Noble Metal-Based Nanocomposites for Surface-Enhanced Raman Spectroscopy Detection of Food Contaminants
Abstract
1. Introduction
2. SERS-Active Substrate Materials
2.1. Monometallic Substrates
2.2. Bimetallic Substrates
2.3. Metal-Nonmetal Composite Substrates
3. Applications of Noble Metal-Based Nanocomposites for SERS Detection of Food Contaminants
3.1. Biotoxins
3.2. Pesticides and Veterinary Residues
3.3. Illegal Food Additives
3.4. Foodborne Pathogens
3.5. Heavy Metal Ions
4. Challenges and Future Perspectives
- (1)
- Material stability and detection reproducibility: The stability of noble metal NPs, which directly influences the reproducibility and reliability of SERS detection strategies, is affected by the preparation techniques and storage conditions. Due to their high surface energy and susceptibility to oxidation, these NPs are prone to aggregation in complex matrices or during storage, leading to weakened SPR effects and diminished SERS signals. Consequently, developing reproducible and robust chemical production schemes is essential to address this challenge. Noble metal composites offer a key advantage over single materials. They provide a multifunctional platform that improves SERS reproducibility, interference resistance, and robustness. Moreover, immobilizing NPs onto porous supports via covalent bonding or coordination interactions can effectively prevent aggregation. Precise control over nanoparticle size monodispersity is crucial for the fabrication of reproducible and reliable SERS substrates. Therefore, when designing SERS substrates for food contaminants, the size of the metallic nanoparticles must be carefully tailored to achieve optimal analytical performance.
- (2)
- Specificity in complex systems: The co-existence of multiple contaminants in food, including structurally similar compounds, makes accurate discrimination difficult when relying solely on non-specific adsorption onto noble metal nanomaterials. To address this limitation, the integration of recognition elements (e.g., antibodies, aptamers, MIPs) or microfluidic devices can significantly improve the sensitivity and selectivity of quantitative detection for target molecules. Additionally, improving signal resolution by combining SERS with advanced techniques, such as confocal micro-Raman or surface-enhanced resonance Raman spectroscopy followed by data analysis using partial least squares-discriminant analysis (PLS-DA) or deep learning algorithms to extract characteristic features from overlapping peaks, represents a promising strategy.
- (3)
- Mitigation of matrix interference: The complexity of food matrices can cause severe interference in SERS detection, potentially masking target signals and impeding accurate identification and quantification. External sample pretreatment, such as dilution, centrifugation, organic solvent extraction, or SPE, can also be utilized to purify and concentrate target analytes. On the other hand, a viable solution involves the development of targeted purification materials with high adsorption capacity. These materials can selectively capture target analytes through surface-specific interactions, such as molecular imprinting or coordination binding within porous framework structures, thereby minimizing the matrix contact area and interference.
- (4)
- Scalable and cost-effective fabrication: There is an urgent need to develop scalable and cost-effective nanomaterial manufacturing techniques. The key lies in the selection of straightforward and environmentally benign synthesis approaches and the exploration of integration strategies compatible with existing commercial technologies, both of which offer substantial potential for reducing production costs. Flexible SERS substrates, due to their portability and versatility, are particularly well-suited for large-scale practical applications.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kirk, M.D.; Pires, S.M.; Black, R.E.; Caipo, M.; Crump, J.A.; Devleesschauwer, B.; Döpfer, D.; Fazil, A.; Fischer-Walker, C.L.; Hald, T.; et al. World Health Organization Estimates of the Global and Regional Disease Burden of 22 Foodborne Bacterial, Protozoal, and Viral Diseases, 2010: A Data Synthesis. PLoS Med. 2015, 12, e1001921. [Google Scholar] [CrossRef]
- Li, H.; Meng, M.; Cao, J.; Hu, X.; Wang, H.; Pan, M.; Wang, S. Review: Nanozyme-based point-of-care testing for portable and on-site monitoring of food contaminants. Trends Food Sci. Technol. 2025, 161, 105062. [Google Scholar] [CrossRef]
