Egg Yolk Granule Nanoparticles Promote Longitudinal Bone Growth in HFD-Obese Mice
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Preparation of EYGs
2.3. Nutrient Composition of EYGs
2.4. Amino Acid Component Analysis
2.5. Preparation of EYG NPs by Treatment EYGs with (NaPO3)6 and Ultrasonic
2.6. Measurement of Particle Size and Zeta Potential
2.7. Soluble Protein Concentration
2.8. Calcium Ion Content
2.9. Turbidity Measurement
2.10. Surface Hydrophobicity
2.11. Transmission Electron Microscopy (TEM)
2.12. Determination of Phosphorus Content and Digestibility
2.13. Animal Experiments and Treatments
2.14. Body Weight, Total White Adipose Weight and Organ Index
2.15. Body Length and Tibial Length
2.16. Bone Mineral Density
2.17. Tissue Collection and H&E Staining of the Bone Growth Plate
2.18. Serum Biochemical Parameters
2.19. Statistical Analysis
3. Results and Discussion
3.1. Nutrient Content and Amino Acid Composition of EYGs
3.2. The Particle Size of EYGs Under Different Treatments
3.3. Turbidity, Zeta-Potential and Surface Hydrophobicity of EYGs and EYG NPs
3.4. Soluble Protein Content and Ca2+ Release of EYGs and EYG NPs
3.5. Microstructure of EYGs and EYG NPs
3.6. In Vitro Digestibility of EYGs and EYG NPs
3.7. EYG NPs Promoted Longitudinal Bone Growth in Obesity Model of Mice
3.7.1. Body Weight, Body Length and Organ Indexes
3.7.2. BMC, BMD, Longitudinal Bone and Growth Plate
3.7.3. Serum Bone Markers
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wali, J.A.; Jarzebska, N.; Raubenheimer, D.; Simpson, S.J.; Rodionov, R.N.; O’Sullivan, J.F. Cardio-Metabolic Effects of High-Fat Diets and Their Underlying Mechanisms-a Narrative Review. Nutrients 2020, 12, 1505. [Google Scholar] [CrossRef]
- The Lancet Gastroenterology Hepatology. Obesity: Another Ongoing Pandemic. Lancet Gastroenterol. Hepatol. 2021, 6, 411. [Google Scholar]
- Hasan, S.; Naseer, S.; Zamzam, M.; Mohilldean, H.; Van Wagoner, C.; Hasan, A.; Saleh, E.S.; Uhley, V.; Kamel-ElSayed, S. Nutrient and Hormonal Effects on Long Bone Growth in Healthy and Obese Children: A Literature Review. Children 2024, 11, 817. [Google Scholar] [CrossRef]
- Lopes, K.G.; Rodrigues, E.L.; da Silva Lopes, M.R.; do Nascimento, V.A.; Pott, A.; Guimarães, R.d.C.A.; Pegolo, G.E.; Freitas, K.d.C. Adiposity Metabolic Consequences for Adolescent Bone Health. Nutrients 2022, 14, 3260. [Google Scholar] [CrossRef]
- Fintini, D.; Cianfarani, S.; Cofini, M.; Andreoletti, A.; Ubertini, G.M.; Cappa, M.; Manco, M. The Bones of Children with Obesity. Front. Endocrinol. 2020, 11, 200. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.-H.; Giong, H.-K.; Kim, D.-Y.; Kim, S.; Oh, S.; Yun, U.J.; Lee, J.-S.; Park, K.W. Activation of Nrf2 by Sulfuretin Stimulates Chondrocyte Differentiation and Increases Bone Lengths in Zebrafish. BMB Rep. 2023, 56, 496–501. [Google Scholar] [CrossRef]
- Chagin, A.S.; Newton, P.T. Postnatal Skeletal Growth Is Driven by the Epiphyseal Stem Cell Niche: Potential Implications to Pediatrics. Pediatr Res 2020, 87, 986–990. [Google Scholar] [CrossRef]
- Fernando, I.P.S.; Duffuler, P.; Wu, J. Egg Yolk Hydrolysate Shows Osteogenic Activity in MC3T3-E1 Osteoblastic Cells. J. Funct. Foods 2025, 124, 106633. [Google Scholar] [CrossRef]
