Effects of Olive Pomace Powder Incorporation on Physicochemical, Textural, and Rheological Properties of Sheep Milk Yogurt
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling and Preparation of OP
2.2. Proximate Composition, Water Activity, and Total Dietary Fiber of OP
2.3. Total Phenolic Content of OP
2.4. Antioxidant Activity of OP
2.5. Color of OP
2.6. Scanning Electron Microscopy Analysis of OP
2.7. Microbiological Analysis of OP
2.8. Yogurt Production
2.8.1. Raw Sheep Milk Analysis
2.8.2. Lab-Scale Yogurt-Making Process
2.9. Analysis of Yogurt Samples
2.9.1. WHC and Syneresis of Yogurt Samples
2.9.2. Total Phenolic Content of Yogurt Samples
2.9.3. Rheological Analyses of Yogurt Samples
2.9.4. Texture Analysis of Yogurt Samples
2.10. Supplementary Analyses on the Selected Formulation YOPB Sample and YC
2.10.1. Microbiological Analysis of YC and YOPB Samples
2.10.2. Antioxidant Activity of YC and YOPB Samples
2.10.3. Scanning Electron Microscopy Analysis of YC and YOPB Samples
2.10.4. Color Attributes of YC and YOPB Samples
2.10.5. Sensory Evaluation of YC and YOPB Samples
2.11. Statistical Analysis
3. Results and Discussion
3.1. Proximate Composition, TPC, AA, and Color Properties of OP
3.2. Microbiological Analysis of OP
3.3. Microstructure Analysis of OP
3.4. Effect of OP on Yogurt Characteristics
3.4.1. Acidification Curves of Yogurt Formulations
3.4.2. Impact of OP Addition on the WHC and Syneresis of Yogurt Samples
3.4.3. Effect of OP Fortification on Total Phenolic Content of Yogurts
3.4.4. Modification of the Rheological Behavior of Yogurt by OP Addition
3.4.5. Influence of OP Incorporation on the Textural Properties of Yogurt Samples
3.5. Microbiological Characterization of YC and YOPB Yogurt Samples
3.6. Antioxidant Activity of YC and YOPB Yogurt Samples
3.7. Microstructure of YC and YOPB Yogurt Samples
3.8. Color Characteristics of YC and YOPB Yogurt Samples
3.9. Sensory Evaluation of YC and YOPB Yogurt Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Socas-Rodríguez, B.; Álvarez-Rivera, G.; Valdés, A.; Ibáñez, E.; Cifuentes, A. Food By-Products and Food Wastes: Are They Safe Enough for Their Valorization? Trends Food Sci. Technol. 2021, 114, 133–147. [Google Scholar] [CrossRef]
- Rațu, R.N.; Veleșcu, I.D.; Stoica, F.; Usturoi, A.; Arsenoaia, V.N.; Crivei, I.C.; Postolache, A.N.; Lipșa, F.D.; Filipov, F.; Florea, A.M.; et al. Application of Agri-Food By-Products in the Food Industry. Agriculture 2023, 13, 1559. [Google Scholar] [CrossRef]
- Fernandes, F.; Delerue-Matos, C.; Grosso, C. Unveiling the Potential of Agrifood By-products: A Comprehensive Review of Phytochemicals, Bioactivities and Industrial Applications. Waste Biomass Valorization 2024, 16, 2715–2748. [Google Scholar] [CrossRef]
- Karmakar, R.; Aggarwal, S.; Kathuria, D.; Singh, N.; Tripathi, V.; Sharma, P.K.; Mitra, D.; Kumar, S.; Bhattacharya, S. Valorization of Food Waste Stream by Harnessing Bioactive Compounds: A Comprehensive Review on the Process, Challenges and Solutions. Food Biosci. 2025, 69, 106833. [Google Scholar] [CrossRef]
- Areti, H.A.; Muleta, M.D.; Abo, L.D.; Hamda, A.S.; Adugna, A.A.; Edae, I.T.; Daba, B.J.; Gudeta, R.L. Innovative Uses of Agricultural By-Products in the Food and Beverage Sector: A Review. Food Chem. Adv. 2024, 5, 100838. [Google Scholar] [CrossRef]
- Dahdah, P.; Cabizza, R.; Farbo, M.G.; Fadda, C.; Mara, A.; Hassoun, G.; Piga, A. Improving the Rheological Properties of Dough Obtained by Partial Substitution of Wheat Flour with Freeze-Dried Olive Pomace. Foods 2024, 13, 478. [Google Scholar] [CrossRef] [PubMed]