- Li, H.; Yang, J.; Hu, X.; Han, R.; Wang, S.; Pan, M. Portable smartphone-assisted fluorescence-colorimetric multidimensional immunosensing microarray based on NH2-UiO-66@PtNPs multifunctional composite for efficient and visual detection of amantadine. Chem. Eng. J. 2023, 473, 145401. [Google Scholar] [CrossRef]
- Zhang, M.; Li, Y.; Zhang, Y.; Kang, C.; Zhao, W.; Ren, N.; Guo, W.; Wang, S. Rapid LC-MS/MS method for the detection of seven animal species in meat products. Food Chem. 2022, 371, 131075. [Google Scholar] [CrossRef] [PubMed]
- Anwarul Hasan, G.M.M.; Das, A.K.; Satter, M.A. Multi residue analysis of organochlorine pesticides in fish, milk, egg and their feed by GC-MS/MS and their impact assessment on consumers health in Bangladesh. NFS J. 2022, 27, 28–35. [Google Scholar] [CrossRef]
- Morsi, R.; Ghoudi, K.; Elabyad, B.; Kadoura, Z.; Zeidane, H.; Al-Meetani, B.; Meetani, M.A. HPLC-MS/MS monitoring and health risk assessment of carbosulfan and its metabolites in date palm fruit (Phoenix dactylifera). Sci. Rep. 2024, 14, 28047. [Google Scholar] [CrossRef]
- Singh, J.; Birbian, N.; Sinha, S.; Goswami, A. A critical review on PCR, its types and applications. Int. J. Adv. Res. Biol. Sci. 2014, 1, 65–80. [Google Scholar]
- Kudelski, A. Analytical applications of Raman spectroscopy. Talanta 2008, 76, 1–8. [Google Scholar] [CrossRef]
- Das, R.S.; Agrawal, Y.K. Raman spectroscopy: Recent advancements, techniques and applications. Vib. Spectrosc. 2011, 57, 163–176. [Google Scholar] [CrossRef]
- Fleischmann, M.; Hendra, P.J.; McQuillan, A.J. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 1974, 26, 163–166. [Google Scholar] [CrossRef]
- Jeanmaire, D.L.; Van Duyne, R.P. Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem. Interfacial Electrochem. 1977, 84, 1–20. [Google Scholar] [CrossRef]
- Lee, S.; Dang, H.; Moon, J.-I.; Kim, K.; Joung, Y.; Park, S.; Yu, Q.; Chen, J.; Lu, M.; Chen, L.; et al. SERS-based microdevices for use as in vitro diagnostic biosensors. Chem. Soc. Rev. 2024, 53, 5394–5427. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Hao, Q.; Hou, X.; Lan, L.; Li, M.; Yao, L.; Zhao, X.; Ni, Z.; Fan, X.; Qiu, T. Exploring and engineering 2D transition metal dichalcogenides toward ultimate SERS performance. Adv. Mater. 2024, 36, 2312348. [Google Scholar] [CrossRef]
- Awiaz, G.; Lin, J.; Wu, A. Recent advances of Au@Ag core-shell SERS-based biosensors. Exploration 2023, 3, 2022007. [Google Scholar] [CrossRef] [PubMed]
- Terzapulo, X.; Kassenova, A.; Bukasov, R. Immunoassays: Analytical and clinical performance, challenges, and perspectives of SERS detection in comparison with fluorescent spectroscopic detection. Int. J. Mol. Sci. 2024, 25, 2080. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Mao, Y.; Wang, T.; Ma, L.; Cao, J.; Xie, B.; Wei, J.; Li, P. Evolving trends in nanozyme-based SERS systems for food contaminant monitoring: A review. Food Chem. 2025, 486, 144621. [Google Scholar] [CrossRef]
- Gu, Y.; Pu, X.; Chen, J.; Yi, L.; Bi, J.; Duan, F.; Ge, K. Recent advances of MOF-based SERS substrates in quantitative analysis of food contaminants: A review. Analyst 2024, 149, 4997–5013. [Google Scholar] [CrossRef]
- Dong, Y.; Hu, J.; Jin, J.; Zhou, H.; Jin, S.; Yang, D. Advances in machine learning-assisted SERS sensing towards food safety and biomedical analysis. TrAC Trends Anal. Chem. 2024, 180, 117974. [Google Scholar] [CrossRef]
- Wei, Q.; Dong, Q.; Pu, H. Multiplex surface-enhanced Raman scattering: An emerging tool for multicomponent detection of food contaminants. Biosensors 2023, 13, 296. [Google Scholar] [CrossRef]
- Liu, L.; Wang, Y.; Xue, Z.; Peng, B.; Kou, X.; Gao, Z. Research progress of dual-mode sensing technology strategy based on SERS and its application in the detection of harmful substances in foods. Trends Food Sci. Technol. 2024, 148, 104487. [Google Scholar] [CrossRef]
- Huang, Z.K.; Peng, J.P.; Xu, L.G.; Liu, P.J. Development and application of surface-enhanced Raman scattering (SERS). Nanomaterials 2024, 14, 1417. [Google Scholar] [CrossRef] [PubMed]
- Cai, Q.; Gan, W.; Falin, A.; Watanabe, K.; Taniguchi, T.; Zhuang, J.; Hao, W.; Huang, S.; Tao, T.; Chen, Y. Two-dimensional van der waals heterostructures for synergistically improved surface-enhanced Raman spectroscopy. ACS Appl. Mater. Interfaces 2020, 12, 21985–21991. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Cai, H.; Zhang, W.; Li, X.; Pan, N.; Luo, Y.; Wang, X.; Hou, J. Tuning chemical enhancement of SERS by controlling the chemical reduction of graphene oxide nanosheets. ACS Nano 2011, 5, 952–958. [Google Scholar] [CrossRef] [PubMed]
