Evaluation of Bioprocess-Based Technique for Iron and Zinc Fortification in Red Rice Genotypes
Abstract
1. Introduction
2. Materials and Methods
2.1. Rice Samples and Chemicals
2.2. Bioprocess-Based Single and Double Fortification
2.3. Sample Preparation for Analyses
2.4. Quantification of Total Iron and Zinc
2.5. Determination of In Vitro Iron and Zinc Bioavailability
2.6. Estimation of Total Phytate
2.7. Grain and Cooking Characteristics
2.8. Determination of Sensory Quality—Acceptability Test, Preference Test, and Difference Test
2.9. Estimation of Dietary Mineral Contribution from Double-Fortified Pigmented Rice Varieties
2.10. Statistical Analysis
3. Results
3.1. Effect of Germination on Total and Bioaccessible Iron and Zinc Content
3.2. Single Fortification with Iron—Effect on Total and Bioaccessible Iron and Zinc Content
3.3. Single Fortification with Zinc—Effect on Total and Bioaccessible Zinc and Iron Content
3.4. Double Fortification with Iron and Zinc—Effect on Total and Bioaccessible Iron and Zinc Content
3.5. Effect of Double Fortification on Total Phytate
3.6. Cooking Characteristics of Double Fortified HRVs
3.6.1. Length, Breadth, and Thickness
3.6.2. Water Uptake Ratio
3.6.3. Ratio of Kernel Elongation
3.6.4. Cooking Time
3.7. Sensory Quality of Double Fortified HRVs
3.8. Dietary Iron and Zinc Contribution from Double Fortified HRVs
4. Discussion
4.1. Effect of Single and Double Fortification on Iron and Zinc Content of the HRVs
4.2. Length, Breadth, and Thickness
4.3. Water Uptake Ratio
4.4. Ratio of Kernel Elongation
4.5. Cooking Time
4.6. Sensory Acceptability
4.7. Dietary Iron and Zinc Contribution
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wessells, K.R.; Brown, K.H. Estimating the Global Prevalence of Zinc Deficiency: Results Based on Zinc Availability in National Food Supplies and the Prevalence of Stunting. PLoS ONE 2012, 7, e50568. [Google Scholar] [CrossRef]
- UNICEF. Annual Results Report 2016—Social Inclusion; UNICEF: New York, NY, USA, 2016. [Google Scholar]
- Ministry of Health and Family Welfare. Annual Report; Ministry of Health and Family Welfare: New Delhi, India, 2025.
- National Health Mission. Reforms Booklet on Health and Wellness Centres; Government of India; MoHFW: New Delhi, India, 2021.
- International Food Policy Research Institute (IFPRI). Addressing Global Life-Long Health Impacts of Zinc Deficiency; International Food Policy Research Institute (IFPRI): Washington, DC, USA, 2024. [Google Scholar]
- World Health Organization. Zinc Deficiency and Its Impact on Health: Facts and Figures; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- Cao, Y.; Su, X.; Wang, J.; Shao, Q.; Long, Z.; Wu, Y.; Ye, J.; Wang, M.; Sun, C.; Wang, F. Global burden of zinc deficiency among children under 5 years old from 1990 to 2020. Int. J. Food Sci. Nutr. 2025, 76, 456–465. [Google Scholar] [CrossRef] [PubMed]
- Yadav, P.; Srivastava, S. Co-Culturing Hydrilla Verticillata with Rice (Oryza sativa) Plants Ameliorates Arsenic Toxicity and Reduces Arsenic Accumulation in Rice. Environ. Technol. Innov. 2020, 18, 100722. [Google Scholar] [CrossRef]
- Hemalatha, R.; Samarasimha Reddy, N.; Challa, S.; Venkatesh, K.; Pullakhandam, R.; Nandeep, E.R.; Teena, D.; Mahesh Kumar, M.; Raghavendra, P. Efficacy and Safety of Iron Fortified Rice in India—A White Paper; ICMR-National Institute of Nutrition: Hyderabad, India, 2023. [Google Scholar]