- Chakrabarti, S.; Ren, J.; Wu, J. Phosvitin Derived Phospho-Peptides Show Better Osteogenic Potential than Intact Phosvitin in MC3T3-E1 Osteoblastic Cells. Nutrients 2020, 12, 2998. [Google Scholar] [CrossRef]
- Zhao, M.; Li, S.; Ahn, D.U.; Huang, X. Phosvitin Phosphopeptides Produced by Pressurized Hea-Trypsin Hydrolysis Promote the Differentiation and Mineralization of MC3T3-E1 Cells via the OPG/RANKL Signaling Pathways. Poult. Sci. 2021, 100, 527–536. [Google Scholar] [CrossRef]
- Marcet, I.; Sáez-Orviz, S.; Rendueles, M.; Díaz, M. Egg Yolk Granules and Phosvitin. Recent Advances in Food Technology and Applications. LWT Food Sci. Technol. 2022, 153, 112442. [Google Scholar] [CrossRef]
- Gaillard, R.; Gagnon, D.; Perreault, V.; Marciniak, A.; Pouliot, Y.; Brisson, G.; Doyen, A. Effect of Ultra-High Pressure Homogenization on Structural and Techno-Functional Properties of Egg Yolk Granule Proteins. LWT Food Sci. Technol. 2023, 178, 114624. [Google Scholar] [CrossRef]
- Mi, S.; Xia, M.; Zhang, X.; Liu, J.; Cai, Z. Formation of Natural Egg Yolk Granule Stabilized Pickering High Internal Phase Emulsions by Means of NaCl Ionic Strength and pH Change. Foods 2022, 11, 229. [Google Scholar] [CrossRef]
- Motta-Romero, H.; Zhang, Z.; Tien Nguyen, A.; Schlegel, V.; Zhang, Y. Isolation of Egg Yolk Granules as Low-Cholesterol Emulsifying Agent in Mayonnaise. J. Food Sci. 2017, 82, 1588–1593. [Google Scholar] [CrossRef] [PubMed]
- Su, H.; Tan, S.; Everett, D.W.; Zhu, J.; Ma, R.; Fu, Y.; Li, T. (NaPO3)6-Modulated Reassembly of Encapsulated Curcumin Nanoparticles from Yolk Granules: Preparation, Characterization, and Bioavailability. J. Mol. Liq. 2023, 391, 123367. [Google Scholar] [CrossRef]
- Li, T.; Yao, J.; Everett, D.W.; Hou, Y.; Pan, Z.; Su, H.; Fu, Y. Recombined Egg Yolk Granules with Controllable Particle Sizes for Quercetin Delivery—Effects of Particle Size on Physicochemical Stability, Bioaccessibility, and Bioactivity of Quercetin. Food Biophys. 2024, 19, 46–57. [Google Scholar] [CrossRef]
- Zhang, H.; Tan, S.; Gan, H.; Zhang, H.; Xia, N.; Jiang, L.; Ren, H.; Zhang, X. Investigation of the Formation Mechanism and β-Carotene Encapsulation Stability of Emulsion Gels Based on Egg Yolk Granules and Sodium Alginate. Food Chem. 2023, 400, 134032. [Google Scholar] [CrossRef]
- Li, T.; Su, H.; Zhu, J.; McClements, D.J.; Fu, Y. Modulating the Assembly of Egg Yolk Granule-Based Delivery Systems Using NaCl: Physicochemical Properties and Curcumin Bioactivity. Food Biophys. 2023, 18, 326–337. [Google Scholar] [CrossRef]
- Oladimeji, B.M.; Gebhardt, R. Physical Characteristics of Egg Yolk Granules and Effect on Their Functionality. Foods 2023, 12, 2531. [Google Scholar] [CrossRef]
- Beaver, L.M.; Prati, M.; Gilman, K.E.; Luo, T.; Shay, N.F.; Branscum, A.J.; Turner, R.T.; Iwaniec, U.T. Diet Composition Influences the Effect of High Fat Diets on Bone in Growing Male Mice. Bone 2023, 176, 116888. [Google Scholar] [CrossRef] [PubMed]
- Hou, S.; Men, Y.; Wei, M.; Zhang, Y.; Li, H.; Sun, Z.; Han, Y. Total Protein Content, Amino Acid Composition and Eating-Quality Evaluation of Foxtail Millet (Setaria italica (L.) P. Beauv). Foods 2023, 12, 31. [Google Scholar] [CrossRef]