- Pilot, R.; Signorini, R.; Durante, C.; Orian, L.; Bhamidipati, M.; Fabris, L. A review on surface-enhanced Raman scattering. Biosensors 2019, 9, 57. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, X.; Chang, Y.; Guo, J.; Wang, C. Sensitive and handy detection of pesticide residue on fruit surface based on single microsphere surface-enhanced Raman spectroscopy technique. J. Colloid Interface Sci. 2022, 628, 116–128. [Google Scholar] [CrossRef]
- Jiao, A.; Dong, X.; Zhang, H.; Xu, L.; Tian, Y.; Liu, X.; Chen, M. Construction of pure worm-like AuAg nanochains for ultrasensitive SERS detection of pesticide residues on apple surfaces. Spectrochim. Acta Part A 2019, 209, 241–247. [Google Scholar] [CrossRef]
- Pan, H.; Ahmad, W.; Jiao, T.; Zhu, A.; Ouyang, Q.; Chen, Q. Label-free Au NRs-based SERS coupled with chemometrics for rapid quantitative detection of thiabendazole residues in citrus. Food Chem. 2022, 375, 131681. [Google Scholar] [CrossRef]
- Zhao, Y.X.; Kang, H.S.; Zhao, W.Q.; Chen, Y.L.; Ma, L.; Ding, S.J.; Chen, X.B.; Wang, Q.Q. Dual plasmon resonances and tunable electric field in structure-adjustable Au nanoflowers for improved SERS and photocatalysis. Nanomaterials 2021, 11, 2176. [Google Scholar] [CrossRef]
- Wu, H.; Luo, Y.; Hou, C.; Huo, D.; Zhou, Y.; Zou, S.; Zhao, J.; Lei, Y. Flexible bipyramid-AuNPs based SERS tape sensing strategy for detecting methyl parathion on vegetable and fruit surface. Sens. Actuators B Chem. 2019, 285, 123–128. [Google Scholar] [CrossRef]
- Sherpa, L.; Nimmala, A.; Rao, S.V.S.N.; Khan, S.A.; Pathak, A.P.; Tripathi, A.; Tiwari, A. Refining shape and size of silver nanoparticles using ion irradiation for enhanced and homogeneous SERS activity. Discov. Nano 2024, 19, 51. [Google Scholar] [CrossRef]
- Luo, S.; Mancini, A.; Wang, F.; Liu, J.; Maier, S.A.; De Mello, J. High-throughput fabrication of triangular nanogap arrays for surface-enhanced Raman spectroscopy. ACS Nano 2022, 16, 7438–7447. [Google Scholar] [CrossRef]
- Yao, L.; Ouyang, L.; Lv, J.; Dai, P.; Zhu, L. Rapid and sensitive SERS detection of food contaminants by using nano-Ag aggregates with controllable hydrophobicity. Microchem. J. 2021, 166, 106221. [Google Scholar] [CrossRef]
- Hassan, M.M.; Zareef, M.; Jiao, T.; Liu, S.; Xu, Y.; Viswadevarayalu, A.; Li, H.; Chen, Q. Signal optimized rough silver nanoparticle for rapid SERS sensing of pesticide residues in tea. Food Chem. 2021, 338, 127796. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Hu, L.; Ding, F.; Liu, J.; Su, J.; Tu, K.; Peng, J.; Lan, W.; Pan, L. Introducing high-performance star-shaped bimetallic nanotags into SERS aptasensor: An ultrasensitive and interference-free method for chlorpyrifos detection. Biosens. Bioelectron. 2024, 263, 116577. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Zhou, L.; Zhang, S.; Wang, Z.; Yang, W.; Guo, Q.; Wang, Z.; Chen, J. Facile fabrication of Au-Ag alloy nanoparticles/Ag nanowires SERS substrates with bimetallic synergistic effect for ultra-sensitive detection of crystal violet and alkali blue 6B. Spectrochim. Acta Part A 2025, 324, 124981. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Pan, M.; Liu, K.; Xie, X.; Wang, S.; Hong, L.; Wang, S. Core-shell AuNRs@Ag-enhanced and magnetic separation-assisted SERS immunosensing platform for amantadine detection in animal-derived foods. Sens. Actuators B Chem. 2021, 349, 130783. [Google Scholar] [CrossRef]
- Chen, Z.; Sun, Y.; Shi, J.; Zhang, W.; Zhang, X.; Huang, X.; Zou, X.; Li, Z.; Wei, R. Facile synthesis of Au@Ag core–shell nanorod with bimetallic synergistic effect for SERS detection of thiabendazole in fruit juice. Food Chem. 2022, 370, 131276. [Google Scholar] [CrossRef]
- Xu, Y.; Hassan, M.M.; Zhu, A.; Li, H.; Chen, Q. Dual-mode of magnetic assisted Au@Ag SERS tags and cationic conjugated UCNPs for qualitative and quantitative analysis of multiple foodborne pathogens. Sens. Actuators B Chem. 2021, 344, 130305. [Google Scholar] [CrossRef]
- Hassan, M.M.; He, P.; Xu, Y.; Zareef, M.; Li, H.; Chen, Q. Rapid detection and prediction of chloramphenicol in food employing label-free HAu/Ag NFs-SERS sensor coupled multivariate calibration. Food Chem. 2022, 374, 131765. [Google Scholar] [CrossRef]
- Guo, H.; Li, H.J.; Xu, M.Y.; Zhou, J.; Zhang, D.; Wang, D.D.; Sun, W. Flexible Au@Ag/PDMS SERS imprinted membrane combined with molecular imprinting technology for selective detection of MC-LR. Spectrochim. Acta Part A 2025, 327, 125393. [Google Scholar] [CrossRef]
- Liu, Y.; Dang, A.; Liu, X.; Han, Y.; Chen, J.; Zada, A.; Sun, Y.; Yuan, Z.; Luo, F.; Li, T.; et al. Synergistic resonances and charge transfer in double-shelled ZnO hollow microspheres for high-performance semiconductorb based SERS substrates. ACS Appl. Nano Mater. 2024, 7, 10104–10113. [Google Scholar] [CrossRef]