- Dahdah, P.; Cabizza, R.; Farbo, M.G.; Fadda, C.; Del Caro, A.; Montanari, L.; Hassoun, G.; Piga, A. Effect of Partial Substitution of Wheat Flour with Freeze-Dried Olive Pomace on the Technological, Nutritional, and Sensory Properties of Bread. Front. Sustain. Food Syst. 2024, 8, 1400339. [Google Scholar] [CrossRef]
- Solé, M.M.; Pons, L.; Conde, M.; Gaidau, C.; Bacardit, A. Characterization of Wet Olive Pomace Waste as Bio Based Resource for Leather Tanning. Materials 2021, 14, 5790. [Google Scholar] [CrossRef]
- Foti, P.; Pino, A.; Romeo, F.V.; Vaccalluzzo, A.; Caggia, C.; Randazzo, C.L. Olive Pomace and Pâté Olive Cake as Suitable Ingredients for Food and Feed. Microorganisms 2022, 10, 237. [Google Scholar] [CrossRef]
- Difonzo, G.; Troilo, M.; Squeo, G.; Pasqualone, A.; Caponio, F. Functional Compounds from Olive Pomace to Obtain High-Added Value Foods—A Review. J. Sci. Food Agric. 2021, 101, 15–26. [Google Scholar] [CrossRef]
- Simonato, B.; Trevisan, S.; Tolve, R.; Favati, F.; Pasini, G. Pasta Fortification with Olive Pomace: Effects on the Technological Characteristics and Nutritional Properties. Lebensm.-Wiss. Technol. 2019, 114, 108368. [Google Scholar] [CrossRef]
- Simsek, M.; Süfer, Ö. Olive Pomace from Olive Oil Processing as Partial Flour Substitute in Breadsticks: Bioactive, Textural, Sensorial and Nutritional Properties. J. Food Process. Preserv. 2022, 46, e15705. [Google Scholar] [CrossRef]
- Ferreira, D.M.; Oliveira, B.C.C.; Barbosa, C.; Costa, A.S.G.; Nunes, M.A.; Oliveira, M.B.P.P.; Alves, R.C. Pasta Incorporating Olive Pomace: Impact on Nutritional Composition and Consumer Acceptance of a Prototype. Foods 2024, 13, 2933. [Google Scholar] [CrossRef]
- Balli, D.; Cecchi, L.; Innocenti, M.; Bellumori, M.; Mulinacci, N. Food By-Products Valorisation: Grape Pomace and Olive Pomace (Pâté) as Sources of Phenolic Compounds and Fiber for Enrichment of Tagliatelle Pasta. Food Chem. 2021, 355, 129642. [Google Scholar] [CrossRef]
- Aispuro-Pérez, A.; Pedraza-Leyva, F.J.; Ochoa-Acosta, A.; Arias-Gastélum, M.; Cárdenas-Torres, F.I.; Amezquita-López, B.A.; Terán, E.; Aispuro-Hernández, E.; Martínez-Téllez, M.Á.; Avena-Bustillos, R.J.; et al. A Functional Beverage from Coffee and Olive Pomace: Polyphenol-Flavonoid Content, Antioxidant, Antihyperglycemic Properties, and Mouse Behavior. Foods 2025, 14, 1331. [Google Scholar] [CrossRef]
- Flis, Z.; Molik, E. Importance of Bioactive Substances in Sheep’s Milk in Human Health. Int. J. Mol. Sci. 2021, 22, 4364. [Google Scholar] [CrossRef]
- Mohapatra, A.; Shinde, A.K.; Singh, R. Sheep Milk: A Pertinent Functional Food. Small Rumin. Res. 2019, 181, 6–11. [Google Scholar] [CrossRef]
- Li, S.; Delger, M.; Dave, A.; Singh, H.; Ye, A. Seasonal Variations in the Composition and Physicochemical Characteristics of Sheep and Goat Milks. Foods 2022, 11, 1737. [Google Scholar] [CrossRef] [PubMed]
- Pulina, G.; Milán, M.J.; Lavín, M.P.; Theodoridis, A.; Morin, E.; Capote, J.; Thomas, D.L.; Francesconi, A.H.D.; Caja, G. Invited Review: Current Production Trends, Farm Structures, and Economics of the Dairy Sheep and Goat Sectors. J. Dairy Sci. 2018, 101, 6715–6729. [Google Scholar] [CrossRef] [PubMed]
- FAOSTAT—Food and Agriculture Organization of the United Nations Crops and Livestock Products. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 1 July 2025).
- ISTAT. Sistema Statistico Nazionale Agricoltura; ISTAT: Rome, Italy, 2024; Volume 13, Available online: https://www.istat.it/storage/ASI/2024/capitoli/C13.pdf (accessed on 1 July 2025).