- Liu, L.; Wang, J.; Wang, G.; Song, H.; Geng, F.; Zeng, Q.; Huang, Q. Quantitative Proteomics Provides a New Perspective on the Mechanism of Network Structure Depolymerization during Egg White Thinning. Food Chem. 2022, 392, 133320. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Tian, Q.; Li, B. Novel Hyp-Gly-Containing Antiplatelet Peptides from Collagen Hydrolysate after Simulated Gastrointestinal Digestion and Intestinal Absorption. Food Funct. 2020, 11, 5553–5564. [Google Scholar] [CrossRef]
- Li, X.-S.; Wu, J.-H.; Zhao, Y.; Zhang, W.-P.; Gao, Q.; Guo, L.; Yuan, B.-F.; Feng, Y.-Q. Preparation of Magnetic Polymer Material with Phosphate Group and Its Application to the Enrichment of Phosphopeptides. J. Chromatogr. A 2011, 1218, 3845–3853. [Google Scholar] [CrossRef]
- Jumai, A.; Chen, S.; Wu, Y.; Liu, F.; Li, B.; Zhu, B.; Zhao, L.; Liu, K.; Zhang, Q.; Qiu, S.-X. Bellidifolin, a Constituent from Edible Mongolic Liver Tea (Swertia diluta), Promotes Lipid Metabolism by Regulating Intestinal Microbiota and Bile Acid Metabolism in Mice during High Fat Diet-Induced Obesity. Food Biosci. 2025, 68, 106562. [Google Scholar] [CrossRef]
- Oh, D.N.; Park, S.Y.; Jang, W.J.; Lee, J.M. Poly-γ-D-Glutamic Acid Ameliorates Obesity by Modulating Gut Microbiota Dysbiosis in High-Fat Diet-Induced Obesity Mice. J. Funct. Food. 2025, 127, 106739. [Google Scholar] [CrossRef]
- Geng, F.; Xie, Y.; Wang, Y.; Wang, J. Depolymerization of Chicken Egg Yolk Granules Induced by High-Intensity Ultrasound. Food Chem. 2021, 354, 129580. [Google Scholar] [CrossRef]
- Anton, M. Egg Yolk: Structures, Functionalities and Processes. J. Sci. Food Agric. 2013, 93, 2871–2880. [Google Scholar] [CrossRef]
- Hall, D.; Zhao, R.; Dehlsen, I.; Mannix, E.J.; Williams, S.R.; Arisaka, F.; Goto, Y.; Carver, J.A. Protein Aggregate Turbidity: Simulation of Turbidity Profiles for Mixed Aggregation Reactions. Anal. Biochem. 2016, 498, 78–94. [Google Scholar] [CrossRef]
- Ye, H.; Sui, J.; Wang, J.; Wang, Y.; Wu, D.; Wang, B.; Geng, F. Research Note: Aggregation-Depolymerization of Chicken Egg Yolk Granule under Different Food Processing Conditions. Poult. Sci. 2023, 102, 102696. [Google Scholar] [CrossRef]
- Brodkorb, A.; Egger, L.; Alminger, M.; Alvito, P.; Assuncao, R.; Ballance, S.; Bohn, T.; Bourlieu-Lacanal, C.; Boutrou, R.; Carriere, F.; et al. INFOGEST Static in Vitro Simulation of Gastrointestinal Food Digestion. Nat. Protoc. 2019, 14, 991–1014. [Google Scholar] [CrossRef]
- Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.; Bourlieu, C.; Carriere, F.; Boutrou, R.; Corredig, M.; Dupont, D.; et al. A Standardised Static in Vitro Digestion Method Suitable for Food—An International Consensus. Food Funct. 2014, 5, 1113–1124. [Google Scholar] [CrossRef] [PubMed]
- Ryuk, J.A.; Kim, H.J.; Hwang, J.T.; Ko, B.S. Effect of Allium Fistulosum Extracts on the Stimulation of Longitudinal Bone Growth in Animal Modeling Diet-Induced Calcium and Vitamin D Deficiencies. Appl. Sci. 2021, 11, 7786. [Google Scholar] [CrossRef]