- Chang, W.-R.; Hsiao, C.; Chen, Y.-F.; Kuo, C.-F.J.; Chiu, C.-W. Au nanorods on carbon-based nanomaterials as nanohybrid substrates for high-efficiency dynamic surface-enhanced Raman scattering. ACS Omega 2022, 7, 41815–41826. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Wu, C.; He, X.; Zhang, L.; Gong, X.; Ren, W.; Lv, S.; Zhang, X.; Liu, A.; Huang, Y. Single AgNF@ZIF-8 nanoparticle for deep learning assisted SERS detection of gaseous molecule. Surf. Interfaces 2024, 48, 104232. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, H.; Tian, Y.; Jiao, A.; Chen, F.; Chen, M. Photochemical synthesis of ZnO@Au nanorods as an advanced reusable SERS substrate for ultrasensitive detection of light-resistant organic pollutant in wastewater. Talanta 2019, 194, 680–688. [Google Scholar] [CrossRef] [PubMed]
- Fueaimi, P.; Leeladee, P.; Sapcharoenkun, C.; Treetong, A.; Wutikhun, T.; Kasamechonchung, P.; Chanpeng, K.; Klamchuen, A.; Tuntulani, T. A facile and controllable method to fabricate Ag nanofilaments from β-silver sulfide for highly sensitive SERS substrates. Nano-Struct. Nano-Objects 2021, 26, 100748. [Google Scholar] [CrossRef]
- Kumar, E.A.; Wang, T.-J.; Chang, Y.-H. Ultrasensitive SERS substrates based on Au nanoparticles photo-decorated on Cu2O microspheres for the detection of rhodamine B and methylene blue. Appl. Surf. Sci. 2022, 585, 152696. [Google Scholar] [CrossRef]
- Wu, T.; Zheng, H.; Kou, Y.; Su, X.; Kadasala, N.R.; Gao, M.; Chen, L.; Han, D.; Liu, Y.; Yang, J. Self-sustainable and recyclable ternary Au@Cu2O–Ag nanocomposites: Application in ultrasensitive SERS detection and highly efficient photocatalysis of organic dyes under visible light. Microsyst. Nanoeng. 2021, 7, 23. [Google Scholar] [CrossRef]
- Tiwari, M.; Singh, A.; Dureja, S.; Basu, S.; Pattanayek, S. Au nanoparticles decorated ZnO/ZnFe2O4 composite SERS-active substrate for melamine detection. Talanta 2022, 236, 122819. [Google Scholar] [CrossRef]
- Yang, J.; Pan, M.; Yang, X.; Liu, K.; Song, Y.; Wang, S. Effective adsorption and in-situ SERS detection of multi-target pesticides on fruits and vegetables using bead-string like Ag NWs@ZIF-8 core-shell nanochains. Food Chem. 2022, 395, 133623. [Google Scholar] [CrossRef]
- Kong, L.; Chen, J.; Huang, M. GO/Au@Ag nanobones decorated membrane for simultaneous enrichment and on-site SERS detection of colorants in beverages. Sens. Actuators B Chem. 2021, 344, 130163. [Google Scholar] [CrossRef]
- Ding, Y.; Cheng, Y.; Hao, B.; Zhu, L.; Zhang, N.; Zhao, B.; Tian, Y. Metal–organic framework modified by silver nanoparticles for SERS-based determination of sildenafil and pioglitazone hydrochloride. Microchim. Acta 2021, 188, 351. [Google Scholar] [CrossRef]
- Huyen, N.T.; Ngan, L.T.Q.; Xuan, L.T.Q.; Suong, T.A.S.; Thanh, C.T.; Tu, N.V.; Binh, P.T.; Tan, T.V.; Tuyen, N.V.; Cao, D.T.; et al. Reduced graphene oxide-carbon nanotubes nanocomposites-decorated porous silver nanodendrites for highly efficient SERS sensing. Opt. Mater. 2025, 162, 116935. [Google Scholar] [CrossRef]
- Zhang, L.; Yin, M.; Li, J.; Wei, G.; Bai, H.; Xi, G.; Mao, L. Directly convert carbonaceous microspheres to three-dimensional porous carbon microspheres with a robust self-supporting structure as a metal-free SERS substrate for online high-throughput analysis. Anal. Chem. 2022, 94, 13659–13666. [Google Scholar] [CrossRef]
- Li, S.; Li, Z.; Hao, Q.; Wang, S.; Yang, Y.; Xu, J.; Yin, Z.; Zhang, L.; Chen, Z. Ultrastable graphene isolated AuAg nanoalloy for SERS biosensing and photothermal therapy of bacterial infection. Chin. Chem. Lett. 2024, 35, 108636. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, J.; Wang, B.; Geng, Y.; Wang, Z. A new strategy for constructing 3D hybrid graphene/Au/rectangular pyramids PMMA on a flexible SERS substrate for trace molecule detection. Sens. Actuators B Chem. 2024, 410, 135711. [Google Scholar] [CrossRef]
- Shanta, P.V.; Cheng, Q.J.A.S. Graphene oxide nanoprisms for sensitive detection of environmentally important aromatic compounds with SERS. ACS Sens. 2017, 2, 817–827. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhang, J.; Wang, D.; Wang, J.; Jiang, W.; Zhou, T.; Liu, C.; Che, G. Synthesization of flexible SERS imprinted sensor based on Ag/GO composites and selective detection of antibiotic in aqueous sample. Adv. Powder Technol. 2021, 32, 3405–3411. [Google Scholar] [CrossRef]