- Hadjimbei, E.; Botsaris, G.; Chrysostomou, S. Beneficial Effects of Yoghurts and Probiotic Fermented Milks and Their Functional Food Potential. Foods 2022, 11, 2691. [Google Scholar] [CrossRef]
- Łopusiewicz, Ł.; Drozłowska, E.; Kwiatkowski, P. Production and Characterization of Yogurt-Like Fermented Beverage Based on Camelina (Camelina sativa L.) Seed Press Cake. Appl. Sci. 2022, 12, 1085. [Google Scholar] [CrossRef]
- Ribeiro, T.B.; Bonifácio-Lopes, T.; Morais, P.; Miranda, A.; Nunes, J.; Vicente, A.A.; Pintado, M. Incorporation of Olive Pomace Ingredients into Yoghurts as a Source of Fibre and Hydroxytyrosol: Antioxidant Activity and Stability throughout Gastrointestinal Digestion. J. Food Eng. 2021, 297, 110476. [Google Scholar] [CrossRef]
- Detopoulou, M.; Ntzouvani, A.; Petsini, F.; Gavriil, L.; Fragopoulou, Ε.; Antonopoulou, S. Consumption of Enriched Yogurt with Paf Inhibitors from Olive Pomace Affects the Major Enzymes of Paf Metabolism: A Randomized, Double Blind, Three Arm Trial. Biomolecules 2021, 11, 801. [Google Scholar] [CrossRef]
- ISO 662:2016; Animal and Vegetable Fats and Oils—Determination of Moisture and Volatile Matter Content. ISO International Organisation for Standardization: Geneva, Switzerland, 2016.
- AOAC (Association of Official Analytical Chemists). Official Method 923.03. Ash of Flour, Direct Method. In Official Methods of Analysis, 18th ed.; AOAC: Gaithersburg, MD, USA, 2006. [Google Scholar]
- AOAC (Association of Official Analytical Chemists). Official method 2003.06. Crude Fat in Feeds, Cereal Grains and Forage (Randall/Soxtec/Hexanes Extraction-Submersion Method). In Official Methods of Analysis, 18th ed.; AOAC: Gaithersburg, MD, USA, 2006. [Google Scholar]
- AOAC (Association of Official Analytical Chemists). Official method 990.03. Protein (Crude) in Animal Feed, Combustion Method. In Official Methods of Analysis, 18th ed.; AOAC: Gaithersburg, MD, USA, 2006. [Google Scholar]
- ISO 18787:2017; Foodstuffs—Determination of Water Activity. ISO International Organisation for Standardization: Geneva, Switzerland, 2017.
- AACC (American Association of Cereal Chemist). Method 32-05.01. Insoluble, Soluble, and Total Dietary Fiber (Codex Definition) by an Enzymatic-Gravimetric Method and Liquid Chromatography. In Approved Methods of Analysis, 11th ed.; AACC Int.: St. Paul, MN, USA, 2011. [Google Scholar]
- AOAC (Association of Official Analytical Chemists). Official method 985.29. Total Dietary Fiber in Foods, Enzymatic-Gravimetric Method. In Official Methods of Analysis, 18th ed.; AOAC: Gaithersburg, MD, USA, 2007. [Google Scholar]
- Cannas, M.; Conte, P.; Piga, A.; Del Caro, A. Green Recovery Optimization of Phenolic Compounds from “Spinoso Sardo” Globe Artichoke by-Products Using Response Surface Methodology. Front. Sustain. Food Syst. 2023, 7, 1215809. [Google Scholar] [CrossRef]
- Noriega-Rodríguez, D.; Soto-Maldonado, C.; Torres-Alarcón, C.; Pastrana-Castro, L.; Weinstein-Oppenheimer, C.; Zúñiga-Hansen, M.E. Valorization of Globe Artichoke (Cynara scolymus) Agro-Industrial Discards, Obtaining an Extract with a Selective Eect on Viability of Cancer Cell Lines. Processes 2020, 8, 715. [Google Scholar] [CrossRef]
- Collar, C.; Jiménez, T.; Conte, P.; Fadda, C. Impact of Ancient Cereals, Pseudocereals and Legumes on Starch Hydrolysis and Antiradical Activity of Technologically Viable Blended Breads. Carbohydr. Polym. 2014, 113, 149–158. [Google Scholar] [CrossRef] [PubMed]
- ISO 11290-1:2017; Microbiology of the Food Chain—Horizontal Method for the Detection and Enumeration of Listeria monocytogenes and of Listeria spp.—Part 1: Detection Method. ISO International Organization for Standardization: Geneva, Switzerland, 2017.
- ISO 11290-2:2017; Microbiology of the Food Chain—Horizontal Method for the Detection and Enumeration of Listeria monocytogenes and of Listeria spp.—Part 2: Enumeration Method. ISO International Organization for Standardization: Geneva, Switzerland, 2017.
- ISO 6579-1:2017; Microbiology of the Food Chain—Horizontal Method for the Detection, Enumeration and Serotyping of Salmonella—Part 1: Detection of Salmonella spp. ISO International Organization for Standardization: Geneva, Switzerland, 2017.
