaenoic) | 1 (1 ± 1) |
C22:5n3 (Docosapentaenoic, DPA) | <1 (1 ± 1) |
C22:6n3 (Docosahexanoic) | <1 (1 ± 1) |
Total polyunsaturated fatty acids (PUFA) | 5 (1 ± 1) |
Other fatty acids | 1 (1 ± 1) |
Total Omega-3 fatty acids | 3 (1 ± 1) |
Total Omega-6 fatty acids | 1 (1 ± 1) |
Total Omega-9 fatty acids | 2 (1 ± 1) |
Total trans-fatty acids | <1 (1 ± 1) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iveša, N.; Kovačić, I.; Buršić, M.; Major, N.; Palčić, I.; Goreta Ban, S.; Užila, Z.; Millotti, G. Caulerpa cylindracea: First Insight into Its Nutritional Potential. Foods 2025, 14, 3208. https://doi.org/10.3390/foods14183208
Iveša N, Kovačić I, Buršić M, Major N, Palčić I, Goreta Ban S, Užila Z, Millotti G. Caulerpa cylindracea: First Insight into Its Nutritional Potential. Foods. 2025; 14(18):3208. https://doi.org/10.3390/foods14183208
Chicago/Turabian StyleIveša, Neven, Ines Kovačić, Moira Buršić, Nikola Major, Igor Palčić, Smiljana Goreta Ban, Zoran Užila, and Gioconda Millotti. 2025. "Caulerpa cylindracea: First Insight into Its Nutritional Potential" Foods 14, no. 18: 3208. https://doi.org/10.3390/foods14183208
APA StyleIveša, N., Kovačić, I., Buršić, M., Major, N., Palčić, I., Goreta Ban, S., Užila, Z., & Millotti, G. (2025). Caulerpa cylindracea: First Insight into Its Nutritional Potential. Foods, 14(18), 3208. https://doi.org/10.3390/foods14183208