- Long, Y.; Wang, W.; Xiong, W.; Li, H. Hybrid structure design, preparation of Ag-GO SERS optical fiber probe and its chemical, electromagnetic enhancement mechanism. J. Alloys Compd. 2022, 901, 163660. [Google Scholar] [CrossRef]
- He, J.; Song, G.; Wang, X.; Zhou, L.; Li, J. Multifunctional magnetic Fe3O4/GO/Ag composite microspheres for SERS detection and catalytic degradation of methylene blue and ciprofloxacin. J. Alloys Compd. 2022, 893, 162226. [Google Scholar] [CrossRef]
- Gokulakrishnan, J.; Koppole, K.; Rugmini, R.; Sekhar, K.C. Green synthesis of carbon dots-functionalized silver nanoparticles for SERS-based detection of thiram fungicide. Appl. Phys. A Mater. 2023, 129, 778. [Google Scholar] [CrossRef]
- Zhao, X.; Li, Q.; Li, H.; Wang, Y.; Xiao, F.; Yang, D.; Xia, Q.; Yang, Y. SERS detection of Hg2+ and aflatoxin B1 through on-off strategy of oxidase-like Au@HgNPs/carbon dots. Food Chem. 2023, 424, 136443. [Google Scholar] [CrossRef]
- Luo, P.; Li, C.; Shi, G. Synthesis of gold@carbon dots composite nanoparticles for surface enhanced Raman scattering. Phys. Chem. Chem. Phys. 2012, 14, 7360–7366. [Google Scholar] [CrossRef]
- Bhunia, S.K.; Zeiri, L.; Manna, J.; Nandi, S.; Jelinek, R. Carbon-dot/silver-nanoparticle flexible SERS-active films. ACS Appl. Mater. Interfaces 2016, 8, 25637–25643. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Du, B.; Wang, Q.; Zhang, J.; Zhu, X.; Lin, Z.; Dong, Y.; Fu, F.; Yu, T. Tuning the aggregation of silver nanoparticles with carbon dots for the surface-enhanced Raman scattering application. Carbon 2021, 185, 442–448. [Google Scholar] [CrossRef]
- Zhang, C.; You, T.; Yang, N.; Gao, Y.; Jiang, L.; Yin, P. Hydrophobic paper-based SERS platform for direct-droplet quantitative determination of melamine. Food Chem. 2019, 287, 363–368. [Google Scholar] [CrossRef] [PubMed]
- Pham, T.B.; Hoang, T.H.C.; Vu, D.C.; Bui, H.; Pham, V. Improved versatile SERS spheroid end-facet optical fiber substrate based on silver nano-dendrites directly planted with gold nanoparticles using dual-laser assisted for pesticides detection. Opt. Mater. 2022, 126, 112196. [Google Scholar] [CrossRef]
- Asgari, S.; Sun, L.; Lin, J.; Weng, Z.; Wu, G.; Zhang, Y.; Lin, M. Nanofibrillar cellulose/Au@Ag nanoparticle nanocomposite as a SERS substrate for detection of paraquat and thiram in lettuce. Microchim. Acta 2020, 187, 390. [Google Scholar] [CrossRef]
- Xu, F.; Shang, W.; Xuan, M.; Ma, G.; Ben, Z. Layered filter paper-silver nanoparticle-ZIF-8 composite for efficient multi-mode enrichment and sensitive SERS detection of thiram. Chemosphere 2022, 288, 132635. [Google Scholar] [CrossRef]
- Chuesiang, P.; Ryu, V.; Siripatrawan, U.; He, L.; McLandsborough, L. Aptamer-based surface enhanced Raman spectroscopy (SERS) for the rapid detection of Salmonella Enteritidis contaminated in ground beef. LWT 2021, 150, 111937. [Google Scholar] [CrossRef]
- Song, Y.; Ma, Z.; Fang, H.; Zhang, Q.; Zhou, Q.; Chen, Z.; Yang, H.; Wang, F. Au sputtered paper chromatography tandem Raman platform for sensitive detection of heavy metal ions. ACS Sens. 2020, 5, 1455–1464. [Google Scholar] [CrossRef]
- Ma, X.; Shao, B.; Wang, Z. Gold@silver nanodumbbell based inter-nanogap aptasensor for the surface enhanced Raman spectroscopy determination of ochratoxin A. Anal. Chim. Acta 2021, 1188, 339189. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Zhao, J.; Ma, T.; Li, Z.; Wang, L.L.; Ji, S.L.; Sun, M.Y.; Liu, Y.S.; Hu, Z.H.; Liu, Q.W.; et al. Magnetic covalent organic framework for effective solid-phase extraction and HPLC determination of ochratoxin A in food. LWT 2023, 179, 114639. [Google Scholar] [CrossRef]
- He, X.; He, Y.Y.; Li, C.N.; Jiang, Z.L. A new di-recognition and di-functional nanosurface aptamer molecularly imprinted polymer probe for trace glyphosate with SERS/RRS/Abs trimode technique. Biosens. Bioelectron. 2024, 261, 116487. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.; Tu, Z.; Zheng, S.; Cheng, X.; Han, H.; Wang, C.; Xiao, R.; Gu, B. An efficient SERS platform for the ultrasensitive detection of Staphylococcus aureus and Listeria monocytogenes via wheat germ agglutinin-modified magnetic SERS substrate and streptavidin/aptamer co-functionalized SERS tags. Anal. Chim. Acta 2021, 1187, 339155. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Q.; Zhang, R.; Tang, K.; Ding, C.; Yu, S. SERS-based immunocapture and detection of pathogenic bacteria using a boronic acid-functionalized polydopamine-coated Au@Ag nanoprobe. Microchim. Acta 2020, 187, 290. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, Y.; Wang, P.; Cheng, J. Hydrogen-bonded organic framework-based core shell structures via a pore confinement control strategy for high performance SERS sensing. Chem. Eng. J. 2024, 499, 156559. [Google Scholar] [CrossRef]