- ISO/TS 11059-IDF/RM 225:2009; Milk and Milk Products—Method for the Enumeration of Pseudomonas spp. ISO International Organization for Standardization: Geneva, Switzerland, 2009.
- Sarba, E.J.; Wirtu, W.; Gebremedhin, E.Z.; Borena, B.M.; Marami, L.M. Occurrence and Antimicrobial Susceptibility Patterns of Escherichia coli and Escherichia coli O157 Isolated from Cow Milk and Milk Products, Ethiopia. Sci. Rep. 2023, 13, 16018. [Google Scholar] [CrossRef]
- Weiss, A.; Domig, K.J.; Kneifel, W. Comparison of Selective Media for the Enumeration of Probiotic Enterococci from Animal Feed. Food Technol. Biotechnol. 2005, 43, 147–155. [Google Scholar]
- Ollis, G.W.; Rawluk, S.A.; Schoonderwoerd, M.; Schipper, C. Detection of Staphylococcus aureus in Bulk Tank Milk Using Modified Baird-Parker Culture Media. Can. Vet. J. 1995, 36, 619–623. [Google Scholar] [PubMed]
- Eijlander, R.T.; Breitenwieser, F.; de Groot, R.; Hoornstra, E.; Kamphuis, H.; Kokken, M.; Kuijpers, A.; de Mello, I.I.G.; van de Rijdt, G.; Vadier, C.; et al. Enumeration and Identification of Bacterial Spores in Cocoa Powders. J. Food Prot. 2020, 83, 1530–1539. [Google Scholar] [CrossRef]
- US Food and Drug Administration FDA. Chapter 18: Yeasts, Molds and Mycotoxins. In Bacteriological Analytical Manual; US Food and Drug Administration FDA: Silver Spring, MD, USA, 2001; p. 14. [Google Scholar]
- Cavallieri, A.L.F.; da Cunha, R.L. The Effects of Acidification Rate, PH and Ageing Time on the Acidic Cold Set Gelation of Whey Proteins. Food Hydrocoll. 2008, 22, 439–448. [Google Scholar] [CrossRef]
- Osorio-Arias, J.; Pérez-Martínez, A.; Vega-Castro, O.; Martínez-Monteagudo, S.I. Rheological, Texture, Structural, and Functional Properties of Greek-Style Yogurt Fortified with Cheese Whey-Spent Coffee Ground Powder. Lebensm.-Wiss. Technol. 2020, 129, 109523. [Google Scholar] [CrossRef]
- Amatayakul, T.; Sherkat, F.; Shah, N.P. Syneresis in Set Yogurt as Affected by EPS Starter Cultures and Levels of Solids. Int. J. Dairy Technol. 2006, 59, 216–221. [Google Scholar] [CrossRef]
- Vázquez, C.V.; Rojas, M.G.V.; Ramírez, C.A.; Chávez-Servín, J.L.; García-Gasca, T.; Ferriz Martínez, R.A.; García, O.P.; Rosado, J.L.; López-Sabater, C.M.; Castellote, A.I.; et al. Total Phenolic Compounds in Milk from Different Species. Design of an Extraction Technique for Quantification Using the Folin–Ciocalteu Method. Food Chem. 2015, 176, 480–486. [Google Scholar] [CrossRef]
- Yeung, Y.K.; Lee, Y.K.; Chang, Y.H. Physicochemical, Microbial, and Rheological Properties of Yogurt Substituted with Pectic Polysaccharide Extracted from Ulmus Davidiana. J. Food Process. Preserv. 2019, 43, e13907. [Google Scholar] [CrossRef]
- Dave, R.I.; Shah, N.P. Evaluation of Media for Selective Enumeration of Streptococcus thermophilus, Lactobacillus delbrueckii ssp. bulgaricus, Lactobacillus acidophilus, and Bifidobacteria. J. Dairy Sci. 1996, 79, 1529–1536. [Google Scholar] [CrossRef]
- Vera Zambrano, M.; Dutta, B.; Mercer, D.G.; MacLean, H.L.; Touchie, M.F. Assessment of Moisture Content Measurement Methods of Dried Food Products in Small-Scale Operations in Developing Countries: A Review. Trends Food Sci. Technol. 2019, 88, 484–496. [Google Scholar] [CrossRef]
- Sinrod, A.J.G.; Avena-Bustillos, R.J.; Olson, D.A.; Crawford, L.M.; Wang, S.C.; McHugh, T.H. Phenolics and Antioxidant Capacity of Pitted Olive Pomace Affected by Three Drying Technologies. J. Food Sci. 2019, 84, 412–420. [Google Scholar] [CrossRef] [PubMed]