- Hurrell, R.F.; Reddy, M.B.; Burri, J.; Cook, J.D. An Evaluation of EDTA Compounds for Iron Fortification of Cereal-Based Foods. Br. J. Nutr. 2000, 84, 903–910. [Google Scholar] [CrossRef]
- Allen, L.H.; de Benoist, B.; Dary, O.; Hurrell, R. Guidelines on Food Fortification with Micronutrients; WHO: Geneva, Switzerland, 2006. [Google Scholar]
- Kalaivani, R.; Arulmozhi, P.; Bakiyalakshmi, S.V. A Study on Medicinal Properties of Traditional Rice Karung Kavuni and Neutraceutical Formulation. Int. J. Food Nutr. Sci. 2018, 5, 86–90. [Google Scholar]
- International Zinc Nutrition Consultative Group. Chapter 3: Developing Zinc Intervention Programs. Food Nutr. Bull. 2004, 25, S163–S186. [Google Scholar] [CrossRef]
- Nandeep, E.R.; Mahajan, H.; Mummadi, M.K.; Sairam, C.; Venkatesh, K.; Kadiyam, J.; Meshram, I.; Pagidoju, S.; Reddy, V.R.; Panda, H.; et al. Implementation, Delivery, and Utilization of Iron Fortified Rice Supplied through Public Distribution System Across Different States in India: An Exploratory Mixed-Method Study. PLoS Glob. Public Health 2024, 4, e0003533. [Google Scholar] [CrossRef]
- Center of Excellence for Food Fortification (CEFF), N.-K. Rice Fortification: Technologies (Coating, Dusting, Extrusion). Available online: https://ceffniftem.com/Home/fih (accessed on 21 August 2025).
- Senguttuvel, P.; Padmavathi, G.; Jasmine, C.; Sanjeeva Rao, D.; Neeraja, C.N.; Jaldhani, V.; Beulah, P.; Gobinath, R.; Aravind Kumar, J.; Sai Prasad, S.V.; et al. Rice Biofortification: Breeding and Genomic Approaches for Genetic Enhancement of Grain Zinc and Iron Contents. Front. Plant Sci. 2023, 14, 1138408. [Google Scholar] [CrossRef]
- Thiruselvam, N. Micronutrients Fortification of Rice by Parboiling: Lab Scale and Pilot Scale Studies. J. Nutr. Food Sci. 2014, 4, 2. [Google Scholar] [CrossRef]
- Kanmani, N.; Romano, N.; Ebrahimi, M.; Nurul Amin, S.M.; Kamarudin, M.S.; Karami, A.; Kumar, V. Improvement of Feed Pellet Characteristics by Dietary Pre-Gelatinized Starch and Their Subsequent Effects on Growth and Physiology in Tilapia. Food Chem. 2018, 239, 1037–1046. [Google Scholar] [CrossRef]
- Mbanjo, E.G.N.; Kretzschmar, T.; Jones, H.; Ereful, N.; Blanchard, C.; Boyd, L.A.; Sreenivasulu, N. The Genetic Basis and Nutritional Benefits of Pigmented Rice Grain. Front. Genet. 2020, 11, 229. [Google Scholar] [CrossRef]
- Haldipur, A.C.; Srividya, N. A Comparative Evaluation of in Vitro Antihyperglycemic Potential of Bamboo Seed Rice (Bambusa arundinacea) and Garudan Samba (Oryza sativa): An Integrated Metabolomics, Enzymatic and Molecular Docking Approach. J. Cereal Sci. 2021, 99, 103200. [Google Scholar] [CrossRef]
- Mendoza-Sarmiento, D.; Mistades, E.V.; Hill, A.M. Effect of Pigmented Rice Consumption on Cardiometabolic Risk Factors: A Systematic Review of Randomized Controlled Trials. Curr. Nutr. Rep. 2023, 12, 797–812. [Google Scholar] [CrossRef] [PubMed]
- Lopez, H.W.; Leenhardt, F.; Coudray, C.; Remesy, C. Minerals and Phytic Acid Interactions: Is It a Real Problem for Human Nutrition? Int. J. Food Sci. Technol. 2002, 37, 727–739. [Google Scholar] [CrossRef]