- Xing, H.; Zheng, B.; Li, X.; Dang, X.; Zhang, H.; Tian, F.; Hu, X. Sensitive SERS detection of melamine and cyromazine in raw milk using aptamer-based in situ silver nanoparticles synthesis. Results Chem. 2022, 4, 100266. [Google Scholar] [CrossRef]
- Duan, N.; Qi, S.; Guo, Y.; Xu, W.; Wu, S.; Wang, Z. Fe3O4@Au@Ag nanoparticles as surface-enhanced Raman spectroscopy substrates for sensitive detection of clenbuterol hydrochloride in pork with the use of aptamer binding. LWT 2020, 134, 110017. [Google Scholar] [CrossRef]
- Liu, Y.; Lei, L.; Wu, Y.; Chen, Y.; Yan, J.; Zhu, W.; Tan, X.; Wang, Q. Fabrication of sea urchin-like Au@SiO2 nanoparticles SERS substrate for the determination of malachite green in tilapia. Vib. Spectrosc. 2022, 118, 103319. [Google Scholar] [CrossRef]
- Zhou, Z.; Xiao, R.; Cheng, S.; Wang, S.; Shi, L.; Wang, C.; Qi, K.; Wang, S. A universal SERS-label immunoassay for pathogen bacteria detection based on Fe3O4@Au-aptamer separation and antibody-protein A orientation recognition. Anal. Chim. Acta 2021, 1160, 338421. [Google Scholar] [CrossRef] [PubMed]
- Dai, H.; Zhang, Y.; Zhao, W.; Guo, R.; Qian, S.; Xu, Y.; Li, Y.; Liu, Y.; Liu, H. A multifunctional biosensor for selective identification, sensitive detection and efficient photothermal sterilization of Salmonella typhimurium and Staphylococcus aureus. Anal. Chim. Acta 2025, 1338, 343589. [Google Scholar] [CrossRef] [PubMed]
- Kamal, S.; Yang, T.C.-K. Silver enriched silver phosphate microcubes as an efficient recyclable SERS substrate for the detection of heavy metal ions. J. Colloid Interf. Sci. 2022, 605, 173–181. [Google Scholar] [CrossRef]
- Parveen, S.; Saifi, S.; Akram, S.; Husain, M.; Zulfequar, M. ZnO nanoparticles functionalized SWCNTs as highly sensitive SERS substrate for heavy metal ions detection. Mater. Sci. Semicond. Process. 2022, 149, 106852. [Google Scholar] [CrossRef]
- He, Z.J.; Hu, J.Y.; Zhong, J.; Long, Y.C.; Shen, J.D.; Chen, S.; Ou, W.H.; Liu, Q.Y.; Lu, J.; Lou, Z.Z.; et al. Plasmonic MOF for highly selective SERS sensing of trace Mercury (II) in complex matrices. Small 2025, 21, 2409988. [Google Scholar] [CrossRef]
- Parak, M.; Asgari, A.; Nourian, Y.H.; Ghanei, M. A review of poisoning with various types of biotoxins and its common clinical symptoms. Toxicon 2024, 240, 107629. [Google Scholar] [CrossRef]
- Tang, X.; Zuo, J.; Yang, C.; Jiang, J.; Zhang, Q.; Ping, J.; Li, P. Current trends in biosensors for biotoxins (mycotoxins, marine toxins, and bacterial food toxins): Principles, application, and perspective. TrAC Trends Anal. Chem. 2023, 165. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, S.; Li, B.; Wu, L. Advances in multifunctional nanoagents and SERS-based multimodal sensing for biotoxin in foods. Foods 2025, 14, 1393. [Google Scholar] [CrossRef]
- Tang, X.; Jiang, H.; Wen, R.; Xue, D.; Zeng, W.; Han, Y.; Wu, L. Advancements and challenges on SERS-based multimodal biosensors for biotoxin detection. Trends Food Sci. Technol. 2024, 152, 104672. [Google Scholar] [CrossRef]
- Chen, Q.; Yang, M.; Yang, X.; Li, H.; Guo, Z.; Rahma, M.H. A large Raman scattering cross-section molecular embedded SERS aptasensor for ultrasensitive Aflatoxin B1 detection using CS- Fe3O4 for signal enrichment. Spectrochim. Acta Part A 2018, 189, 147–153. [Google Scholar] [CrossRef]
- He, H.; Sun, D.-W.; Pu, H.; Huang, L. Bridging Fe3O4@Au nanoflowers and Au@Ag nanospheres with aptamer for ultrasensitive SERS detection of aflatoxin B1. Food Chem. 2020, 324, 126832. [Google Scholar] [CrossRef]
- Wang, Q.; Ren, Y.; Li, S.; Wang, J. A dual-mode immunochromatographic sensor with photothermal and surface-enhanced Raman scattering for sensitive detection of aflatoxin B1. Microchem. J. 2024, 206, 111604. [Google Scholar] [CrossRef]
- Li, W.; Zhang, X.; Shi, Y.; Hu, X.T.; Wang, X.; Liang, N.N.; Shen, T.T.; Zou, X.B.; Shi, J.Y. A dual-modal biosensor coupling cooperative catalysis strategy for sensitive detection of AFB1 in agri-products. Food Chem. 2023, 426, 136553. [Google Scholar] [CrossRef]
- Adhikari, S.; Joshi, R.; Joshi, R.; Kim, M.; Jang, Y.; Tufa, L.T.; Gicha, B.B.; Lee, J.; Lee, D.; Cho, B.-K. Rapid and ultrasensitive detection of thiram and carbaryl pesticide residues in fruit juices using SERS coupled with the chemometrics technique. Food Chem. 2024, 457, 140486. [Google Scholar] [CrossRef]
- Yi, S.; Yang, M.; Yu, Y.; Li, Z.; Zhang, D.; Han, F.; Grishko, A.; Li, Y.; Qin, Q.; Zhou, B. Highly sensitive flexible SERS substrates with a sandwich structure for rapid detection of trace pesticide residues. Appl. Surf. Sci. 2024, 654, 159455. [Google Scholar] [CrossRef]
