Fracture Behavior and Mechanisms of Wheat Kernels Under Mechanical Loading
Abstract
1. Introduction
2. Material and Method
2.1. Material
2.2. Sample Preparation
2.3. Rupture Tests of Wheat Grains Under Different Deformation Modes
2.4. Scanning Electron Microscopy (SEM) Microstructure of Grain Fracture Surfaces and Milling System Materials
2.5. Confocal Laser Scanning Microscopy (CLSM) Microstructure of Different Peeling Degrees Wheat Grains
2.6. Breakage Tests on Wheat Grains with Different Peeling Degrees
2.7. Fractal Model
2.8. Statistical Analysis
3. Results and Discussion
3.1. Fracture Characteristics of Wheat Kernels with Different Endosperm Structures
3.2. Fractal Modeling of Stress Crack Propagation in Wheat Endosperm with Different Structures
3.2.1. Microstructural Characterization of Fractured Kernels
3.2.2. Fracture Mechanics and Crack Propagation
3.2.3. Fractal Model Development
3.3. Bran Layer Contributions to Kernel Integrity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Campbell, G.M.; Fang, C.; Muhamad, I.I. On predicting roller milling performance VI: Effect of kernel hardness and shape on the particle size distribution from first break milling of wheat. Food Bioprod. Process. 2007, 85, 7–23. [Google Scholar] [CrossRef]
- Dobraszczyk, B.J.; Whitworth, M.B.; Vincent, J.F.V.; Khan, A.A. Single kernel wheat hardness and fracture properties in relation to density and the modelling of fracture in wheat endosperm. J. Cereal Sci. 2002, 35, 245–263. [Google Scholar] [CrossRef]
- Gaines, C.S.; Raeker, M.Ö.; Tilley, M.; Finney, P.L.; Wilson, J.D.; Bechtel, D.B.; Martin, R.J.; Seib, P.A.; Lookhart, G.L.; Donelson, T. Associations of starch gel hardness, granule size, waxy allelic expression, thermal pasting, milling quality, and kernel texture of 12 soft wheat cultivars. Cereal Chem. 2000, 77, 163–168. [Google Scholar] [CrossRef]
- Gazza, L.; Taddei, F.; Corbellini, M.; Cacciatori, P.; Pogna, N.E. Genetic and environmental factors affecting grain texture in common wheat. J. Cereal Sci. 2008, 47, 52–58. [Google Scholar] [CrossRef]
- Evers, A.D.; Bechtel, D.B. Microscopic Structure of the Wheat Grain. In Wheat Chemistry and Technology; Pomeranz, Y., Ed.; American Association of Cereal Chemists International: Saint Paul, MN, USA, 1988; Volume I, pp. 47–95. [Google Scholar]
- Turnbull, K.-M.; Rahman, S. Endosperm texture in wheat. J. Cereal Sci. 2002, 36, 327–337. [Google Scholar] [CrossRef]
- Morris, C.F. Puroindolines: The molecular genetic basis of wheat grain hardness. Plant Mol Biol. 2002, 48, 633–647. [Google Scholar] [CrossRef]
- Gupta, R.B.; Masci, S.; Lafiandra, D.; Bariana, H.S.; MacRitchie, F. Accumulation of protein subunits and their polymers in developing grains of hexaploid wheats. J. Exp. Bot. 1996, 47, 1377–1385. [Google Scholar] [CrossRef]
- Pomeranz, Y.; Williams, P.C. Wheat Hardness: Its Genetic, Structural, and Biochemical Background, Measurement, and Significance. In Advances in Cereal Science and Technology; Pomeranz, Y., Ed.; AACC International: Saint Paul, MN, USA, 1990; pp. 471–548. [Google Scholar]
- Anderssen, R.S.; Haraszi, R. Characterizing and exploiting the rheology of wheat hardness. Eur. Food Res. Technol. 2009, 229, 159–174. [Google Scholar] [CrossRef]
- Delcour, J.A.; Hoseney, R.C. Yeast-Leavened Products. In Principles of Cereal Science and Technology, 3rd ed.; AACC International: Saint Paul, MN, USA, 2010; pp. 177–206. [Google Scholar] [CrossRef]