- Nkhata, S.G.; Ayua, E.; Kamau, E.H.; Shingiro, J. Fermentation and Germination Improve Nutritional Value of Cereals and Legumes through Activation of Endogenous Enzymes. Food Sci. Nutr. 2018, 6, 2446–2458. [Google Scholar] [CrossRef] [PubMed]
- Champagne, E.T. Rice Aroma and Flavor: A Literature Review. Cereal Chem. 2008, 85, 445–454. [Google Scholar] [CrossRef]
- Wei, Y.; Shohag, M.J.I.; Ying, F.; Yang, X.; Wu, C.; Wang, Y. Effect of Ferrous Sulfate Fortification in Germinated Brown Rice on Seed Iron Concentration and Bioavailability. Food Chem. 2013, 138, 1952–1958. [Google Scholar] [CrossRef]
- Sood, M.; Bandral, J.D.; Gupta, N.; Nishu; Salgotra, R. Effect of Germination on Functional and Nutritional Quality Characteristics of Brown Rice. Int. J. Adv. Biochem. Res. 2024, 8, 555–559. [Google Scholar] [CrossRef]
- Hurrell, R.; Ranum, P.; de Pee, S.; Biebinger, R.; Hulthen, L.; Johnson, Q.; Lynch, S. Revised Recommendations for Iron Fortification of Wheat Flour and an Evaluation of the Expected Impact of Current National Wheat Flour Fortification Programs. Food Nutr. Bull. 2010, 31, S7–S21. [Google Scholar] [CrossRef]
- Brown, K.H.; Wessells, K.R.; Hess, S.Y. Zinc Bioavailability from Zinc-Fortified Foods. Int. J. Vitam. Nutr. Res. 2007, 77, 174–181. [Google Scholar] [CrossRef]
- Heredia, J.Z.; Cina, M.; Savio, M.; Gil, R.A.; Camiña, J.M. Ultrasound-Assisted Pretreatment for Multielement Determination in Maize Seed Samples by Microwave Plasma Atomic Emission Spectrometry (MPAES). Microchem. J. 2016, 129, 78–82. [Google Scholar] [CrossRef]
- Luten, J.; Crews, H.; Flynn, A.; Van Dael, P.; Kastenmayer, P.; Hurrell, R.; Deelstra, H.; Shen, L.-H.; Fairweather-Tait, S.; Hickson, K.; et al. Interlaboratory Trial on the Determination of the In Vitro Iron Dialysability from Food. J. Sci. Food Agric. 1996, 72, 415–424. [Google Scholar] [CrossRef]
- Salimath, M.; Pavithra, G.J.; Sreekumar, P.; Reddy, R.; Shankar, A. Effect of Processing on Phytic Acid Content and Nutrient Availability in Food Grains. Int. J. Agric. Sci. 2015, 5, 771–777. [Google Scholar]
- Thavamurugan, S.; Dhivyadharchini, M.; Suresh, P.; Manikandan, T.; Vasuki, A.; Nandhagopalan, V.; Prabha, A.M.L. Investigation on Nutritional, Phytochemical, and Antioxidant Abilities of Various Traditional Rice Varieties. Appl. Biochem. Biotechnol. 2023, 195, 2719–2742. [Google Scholar] [CrossRef] [PubMed]
- Meilgaard, M.; Civille, G.V.; Carr, B.T. Sensory Evaluation Techniques, 5th ed.; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Stone, H.; Sidel, J.L. Sensory Evaluation Practices, 3rd ed.; Academic Press: Cambridge, MA, USA, 2004. [Google Scholar]
- Pennington, J.A.; Schoen, S.A. Total Diet Study: Estimated Dietary Intakes of Nutritional Elements, 1982–1991. Int. J. Vitam. Nutr. Res. 1996, 66, 350–362. [Google Scholar]
- Shao, Y.; Hu, Z.; Yu, Y.; Mou, R.; Zhu, Z.; Beta, T. Phenolic Acids, Anthocyanins, Proanthocyanidins, Antioxidant Activity, Minerals and Their Correlations in Non-Pigmented, Red, and Black Rice. Food Chem. 2018, 239, 733–741. [Google Scholar] [CrossRef]
- Hurtada, W.A.; Barrion, A.S.A.; Barrion, A.S.A. Mineral Content of Dehulled and Well-Milled Pigmented and Non-Pigmented Rice Varieties in the Philippines. Int. Food Res. J. 2018, 25, 1856–1860. [Google Scholar]