- Gains, K.K.K.; Roland, N.G.K.; Urbain, K.Y.; Ardjouma, D. Determination of the glyphosate content in liquid and dry formulations by HPLC-UV: Pre-column derivation with 9-Fluorenylmethyl chloroformate (FMOC). Chromatographia 2022, 85, 655–664. [Google Scholar] [CrossRef]
- Pu, J.; Tian, W.Y.; Shang, W.J.; Zhang, Y.; Ma, G.R.; Xu, F.G. Three-dimensional noble metal-metal organic framework composite as SERS substrate for efficient capture and detection of pesticides. Sens. Actuators B Chem. 2024, 419, 136457. [Google Scholar] [CrossRef]
- Duan, Y.; Chen, Y.; Lei, M.; Hou, C.; Li, X.; Chen, S.; Fang, K.; Wang, T. Hybrid silica material as a mixed-mode sorbent for solid-phase extraction of hydrophobic and hydrophilic illegal additives from food samples. J. Chromatogr. A 2022, 1672, 463049. [Google Scholar] [CrossRef]
- Ai, K.; Liu, Y.; Lu, L. Hydrogen-bonding recognition-induced color change of gold nanoparticles for visual detection of melamine in raw milk and infant formula. J. Am. Chem. Soc. 2009, 131, 9496–9497. [Google Scholar] [CrossRef]
- Dong, N.; Hu, Y.; Yang, K.; Liu, J. Development of aptamer-modified SERS nanosensor and oligonucleotide chip to quantitatively detect melamine in milk with high sensitivity. Sens. Actuators B Chem. 2016, 228, 85–93. [Google Scholar] [CrossRef]
- Abedini, R.; Khaniki, G.J.; Aghaee, E.M.; Sadighara, P.; Nazmara, S.; Akbari-Adergani, B.; Naderi, M. Determination of melamine contamination in chocolates containing powdered milk by high-performance liquid chromatography (HPLC). J. Environ. Health Sci. Eng. 2021, 19, 165–171. [Google Scholar] [CrossRef]
- Hu, J.; Zhan, C.; Xu, Z.; Shi, H.; Wang, H.; He, Y.; Ouyang, A. Research on highly sensitive detection of clenbuterol hydrochloride based on THz metamaterial enhancement. J. Food Meas. Charact. 2023, 17, 4627–4637. [Google Scholar] [CrossRef]
- Liu, J.; Liu, Z.B.; Huang, Q.; Lin, C.Q.; Lin, X. Highly sensitive fluorescent probe for clenbuterol hydrochloride detection based on its catalytic oxidation of eosine Y by NaIO4. J. Fluoresc. 2014, 24, 1495–1501. [Google Scholar] [CrossRef]
- Zhu, G.; Hu, Y.; Gao, J.; Zhong, L. Highly sensitive detection of clenbuterol using competitive surface-enhanced Raman scattering immunoassay. Anal. Chim. Acta 2011, 697, 61–66. [Google Scholar] [CrossRef]
- Cheng, J.; Wang, S.; Zhang, S.; Wang, P.; Xie, J.; Han, C.; Su, X.-O. Rapid and sensitive determination of clenbuterol residues in animal urine by surface-enhanced Raman spectroscopy. Sens. Actuators B Chem. 2019, 279, 7–14. [Google Scholar] [CrossRef]
- Lu, Y.K.; Xu, D.; Liu, W.Y.; Xie, J.; Lu, Y. A rapid tricolour immunochromatographic assay for simultaneous detection of tricaine and malachite green. Biosensors 2022, 12, 456. [Google Scholar] [CrossRef] [PubMed]
- Nebot, C.; Iglesias, A.; Barreiro, R.; Manuel Miranda, J.; Vazquez, B.; Manuel Franco, C.; Cepeda, A. A simple and rapid method for the identification and quantification of malachite green and its metabolite in hake by HPLC-MS/MS. Food Control 2013, 31, 102–107. [Google Scholar] [CrossRef]
- Ekmen, E.; Bilici, M.; Turan, E.; Tamer, U.; Zengin, A. Surface molecularly-imprinted magnetic nanoparticles coupled with SERS sensing platform for selective detection of malachite green. Sens. Actuators B Chem. 2020, 325, 128787. [Google Scholar] [CrossRef]
- Chen, S.; Zheng, H.; Yang, S.; Qi, Y.; Li, W.; Kang, S.; Hu, H.; Hua, Q.; Wu, Y.; Liu, Z. Antimicrobial activity and mechanism of α-copaene against foodborne pathogenic bacteria and its application in beef soup. LWT 2024, 195, 115848. [Google Scholar] [CrossRef]
- Deng, R.; Shi, Y.; Zhang, Y.; Zhang, X.; Deng, S.; Xia, X. Precise, sensitive detection of viable foodborne pathogenic bacteria with a 6-order dynamic range via digital rolling circle amplification. ACS Sens. 2024, 9, 4127–4133. [Google Scholar] [CrossRef]
- Zhao, W.; Zhang, D.; Zhou, T.; Huang, J.; Wang, Y.; Li, B.; Chen, L.; Yang, J.; Liu, Y. Aptamer-conjugated magnetic Fe3O4@Au core-shell multifunctional nanoprobe: A three-in-one aptasensor for selective capture, sensitive SERS detection and efficient near-infrared light triggered photothermal therapy of Staphylococcus aureus. Sens. Actuators B Chem. 2022, 350, 130879. [Google Scholar] [CrossRef]
- Irkin, R.; Bozkurt, B.; Tumen, G. Determination of the prevalence of Salmonella spp. and S. aureus in meat products by real-time PCR and testing their antibiotic susceptibility. Med. Weter. 2021, 77, 358–364. [Google Scholar] [CrossRef]