- Soleimanian, Y.; Sanou, I.; Turgeon, S.L.; Canizares, D.; Khalloufi, S. Natural Plant Fibers Obtained from Agricultural Residue Used as an Ingredient in Food Matrixes or Packaging Materials: A Review. Compr. Rev. Food Sci. Food Saf. 2022, 21, 371–415. [Google Scholar] [CrossRef]
- Ferreira, D.M.; Machado, S.; Espírito Santo, L.; Costa, A.S.G.; Ranga, F.; Chiș, M.S.; Palmeira, J.D.; Oliveira, M.B.P.P.; Alves, R.C.; Ferreira, H. Changes in the Composition of Olive Pomace after Fermentation: A Preliminary Study. Fermentation 2024, 10, 287. [Google Scholar] [CrossRef]
- Sousa, M.M.; Ferreira, D.M.; Machado, S.; Lobo, J.C.; Costa, A.S.G.; Palmeira, J.D.; Nunes, M.A.; Alves, R.C.; Ferreira, H.; Oliveira, M.B.P.P. Effect of Different Time/Temperature Binomials on the Chemical Features, Antioxidant Activity, and Natural Microbial Load of Olive Pomace Paste. Molecules 2023, 28, 2876. [Google Scholar] [CrossRef]
- Aissaoui, M.H.; Trabelsi, A.B.H.; bensidhom, G.; Ceylan, S.; Leahy, J.J.; Kwapinski, W. Insights into Olive Pomace Pyrolysis Conversion to Biofuels and Biochars: Characterization and Techno-Economic Evaluation. Sustain. Chem. Pharm. 2023, 32, 101022. [Google Scholar] [CrossRef]
- Lammi, S.; Barakat, A.; Mayer-Laigle, C.; Djenane, D.; Gontard, N.; Angellier-Coussy, H. Dry Fractionation of Olive Pomace as a Sustainable Process to Produce Fillers for Biocomposites. Powder Technol. 2018, 326, 44–53. [Google Scholar] [CrossRef]
- Nunes, M.A.; Palmeira, J.D.; Melo, D.; Machado, S.; Lobo, J.C.; Costa, A.S.G.; Alves, R.C.; Ferreira, H.; Oliveira, M.B.P.P. Chemical Composition and Antimicrobial Activity of a New Olive Pomace Functional Ingredient. Pharmaceuticals 2021, 14, 913. [Google Scholar] [CrossRef]
- Gómez-Cruz, I.; Cara, C.; Romero, I.; Castro, E.; Gullón, B. Valorisation of Exhausted Olive Pomace by an Ecofriendly Solvent Extraction Process of Natural Antioxidants. Antioxidants 2020, 9, 1010. [Google Scholar] [CrossRef]
- Pikuli, K.; Devolli, A. Total Phenolic Content and Antioxidant Activity Evaluation of Olive Mill Pomace Extract. Sci. Bull. Ser. F Biotechnol. 2024, XXVIII, 63–70. [Google Scholar]
- Martins, V.F.R.; Ribeiro, T.B.; Lopes, A.I.; Pintado, M.E.; Morais, R.M.S.C.; Morais, A.M.M.B. Comparison among Different Green Extraction Methods of Polyphenolic Compounds from Exhausted Olive Oil Pomace and the Bioactivity of the Extracts. Molecules 2024, 29, 1935. [Google Scholar] [CrossRef]
- Gómez-García, R.; Campos, D.A.; Aguilar, C.N.; Madureira, A.R.; Pintado, M. Valorisation of Food Agro-Industrial by-Products: From the Past to the Present and Perspectives. J. Environ. Manag. 2021, 299, 113571. [Google Scholar] [CrossRef]
- Ribeiro, T.B.; Oliveira, A.; Coelho, M.; Veiga, M.; Costa, E.M.; Silva, S.; Nunes, J.; Vicente, A.A.; Pintado, M. Are Olive Pomace Powders a Safe Source of Bioactives and Nutrients? J. Sci. Food Agric. 2021, 101, 1963–1978. [Google Scholar] [CrossRef]
- Friedman, M.; Henika, P.R.; Levin, C.E. Bactericidal Activities of Health-Promoting, Food-Derived Powders Against the Foodborne Pathogens Escherichia coli, Listeria monocytogenes, Salmonella enterica, and Staphylococcus aureus. J. Food Sci. 2013, 78, 270–275. [Google Scholar] [CrossRef]