- Pathak, K.; Rahman, S.W.; Bhagawati, S.; Gogoi, B. Assessment of Nutritive and Antioxidant Properties of Some Indigenous Pigmented Hill Rice (Oryza sativa L.) Cultivars of Assam. Indian J. Agric. Res. 2017, 51, 214–220. [Google Scholar] [CrossRef]
- Maganti, S.; Swaminathan, R.; Parida, A. Variation in Iron and Zinc Content in Traditional Rice Genotypes. Agric. Res. 2020, 9, 316–328. [Google Scholar] [CrossRef]
- Ayeleke, D.A.; Gana, A.S.; Salaudeen, M.T.; Falusi, O.A. Variability of Iron and Zinc Concentration in Some Rice Germplasms in Nigeria. Eur. J. Agric. Food Sci. 2025, 6, 75–79. [Google Scholar] [CrossRef]
- Lönnerdal, B. Dietary Factors Influencing Zinc Absorption. J. Nutr. 2000, 130, 1378S–1383S. [Google Scholar] [CrossRef]
- Meenakshi, J.V.; Johnson, N.L.; Manyong, V.M.; DeGroote, H.; Javelosa, J.; Yanggen, D.R.; Naher, F.; Gonzalez, C.; García, J.; Meng, E. How Cost-Effective Is Biofortification in Combating Micronutrient Malnutrition? An Ex Ante Assessment. World Dev. 2010, 38, 64–75. [Google Scholar] [CrossRef]
- Azeke, M.A.; Egielewa, S.J.; Eigbogbo, M.U.; Ihimire, I.G. Effect of Germination on the Phytase Activity, Phytate and Total Phosphorus Contents of Rice (Oryza sativa), Maize (Zea mays), Millet (Panicum miliaceum), Sorghum (Sorghum bicolor) and Wheat (Triticum aestivum). J. Food Sci. Technol. 2011, 48, 724–729. [Google Scholar] [CrossRef] [PubMed]
- Suma, P.F.; Urooj, A. Influence of Germination on Bioaccessible Iron and Calcium in Pearl Millet (Pennisetum typhoideum). J. Food Sci. Technol. 2014, 51, 976–981. [Google Scholar] [CrossRef]
- Jyrwa, Y.W.; Palika, R.; Boddula, S.; Boiroju, N.K.; Madhari, R.; Pullakhandam, R.; Thingnganing, L. Retention, Stability, Iron Bioavailability and Sensory Evaluation of Extruded Rice Fortified with Iron, Folic Acid and Vitamin B12. Matern. Child Nutr. 2020, 16, e12932. [Google Scholar] [CrossRef]
- Pinkaew, S.; Winichagoon, P.; Hurrell, R.F.; Wegmuller, R. Extruded Rice Grains Fortified with Zinc, Iron, and Vitamin A Increase Zinc Status of Thai School Children When Incorporated into a School Lunch Program. J. Nutr. 2013, 143, 362–368. [Google Scholar] [CrossRef] [PubMed]
- Wariyah, C.; Anwar, C.; Astuti, M. Sifat Fisik Dan Aseptabilitas Beras Berkalsium [Physical Properties and Acceptability of Calcium Fortified-Rice]. Agritech 2012, 28, 52–59. [Google Scholar]
- Hof, J. Vitamin and Mineral Retention and Sensory Evaluation of Extruded Fortified Rice. Ph.D. Thesis, Technische Universität München, München, Germany, 2006. [Google Scholar]
- Wunthunyarat, W.; Seo, H.; Wang, Y. Effects of Germination Conditions on Enzyme Activities and Starch Hydrolysis of Long-Grain Brown Rice in Relation to Flour Properties and Bread Qualities. J. Food Sci. 2020, 85, 349–357. [Google Scholar] [CrossRef]
- Choi, H.C.; Chi, J.H.; Cho, S.Y. Varietal Difference in Water Absorption Characteristics of Milled Rice, and Its Relation to the Other Grain Quality Components. Korean J. Crop Sci. 1999, 44, 288–295. [Google Scholar]
- Perez, C.M.; Juliano, B.O. Texture Changes and Storage of Rice. J. Texture Stud. 1981, 12, 321–333. [Google Scholar] [CrossRef]
- Kruszelnicka, W.; Chen, Z.; Ambrose, K. Moisture-Dependent Physical-Mechanical Properties of Maize, Rice, and Soybeans as Related to Handling and Processing. Materials 2022, 15, 8729. [Google Scholar] [CrossRef]