- Si, L.; Wu, Q.; Jin, Y.; Wang, Z. Research progress in the detection of trace heavy metal ions in food samples. Front. Chem. 2024, 12, 1423666. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Ren, K.; He, C.; Hu, X.; Sun, J.; Wang, S.; Pan, M. Fluorescent NH2-MIL-88(Fe)-stabilized PtNPs nanozyme for dual-channel "OFF-ON" simultaneous and visual detection of glyphosate and Pb2+ in agri-environments and foodstuffs. Food Chem. 2025, 489, 144906. [Google Scholar] [CrossRef]
- Jiao, H.P.; Bi, R.X.; Li, F.L.; Chao, J.B.; Zhang, G.M.; Zhai, L.H.; Hu, L.G.; Wang, Z.H.; Dai, C.F.; Li, B. Rapid, easy and catalyst-free preparation of magnetic thiourea-based covalent organic frameworks at room temperature for enrichment and speciation of mercury with HPLC-ICP-MS. J. Chromatogr. A 2024, 1717, 464683. [Google Scholar] [CrossRef]
- Park, S.; Lee, J.; Khan, S.; Wahab, A.; Kim, M. Machine learning-based heavy metal ion detection using surface-enhanced Raman spectroscopy. Sensors 2022, 22, 596. [Google Scholar] [CrossRef]
SERS Substrates | Contaminants | EFs | Detection Performances | Ref. | |
---|---|---|---|---|---|
Monometal | Au NRs | Thiabendazole | - | Linear range: 1–18 μM LOD: 0.33 μg /mL Recovery: 83.5–98.5% (Citrus) | [27] |
Au NFs | Methyl Parathion | 1.54 × 108 | LOD: 31.56 ng/cm2 | [29] | |
Ag NPs | S. Enteritidis | - | Linear range: 3–6 log CFU/mL LOD: 4 log CFU/mL | [69] | |
Au NPs@4-MBA | Cd2+/Cu2+/Ni2+ | 2.1 × 10 | LOD: <1 μM | [70] | |
Bimetal | AuNRs@Ag | Amantadine | 2.91 × 107 | Linear range: 0.01–50.0 μg/L LOD: 0.0038 μg/L Recovery: 82.0–106.0% (Chicken/Egg/Milk) | [36] |
Au@AgND | OTA | 1.7 × 105 | Linear range: 0.01–50 ng/mL LOD: 0.007 ng/mL Recovery: 92.4–101.6% (Peanut oil) | [71] | |
Au@Ag NPs | Kanamycin | - | Linear range: 10–100 ng/mL LOD: 0.90 pg/mL Recovery: 90.4–112% (Liquid whole milk) | [72] | |
HAu@AgNFs@MBA | 2,4-dichlorophenoxyacetic acid | 3.28 × 108 | Linear range: 0.001−100 μg/mL LOD: 0.11 ng/mL Recovery: 89.73–100.27 % (Tea/Milk) | [73] | |
Au@Ag@PDA | S. aureus/E. coli/S. dysenteriae/ P. aeruginosa/K. pneumonia | 2.92 × 108 | Linear range: 103–10 CFU/mL LOD: 10 CFU/mL | [74] | |
Au/Ag nanodimers | S. Typhi/S. aureus | - | Linear range: 102–107 CFU/mL LOD: 50 CFU/mL (S. typhimurium); 96 CFU/mL (S. aureus) Recovery: 92.86–107.32% (Milk) | [75] | |
Metal-nonmetal | AgNWs@ZIF-8 | Methyl parathion/ Carbaryl | 4.2 × 107 | LOD: 7.6 × 10−9 mol/L (Methyl parathion); 5.7 × 10−9 mol/L (Carbaryl) Recovery: 77.4–117.5% (Apple/Cabbage/Strawberry) | [49] |
Au@HgNPs/CDs | Hg2+/AFB1 | - | Linear range: 0.625–90 µg/L LOD: 0.147 µg/L (Hg2+); 0.08 µg/L (AFB1) Recovery: 89.15–109.63% (Peanut oil) | [61] | |
AgMW@HOF | 1,2-bis(4-pyridyl) ethylene | - | Linear range: 200–1000 ng/mL | [76] | |
CYR-AgNPs | Melamine/Cyromazine | - | Linear range: 0.1–0.5 ppm LOD: 43.5 ppb (Melamine); 23.6 ppb (Cyromazine) Recovery: 95–105% (Raw milk) | [77] | |
Fe3O4@Au@Ag | Clenbuterol hydrochloride | - | Linear range: 0–1.5 ng/mL LOD: 0.003 ng/mL Recovery: 90.7–108.0% (Pork) | [78] | |
Au@SiO2 | Malachite green | 3.2 × 106 | Linear range: 10−5–10−9 M LOD: 1.5 × 10−9 M Recovery: 91.69–102.49% (Tilapia filets) | [79] | |
Fe3O4@Au | E. coli/L. mono/S. typhi | - | Linear range: 107–10 cells/mL LOD: 10 cells/mL (E. coli); 10 cells/mL (L. mono); 25 cells/mL (S. typhi) Recovery: 84.0–110.2% (Milk/Lettuce/Urine) | [80] | |
ZnO/Ag–Au@Ag | S. Typhi/S. aureus | 4.67 × 105 | Linear range: 10–108 CFU/mL LOD: 10 CFU/mL | [81] | |
Ag3PO4/SWCNT | Hg2+/Pb2+ | 1010 | Linear range: 10−5 M–10−15 M LOD: 10−15 M Recovery: 97.66–98.85% (Water/River) | [82] | |
ZnO@SWCNTs | Pb2+ | - | Linear range: 0.01–100 μM LOD: 0.225 nM | [83] | |
Ag@UiO-68-SMe | Hg2+ | - | LOD: 0.17 ppb | [84] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Gao, R.; Hu, X.; Gao, M.; Pan, M. Noble Metal-Based Nanocomposites for Surface-Enhanced Raman Spectroscopy Detection of Food Contaminants. Foods 2025, 14, 3108. https://doi.org/10.3390/foods14173108
Li H, Gao R, Hu X, Gao M, Pan M. Noble Metal-Based Nanocomposites for Surface-Enhanced Raman Spectroscopy Detection of Food Contaminants. Foods. 2025; 14(17):3108. https://doi.org/10.3390/foods14173108
Chicago/Turabian StyleLi, Huilin, Rui Gao, Xiaochun Hu, Mengmeng Gao, and Mingfei Pan. 2025. "Noble Metal-Based Nanocomposites for Surface-Enhanced Raman Spectroscopy Detection of Food Contaminants" Foods 14, no. 17: 3108. https://doi.org/10.3390/foods14173108
APA StyleLi, H., Gao, R., Hu, X., Gao, M., & Pan, M. (2025). Noble Metal-Based Nanocomposites for Surface-Enhanced Raman Spectroscopy Detection of Food Contaminants. Foods, 14(17), 3108. https://doi.org/10.3390/foods14173108