- Wang, H.; Sun, S.; Ge, W.; Zhao, L.; Hou, B.; Wang, K.; Lyu, Z.; Chen, L.; Xu, S.; Guo, J.; et al. Horizontal gene transfer of Fhb7 from fungus underlies Fusarium head blight resistance in wheat. Science 2020, 368, eaba5435. [Google Scholar] [CrossRef] [PubMed]
- Barron, C.; Parker, M.L.; Mills, E.N.C.; Rouau, X.; Wilson, R.H. FTIR Imaging of wheat endosperm cell walls in situ reveals compositional and architectural heterogeneity related to grain hardness. Planta 2005, 220, 667–677. [Google Scholar] [CrossRef]
- Bechtel, D.B.; Abecassis, J.; Shewry, P.R.; Evers, A.D. Development, Structure, and Mechanical Properties of the Wheat Grain. In Wheat: Chemistry and Technology, 4th ed.; Khan, K., Shewry, P.R., Eds.; AACC International: Saint Paul, MN, USA, 2009; pp. 51–95. [Google Scholar] [CrossRef]
- Peyron, S.; Chaurand, M.; Rouau, X.; Abecassis, J. Relationship between bran mechanical properties and milling behaviour of durum wheat (Triticum durum Desf.). Influence of tissue thickness and cell wall structure. J. Cereal Sci. 2002, 36, 377–386. [Google Scholar] [CrossRef]
- Antoine, C.; Peyron, S.; Mabille, F.; Lapierre, C.; Bouchet, B.; Abecassis, J.; Rouau, X. Individual contribution of grain outer layers and their cell wall structure to the mechanical properties of wheat bran. J. Agric. Food Chem. 2003, 51, 2026–2033. [Google Scholar] [CrossRef]
- Greffeuille, V.; Mabille, F.; Rousset, M.; Oury, F.X.; Abecassis, J.; Lullien-Pellerin, V. Mechanical properties of outer layers from near-isogenic lines of common wheat differing in hardness. J. Cereal Sci. 2007, 45, 227–235. [Google Scholar] [CrossRef]
- Hemery, Y.; Rouau, X.; Dragan, C.; Bilici, M.; Beleca, R.; Dascalescu, L. Electrostatic properties of wheat bran and its constitutive layers: Influence of particle size, composition, and moisture content. J. Food Eng. 2009, 93, 114–124. [Google Scholar] [CrossRef]
- Hermans, W.; Silventoinen-Veijalainen, P.; De Bondt, Y.; Langenaeken, N.A.; Nordlund, E.; Courtin, C.M. Isolating a fraction enriched in sub-aleurone gluten proteins through dry fractionation of wheat miller’s bran. Innov. Food Sci. Emerg. Technol. 2024, 96, 103775. [Google Scholar] [CrossRef]
- Chen, Z.; Mense, A.L.; Brewer, L.R.; Shi, Y.C. Wheat bran layers: Composition, structure, fractionation, and potential uses in foods. Crit. Rev. Food Sci. Nutr. 2024, 64, 6636–6659. [Google Scholar] [CrossRef]
- Cai, W.Y.; Cai, W.Y. Effects of Flexible Debranning on Wheat Grain and Flour Quality. Master’s Thesis, Henan University of Technology, Zhengzhou, China, 2021. [Google Scholar]
- De Brier, N.; Gomand, S.V.; Donner, E.; Paterson, D.; Delcour, J.A.; Lombi, E.; Smolders, E. Distribution of minerals in wheat grains (Triticum aestivum L.) and in roller milling fractions affected by pearling. J. Agric. Food Chem. 2015, 63, 1276–1285. [Google Scholar] [CrossRef] [PubMed]
- Li, D. Experimental Study and Mechanism Analysis of Stress Crack Formation, Propagation and Inhibition in Rice Drying. Ph.D. Thesis, China Agricultural University, Beijing, China, 2001. [Google Scholar]
- Sun, J.X.; Guo, Y.M.; Cui, Q.L.; Xu, B.H. Mechanism of crack initiation and propagation in millet seeds based on SEM and fractal theory analysis. J. Shanxi Agric. Univ. 2020, 40, 83–91. [Google Scholar]
- NY/T 1094.1-2006; Wheat Experimental Milling Part 1: Equipment, Sample Preparation, and Tempering. Ministry of Agriculture of the PRC: Beijing, China, 2016.