- Golam, F.; Prodhan, Z.H. Kernel Elongation in Rice. J. Sci. Food Agric. 2013, 93, 449–456. [Google Scholar] [CrossRef]
- Sarmah, B.; Sarma, D.; Sarma, R. Comparative Genetic Diversity Assessment of Some Rice Genotypes for Nutritional and Cooking Quality Parameters. J. Pharmacogn. Phytochem. 2017, 6, 1167–1170. [Google Scholar]
- Sima Chanu, C.; Shivaleela, H.B.; Ravindra, U. Physicochemical and Cooking Properties of Rice (Sambha masuri) Individually Fortified with Iron, Zinc and Calcium. Int. J. Curr. Microbiol. Appl. Sci. 2020, 9, 315–327. [Google Scholar] [CrossRef]
- Jiamyangyuen, S.; Ooraikul, B. The Physico-Chemical, Eating and Sensorial Properties of Germinated Brown Rice. J. Food Agric. Environ. 2008, 6, 119. [Google Scholar]
- Kalita, D.; Sarma, B.; Srivastava, B. Influence of Germination Conditions on Malting Potential of Low and Normal Amylose Paddy and Changes in Enzymatic Activity and Physico Chemical Properties. Food Chem. 2017, 220, 67–75. [Google Scholar] [CrossRef]
- He, L.; Yang, Y.; Ren, L.; Bian, X.; Liu, X.; Chen, F.; Tan, B.; Fu, Y.; Zhang, X.; Zhang, N. Effects of Germination Time on the Structural, Physicochemical and Functional Properties of Brown Rice. Int. J. Food Sci. Technol. 2022, 57, 1902–1910. [Google Scholar] [CrossRef]
- Kwak, H.; Jeong, Y.; Kim, M. Influence of Rice Varieties on Sensory Profile and Consumer Acceptance for Frozen-Cooked Rice. Emir. J. Food Agric. 2015, 27, 793. [Google Scholar] [CrossRef]
- Adi, A.C.; Rifqi, M.A.; Adriani, M.; Farapti, F.; Haryana, N.R.; Astina, J. Effect of Cooking Methods and Rice Variety on the Sensory Quality and Consumer Acceptance. Media Gizi Indones. 2020, 15, 159. [Google Scholar] [CrossRef]
- Srisawas, W.; Jindal, V.K. Physicochemical, Cooking, and Textural Characteristics of Rice Grains. J. Texture Stud. 2007, 38, 21–41. [Google Scholar] [CrossRef]
- Da Graça, A.; Teinye-Boyle, F.; Brownlee, I. Comparative Evaluation of the Sensory Qualities of Refined and Wholegrain Rice as Ingredients within Mixed Dishes. Nutrients 2024, 16, 1984. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.; Seo, H.-S.; Lee, K.R.; Lee, S.; Lee, J. Effect of Cultivars and Milling Degrees on Free and Bound Phenolic Profiles and Antioxidant Activity of Black Rice. Appl. Biol. Chem. 2018, 61, 49–60. [Google Scholar] [CrossRef]
- Ma, Z.; Zhai, X.; Zhang, N.; Tan, B. Effects of Germination, Fermentation and Extrusion on the Nutritional, Cooking and Sensory Properties of Brown Rice Products: A Comparative Study. Foods 2023, 12, 1542. [Google Scholar] [CrossRef] [PubMed]
- Jabeen, R.; Jan, N.; Naseer, B.; Sarangi, P.K.; Sridhar, K.; Dikkala, P.K.; Bhaswant, M.; Hussain, S.Z.; Inbaraj, B.S. Development of Germinated-Brown-Rice-Based Novel Functional Beverage Enriched with γ-Aminobutyric Acid: Nutritional and Bio-Functional Characterization. Foods 2024, 13, 1282. [Google Scholar] [CrossRef]
- Abeysekara, I.; Rathnayake, I. Global Trends in Rice Production, Consumption and Trade. SSRN Electron. J. 2024. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. Code of Federal Regulations: Title 21—Food and Drugs; U.S. Food and Drug Administration: Rockville, MD, USA, 2011; Volume 2, Part 101: Food Labeling.