- Montagano, F.; Dell’Orco, F.; Prete, R.; Corsetti, A. Health Benefits of Fermented Olives, Olive Pomace and Their Polyphenols: A Focus on the Role of Lactic Acid Bacteria. Front. Nutr. 2024, 11, 1467724. [Google Scholar] [CrossRef] [PubMed]
- Kavroulakis, N.; Ntougias, S. Bacterial and β-Proteobacterial Diversity in Olea europaea var. mastoidis- and O. europaea var. koroneiki-Generated Olive Mill Wastewaters: Influence of Cultivation and Harvesting Practice on Bacterial Community Structure. World J. Microbiol. Biotechnol. 2011, 27, 57–66. [Google Scholar] [CrossRef]
- Ntougias, S.; Bourtzis, K.; Tsiamis, G. The Microbiology of Olive Mill Wastes. BioMed Res. Int. 2013, 2013, 784591. [Google Scholar] [CrossRef]
- Han, W.; Geng, Y. Optimization and Characterization of Cellulose Extraction from Olive Pomace. Cellulose 2023, 30, 4889–4903. [Google Scholar] [CrossRef]
- Saoudi Hassani, E.M.; Duarte, H.; Brás, J.; Taleb, A.; Taleb, M.; Rais, Z.; Eivazi, A.; Norgren, M.; Romano, A.; Medronho, B. On the Valorization of Olive Oil Pomace: A Sustainable Approach for Methylene Blue Removal from Aqueous Media. Polymers 2024, 16, 3055. [Google Scholar] [CrossRef] [PubMed]
- Maraulo, G.E.; dos Santos Ferreira, C.; Mazzobre, M.F. Β-Cyclodextrin Enhanced Ultrasound-Assisted Extraction As a Green Method To Recover Olive Pomace Bioactive Compounds. J. Food Process. Preserv. 2021, 45, e15194. [Google Scholar] [CrossRef]
- Mohamed Abdoul-Latif, F.; Ainane, A.; Hachi, T.; Abbi, R.; Achira, M.; Abourriche, A.; Brulé, M.; Ainane, T. Materials Derived from Olive Pomace as Effective Bioadsorbents for the Process of Removing Total Phenols from Oil Mill Effluents. Molecules 2023, 28, 4310. [Google Scholar] [CrossRef]
- Zhao, H.; Kim, Y.; Avena-Bustillos, R.J.; Nitin, N.; Wang, S.C. Characterization of California Olive Pomace Fractions and Their in Vitro Antioxidant and Antimicrobial Activities. Lebensm.-Wiss. Technol. 2023, 180, 114677. [Google Scholar] [CrossRef]
- Barukčić, I.; Filipan, K.; Jakopović, K.L.; Božanić, R.; Blažić, M.; Repajić, M. The Potential of Olive Leaf Extract as a Functional Ingredient in Yoghurt Production: The Effects on Fermentation, Rheology, Sensory, and Antioxidant Properties of Cow Milk Yoghurt. Foods 2022, 11, 701. [Google Scholar] [CrossRef]
- Marhamatizadeh, M.H.; Ehsandoost, E.; Gholami, P.; Nazemi, M. Effect of Denak (Oliverici decumbens Vent) on Growth and Survival of Lactobacillus acidophilus and Bifidobacterium bifidum for Production of Probiotic Herbal Milk and Yoghurt. Pak. J. Biol. Sci. 2013, 16, 2009–2014. [Google Scholar] [CrossRef]
- Tarchi, I.; Koubaa, M.; Ozogul, F.; Bouaziz, M.; Aït-Kaddour, A. Influence of Olive Leaf Extract on the Physicochemical Properties of Yogurts Made from Cow, Sheep, and Goat Milk. Food Biosci. 2025, 63, 105728. [Google Scholar] [CrossRef]
- Aydın, B.D.; Konak Göktepe, Ç.; Akın, N. Enhancing Set-Type Yoghurt With Olive Leaf Extract: A Comparison of Powdered Addition and Surface Spraying on Quality, Functionality, and Sensory Attributes. Food Sci. Nutr. 2025, 13, e70273. [Google Scholar] [CrossRef]
- M’hiri, N.; Mkadem, W.; Fendri, M.; Boudhrioua, N. Effect of Olive Leaves Powder Supplementation on Quality Attributes and Antioxidants of Fresh Milk Cheese. Bioact. Compd. Heal. Dis. 2025, 8, 76–89. [Google Scholar] [CrossRef]
- Monteiro, A.; Loureiro, S.; Matos, S.; Correia, P. Goat and Sheep Milk as Raw Material for Yogurt. In Milk Production, Processing and Marketing; Javed, K., Ed.; IntechOpen: London, UK, 2019. [Google Scholar]