- Samson, M.-F.; Mabille, F.; Chéret, R.; Abécassis, J.; Morel, M.-H. Mechanical and physicochemical characterization of vitreous and mealy durum wheat endosperm. Cereal Chem. 2005, 82, 81–87. [Google Scholar] [CrossRef]
- Zhou, Y.; Dhital, S.; Zhao, C.; Ye, F.; Chen, J.; Zhao, G. Dietary Fiber-Gluten Protein Interaction in wheat flour dough: Analysis, consequences and proposed mechanisms. Food Hydrocoll. 2021, 111, 106203. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, G. Physicochemical properties of vitreous and floury endosperm flours in maize. Food Sci. Nutr. 2019, 7, 2605–2612. [Google Scholar] [CrossRef]
- Jia, F.; Wang, J.; Fan, P.; Yin, H.; Guan, J.; Zhou, M. Analysis of finite element method on mechanical properties of wheat kernel. Interdiscip. Sci. Comput. Life Sci. 2014, 6, 340–343. [Google Scholar] [CrossRef]
- Ren, G.Y.; Zhang, S.; Li, L.L.; Liu, W.C.; Cao, W.W.; Wei, X.Y.; Wu, X.T.; Xu, D. Finite element analysis of wheat grain mechanical properties based on micro-CT modeling. Trans. Chin. Soc. Agric. Eng. 2025, 41, 80–89. [Google Scholar] [CrossRef]
- Korompokis, K.; Brier, N.D.; Delcour, J.A. Differences in endosperm cell wall integrity in wheat (Triticum aestivum L.) milling fractions impact on the way starch responds to gelatinization and pasting treatments and its subsequent enzymatic in vitro digestibility. Food Funct. 2019, 10, 4674–4684. [Google Scholar] [CrossRef]
- Chichti, E.; George, M.; Delenne, J.-Y.; Lullien-Pellerin, V. Changes in the starch-protein interface depending on common wheat grain hardness revealed using atomic force microscopy. Plant Sci. 2015, 239, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Merali, Z.; Collins, S.R.A.; Elliston, A.; Wilson, D.R.; Käsper, A.; Waldron, K.W. Characterization of cell wall components of wheat bran following hydrothermal pretreatment and fractionation. Biotechnol. Biofuels 2015, 8, 23. [Google Scholar] [CrossRef]
- Campbell, G.M.; Bunn, P.J.; Webb, C.; Hook, S.C.W. On Predicting roller milling performance: Part II. The breakage function. Powder Technol. 2001, 115, 243–255. [Google Scholar] [CrossRef]
- Campbell, G.M. Roller Milling of Wheat. In Handbook of Powder Technology: Particle Breakage; Salman, A.D., Ghadiri, M., Hounslow, M.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; Volume 12, pp. 383–419. [Google Scholar]
- Campbell, G.M.; Sharp, C.; Wall, K.; Mateos-Salvador, F.; Gubatz, S.; Huttly, A.; Shewry, P. Modelling wheat breakage during roller milling using the double normalised kumaraswamy breakage function: Effects of kernel shape and hardness. J. Cereal Sci. 2012, 55, 415–425. [Google Scholar] [CrossRef]
- Li, M.; Ma, S.; Zheng, X.; Li, L. Studies on the formation mechanism and multiscale structure of wheat bran dietary fiber-gluten protein complex. Food Biosci. 2025, 66, 106219. [Google Scholar] [CrossRef]
- Li, M.; Ma, S. From water-ice regulation to polysaccharides-protein assembly: Molecular mechanism of polysaccharides to improve the cryostability of gluten proteins. Food Res. Int. 2025, 219, 116996. [Google Scholar] [CrossRef] [PubMed]
- Matzke, K.; Riederer, M. The composition of the cutin of the caryopses and leaves of Triticum aestivum L. Planta 1990, 182, 461. [Google Scholar] [CrossRef] [PubMed]
- Sutton, A.P. Interfaces in Crystalline Materials; Higher Education Press: Beijing, China, 2016; pp. 797–809. [Google Scholar]
- Liu, X.; Shi, Z.; Zhang, Y.; Li, H.; Pei, H.; Yang, H. Characteristics of damage to brown rice kernels under single and continuous mechanical compression conditions. Foods 2024, 13, 1069. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, A.H.; Omar, A.A.; Attya, A.M.; Elashtokhy, M.M.A.; Zayed, E.M.; Rizk, R.M. Morphological and molecular characterization of some Egyptian six-rowed barley (Hordeum vulgare L.). Plants 2021, 10, 2527. [Google Scholar] [CrossRef] [PubMed]
Type of Kernels | Moisture Content (%) | Shear Resistance Fracture Energy (mJ) | Compression Resistance Fracture Energy (mJ) |
---|---|---|---|
Vitreous | 13.0 | 16.13 ± 2.91 a | 26.41 ± 5.24 a |
14.5 | 14.11 ± 2.14 b | 26.36 ± 4.28 a | |
16.0 | 10.21 ± 1.61 c | 25.37 ± 4.98 a | |
Floury | 13.0 | 10.45 ± 1.74 a | 25.03 ± 4.47 a |
14.5 | 10.83 ± 1.26 a | 23.71 ± 3.83 ab | |
16.0 | 12.01 ± 1.33 a | 20.94 ± 4.33 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Ma, S.; Wang, X.; Tian, X. Fracture Behavior and Mechanisms of Wheat Kernels Under Mechanical Loading. Foods 2025, 14, 3174. https://doi.org/10.3390/foods14183174
Chen Y, Ma S, Wang X, Tian X. Fracture Behavior and Mechanisms of Wheat Kernels Under Mechanical Loading. Foods. 2025; 14(18):3174. https://doi.org/10.3390/foods14183174
Chicago/Turabian StyleChen, Yu, Sen Ma, Xiaoxi Wang, and Xiaoling Tian. 2025. "Fracture Behavior and Mechanisms of Wheat Kernels Under Mechanical Loading" Foods 14, no. 18: 3174. https://doi.org/10.3390/foods14183174
APA StyleChen, Y., Ma, S., Wang, X., & Tian, X. (2025). Fracture Behavior and Mechanisms of Wheat Kernels Under Mechanical Loading. Foods, 14(18), 3174. https://doi.org/10.3390/foods14183174