S.No. | Sample | Length (mm) | Breadth (mm) | Thickness (mm) |
---|---|---|---|---|
1 | CH-RC | 5.21 ab ± 0.15 | 2.66 a ± 0.16 | 1.87 ab ± 0.13 |
2 | CH-DF | 4.90 a ± 0.23 | 2.55 a ± 0.17 | 1.71 a ± 0.11 |
3 | KK-RC | 5.55 abc ± 0.27 | 2.68 ab ± 0.18 | 2.07 abcd ± 0.12 |
4 | KK-DF | 5.92 bcd ± 0.13 | 2.58 a ± 0.19 | 1.92 abc ± 0.14 |
5 | CH-RCck | 6.40 d ± 0.44 | 2.87 ab ± 0.27 | 2.27 cd ± 0.14 |
6 | CH-DFck | 6.06 cd ± 0.33 | 2.99 ab ± 0.21 | 2.20 bcd ± 0.17 |
7 | KK-RCck | 6.38 cd ± 0.36 | 3.24 b ± 0.27 | 2.27 cd ± 0.16 |
8 | KK-DFck | 6.49 d ± 0.31 | 3.08 ab ± 0.15 | 2.33 d ± 0.12 |
Age (yrs.) | Children 1 to 3 Y | Children (≥4 Y) and Adults | Pregnant and Lactating Women | |||
---|---|---|---|---|---|---|
DFHR (g/Day) | Fe | Zn | Fe | Zn | Fe | Zn |
Percent (%) Contribution Towards RDI | ||||||
25 | 19–34 | 100 | 7–13 | 48–66 | 5–9 | 41–56 |
50 | 37–67 | 100 | 14–26 | 96–100 | 10–17 | 82–100 |
75 | 56–100 | 100 | 22–39 | 100 | 14–26 | 100 |
100 | 74–100 | 100 | 29–52 | 100 | 19–35 | 100 |
125 | 93–100 | 100 | 36–65 | 100 | 24–44 | 100 |
150 | 100 | 100 | 43–78 | 100 | 29–52 | 100 |
175 | 100 | 100 | 51–91 | 100 | 34–61 | 100 |
Group | Variety | Iron Content | Zinc Content | ||
---|---|---|---|---|---|
Total | Bioaccessible | Total | Bioaccessible | ||
Control-Germination | CH | ↓ | ↑ | ↓ | ↓ |
KK | ↑ | ↑ | ↓ | ↑ | |
SF-Iron fortification | CH | ↔ | ↑ | ↓ | ↓ |
KK | ↑ | ↑ | ↓ | ↓ | |
SF-Zinc fortification | CH | ↓ | ↔ | ↑↑ | ↑↑ |
KK | ↓ | ↔ | ↑↑ | ↑↑ | |
DF-Double fortification | CH | ↑↑ | ↑↑ | ↑↑ | ↑↑ |
KK | ↑↑ | ↑↑ | ↑↑ | ↑↑ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kavitha Kumaravel, S.S.S.; Srividya, N. Evaluation of Bioprocess-Based Technique for Iron and Zinc Fortification in Red Rice Genotypes. Foods 2025, 14, 3162. https://doi.org/10.3390/foods14183162
Kavitha Kumaravel SSS, Srividya N. Evaluation of Bioprocess-Based Technique for Iron and Zinc Fortification in Red Rice Genotypes. Foods. 2025; 14(18):3162. https://doi.org/10.3390/foods14183162
Chicago/Turabian StyleKavitha Kumaravel, Sai Sruthi Shree, and Nagarajan Srividya. 2025. "Evaluation of Bioprocess-Based Technique for Iron and Zinc Fortification in Red Rice Genotypes" Foods 14, no. 18: 3162. https://doi.org/10.3390/foods14183162
APA StyleKavitha Kumaravel, S. S. S., & Srividya, N. (2025). Evaluation of Bioprocess-Based Technique for Iron and Zinc Fortification in Red Rice Genotypes. Foods, 14(18), 3162. https://doi.org/10.3390/foods14183162