- El-Messery, T.M.; Aly, E.; López-Nicolas, R.; Sánchez-Moya, T.; Ros, G. Bioaccessibility and Antioxidant Activity of PCL-Microencapsulated Olive Leaves Polyphenols and Its Application in Yogurt. J. Food Sci. 2021, 86, 4303–4315. [Google Scholar] [CrossRef]
- Tavakoli, H.; Hosseini, O.; Jafari, S.M.; Katouzian, I. Evaluation of Physicochemical and Antioxidant Properties of Yogurt Enriched by Olive Leaf Phenolics within Nanoliposomes. J. Agric. Food Chem. 2018, 66, 9231–9240. [Google Scholar] [CrossRef]
- Acharjee, A.; Afrin, S.M.; Sit, N. Physicochemical, Textural, and Rheological Properties of Yoghurt Enriched with Orange Pomace Powder. J. Food Process. Preserv. 2021, 45, e15193. [Google Scholar] [CrossRef]
- Pourghorban, S.; Yadegarian, L.; Jalili, M.; Rashidi, L. Comparative Physicochemical, Microbiological, Antioxidant, and Sensory Properties of Pre- and Post-Fermented Yoghurt Enriched with Olive Leaf and Its Extract. Food Sci. Nutr. 2022, 10, 751–762. [Google Scholar] [CrossRef] [PubMed]
- Kose, Y.E.; Altun, I.; Kose, S. Determination of Texture Profile Analysis of Yogurt Produced By Industrial and Traditional Method. Int. J. Sci. Technol. Res. 2018, 4, 66–70. [Google Scholar]
- Sain, M.; Minz, P.; Arijit, R. Characterization of Physical Attributes and Texture Profile Analysis of Buffalo Milk Yogurt. Indian J. Hill Farming 2023, 36, 216–225. [Google Scholar] [CrossRef]
- Nishinari, K.; Fang, Y.; Rosenthal, A. Human Oral Processing and Texture Profile Analysis Parameters: Bridging the Gap between the Sensory Evaluation and the Instrumental Measurements. J. Texture Stud. 2019, 50, 369–380. [Google Scholar] [CrossRef]
- Ozdal, T.; Capanoglu, E.; Altay, F. A Review on Protein-Phenolic Interactions and Associated Changes. Food Res. Int. 2013, 51, 954–970. [Google Scholar] [CrossRef]
- Giraldo, J.; Igualada, C.; Cabizza, R.; Althaus, R.L.; Beltrán, M.C. Transfer of Antibiotics from Goat’s Milk to Rennet Curd and Whey Fractions during Cheese-Making. Food Chem. 2022, 392, 133218. [Google Scholar] [CrossRef] [PubMed]
- Kneifel, W.; Jaros, D.; Erhard, F. Microflora and Acidification Properties of Yogurt and Yogurt-Related Products Fermented with Commercially Available Starter Cultures. Int. J. Food Microbiol. 1993, 18, 179–189. [Google Scholar] [CrossRef]
- CXS 243-2003; Standard for Fermented Milks. Adopted in 2003. Revised in 2008, 2010, 2018. Amended in 2022 and 2024. Codex Alimentarius Commission: Rome, Italy, 2018.
- Asensio-Vegas, C.; Tiwari, B.; Gredilla, A.E.; Bueno, F.; Delgado, D.; Martín-Diana, A.B. Development of Yoghurt from Ovine Milk with Enhanced Texture and Flavour Properties. Int. J. Dairy Technol. 2018, 71, 112–121. [Google Scholar] [CrossRef]
- Peker, H.; Arslan, S. Effect of Olive Leaf Extract on the Quality of Low Fat Apricot Yogurt. J. Food Process. Preserv. 2017, 41, e13107. [Google Scholar] [CrossRef]
- Servili, M.; Rizzello, C.G.; Taticchi, A.; Esposto, S.; Urbani, S.; Mazzacane, F.; Di Maio, I.; Selvaggini, R.; Gobbetti, M.; Di Cagno, R. Functional Milk Beverage Fortified with Phenolic Compounds Extracted from Olive Vegetation Water, and Fermented with Functional Lactic Acid Bacteria. Int. J. Food Microbiol. 2011, 147, 45–52. [Google Scholar] [CrossRef]
- Salman, K.H.; Mehany, T.; Zaki, K.G.; Al-Doury, M.K.W. Development of Functional Probiotic Yogurt from Buffalo Milk Supplemented with Red Beetroot (Beta vulgaris L.) as an Antioxidant, Natural Colorant, and Starter Growth Stimulant. Food Chem. Adv. 2024, 5, 100776. [Google Scholar] [CrossRef]
Parameters | a Values |
---|---|
Moisture (g/100 g) | 6.48 ± 0.26 |
Ash (g/100 g DW) | 5.08 ± 0.02 |
Lipids (g/100 g DW) | 16.53 ± 0.66 |
C (%) | 55.39 ± 1.58 |
H (%) | 7.56 ± 0.21 |
N (%) | 0.97 ± 0.02 |
† Estimated protein (%) | 6.06 ± 0.13 |
‡ Estimated digestible carbohydrates (%) | 9.19 |
aw (%) | 0.45 ± 0.00 |
Total Dietary Fiber (g/100 g DW) | 63.14 ± 0.39 |
TPC (g GAE/kg DW) | 23.65 ± 1.19 |
ABTS (µmol TE/g DW) | 130.26 ± 3.65 |
L* | 37.75 ± 0.44 |
a* | 5.43 ± 0.15 |
b* | 13.62 ± 0.74 |
Sample | Initial pH | Time pH 4.67 (h, min) | kpH x (10−2) (h−1) | R2 |
---|---|---|---|---|
YC | 6.53 a ± 0.02 | 5 h 14 a min ± 39 min | 8.40 a ± 0.42 | 0.94 |
YOPA | 6.51 a ± 0.03 | 5 h 05 a min ± 31 min | 8.95 a ± 0.49 | 0.96 |
YOPB | 6.41 b ± 0.01 | 4 h 53 a min ± 37 min | 7.75 a ± 0.21 | 0.93 |
Sample | Flow Behavior Index (n) | Consistency Index (K) (Pa·sⁿ) | Apparent Viscosity ηₐ, 50 (Pa·s) | Casson Yield Stress σac (Pa) |
---|---|---|---|---|
YC | −0.92 a ± 0.03 | 15.86 a ± 2.40 | 0.48 c ± 0.02 | 1.90 a ± 0.03 |
YOPA | −0.81 b ± 0.03 | 10.74 b ± 2.48 | 0.53 b ± 0.05 | 1.77 c ± 0.05 |
YOPB | −0.85 c ± 0.01 | 16.31 a ± 1.22 | 0.67 a ± 0.02 | 1.84 b ± 0.01 |
Sample | Storage Modulus (G′) | Loss Modulus (G″) | Complex Viscosity η* | Tan δ |
---|---|---|---|---|
YC | 324.37 a ± 59.80 | 93.83 a ± 16.93 | 46.10 a ± 8.44 | 0.29 a ± 0.02 |
YOPA | 207.99 b ± 32.95 | 58.83 b ± 19.15 | 29.55 b ± 4.90 | 0.28 a ± 0.06 |
YOPB | 251.46 b ± 34.36 | 79.33 a ± 11.32 | 35.24 b ± 3.57 | 0.32 a ± 0.04 |
Sample | Firmness (N) | Work of Shear (N·s) | Work of Adhesion (N·s) | Stickiness (N) |
---|---|---|---|---|
YC | 0.43 a ± 0.03 | 6.12 a ± 0.46 | −2.97 b ± 0.50 | −0.15 b ± 0.02 |
YOPA | 0.39 b ± 0.04 | 5.48 b ± 0.54 | −1.96 a ± 0.47 | −0.12 a ± 0.02 |
YOPB | 0.44 a ± 0.04 | 6.21 a ± 0.52 | −3.23 b ± 0.74 | −0.16 b ± 0.02 |
Sample | L* | a* | b* | C | h° |
---|---|---|---|---|---|
YC | 65.32 a ± 0.45 | −3.42 b ± 0.03 | 6.05 b ± 0.13 | 6.94 b ± 0.11 | 119.43 a ± 0.65 |
YOPB | 58.29 b ± 0.19 | −0.42 a ± 0.03 | 7.58 a ± 0.15 | 7.59 a ± 0.15 | 93.13 b ± 0.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carboni, A.; Cabizza, R.; Urgeghe, P.P.; Fancello, F.; Zara, S.; Del Caro, A. Effects of Olive Pomace Powder Incorporation on Physicochemical, Textural, and Rheological Properties of Sheep Milk Yogurt. Foods 2025, 14, 3118. https://doi.org/10.3390/foods14173118
Carboni A, Cabizza R, Urgeghe PP, Fancello F, Zara S, Del Caro A. Effects of Olive Pomace Powder Incorporation on Physicochemical, Textural, and Rheological Properties of Sheep Milk Yogurt. Foods. 2025; 14(17):3118. https://doi.org/10.3390/foods14173118
Chicago/Turabian StyleCarboni, Angela, Roberto Cabizza, Pietro Paolo Urgeghe, Francesco Fancello, Severino Zara, and Alessandra Del Caro. 2025. "Effects of Olive Pomace Powder Incorporation on Physicochemical, Textural, and Rheological Properties of Sheep Milk Yogurt" Foods 14, no. 17: 3118. https://doi.org/10.3390/foods14173118
APA StyleCarboni, A., Cabizza, R., Urgeghe, P. P., Fancello, F., Zara, S., & Del Caro, A. (2025). Effects of Olive Pomace Powder Incorporation on Physicochemical, Textural, and Rheological Properties of Sheep Milk Yogurt. Foods, 14(17), 3118. https://doi.org/10.3390/foods14173118