- Ko, B.-S.; Ryuk, J.A.; Hwang, J.T.; Zhang, T.; Wu, X.; Kim, H.J.; Yi, Q.J.; Park, S. Allium Fistulosum (Welsh Onion) and Portulaca Oleracea Increase Longitudinal Bone Growth in Weanling Rats Possibly by Promoting TGF-β and IGF-1 Signaling. J. Funct. Foods 2019, 58, 151–160. [Google Scholar] [CrossRef]
- Ahn, H.; Park, Y.K. Soy Isoflavone Supplementation Improves Longitudinal Bone Growth and Bone Quality in Growing Female Rats. Nutrition 2017, 37, 68–73. [Google Scholar] [CrossRef]
- Jiang, S.; Qu, X.; Liu, S.; Wei, J.; Yi, X.; Liu, Y.; Gao, C. Proteomic Identification of Plasma Components in Tachypleus Tridentatus and Their Effects on the Longitudinal Bone Growth Rate in Rats. Mar. Drugs 2023, 21, 111. [Google Scholar] [CrossRef]
- Dutta, S.; Sengupta, P. Men and Mice: Relating Their Ages. Life Sci. 2016, 152, 244–248. [Google Scholar] [CrossRef]
- Wang, S.; Lai, X.; Deng, Y.; Song, Y. Correlation between Mouse Age and Human Age in Anti-Tumor Research: Significance and Method Establishment. Life Sci. 2020, 242, 117242. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, T.; Yang, H.J.; Yue, Y.; Kim, M.J.; Li, C.; Cheong, S.I.; Jang, D.J.; Park, S. Promotion of Longitudinal Bone Growth by the Intake of Oat and Green Onion Root Water Extracts in Weaning Rats through Stimulating Growth Hormone Secretion and Elevating Gut Microbiota Related to Nervous System-Related Pathway. J. Funct. Foods 2023, 105, 105567. [Google Scholar] [CrossRef]
- Laca, A.; Paredes, B.; Rendueles, M.; Díaz, M. Egg Yolk Granules: Separation, Characteristics and Applications in Food Industry. LWT Food Sci. Technol. 2014, 59, 1–5. [Google Scholar] [CrossRef]
- Lee, K.-J.; Kim, K.-S.; Kim, H.-N.; Seo, J.-A.; Song, S.-W. Association between Dietary Calcium and Phosphorus Intakes, Dietary Calcium/Phosphorus Ratio and Bone Mass in the Korean Population. Nutr. J. 2014, 13, 114. [Google Scholar] [CrossRef] [PubMed]
- Wei, M.; Wei, J.; Huang, S. The Association between Dietary Mineral Intake and Bone Mineral Density: A Cross-Sectional Study. J. Heatlh Popul. Nutr. 2025, 44, 279. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Tang, C.; Cai, Z.; Jin, Y.; Ahn, D.U.; Huang, X. The Effectiveness of Polypeptides from Phosvitin and Eggshell Membrane in Enhancing the Bioavailability of Eggshell Powder Calcium and Its Accumulation in Bones. Food Biosci. 2023, 51, 102257. [Google Scholar] [CrossRef]
- Zhao, M.; Ahn, D.U.; Li, S.; Liu, W.; Yi, S.; Huang, X. Effects of Phosvitin Phosphopeptide-ca Complex Prepared by Efficient Enzymatic Hydrolysis on Calcium Absorption and Bone Deposition of Mice. Food Sci. Hum. Wellness 2022, 11, 1631–1640. [Google Scholar] [CrossRef]
- Choi, I.; Jung, C.; Choi, H.; Kim, C.; Ha, H. Effectiveness of Phosvitin Peptides on Enhancing Bioavailability of Calcium and Its Accumulation in Bones. Food Chem. 2005, 93, 577–583. [Google Scholar] [CrossRef]
Nutrients | Mass Fraction (%) | ||||
---|---|---|---|---|---|
Moisture | Protein | Fat | Ash | Cholesterol | |
0.23 ± 0.02 | 53.62 ± 1.25 | 37.24 ± 0.61 | 4.88 ± 0.11 | 0.92 ± 0.02 |
Amino Acid Species | Relative Content (g/100 g) | Amino Acid Species | Relative Content (g/100 g) |
---|---|---|---|
Asp | 4.50 | Tyr | 3.63 |
Glu | 3.00 | Val | 6.67 |
Ser | 7.55 | Met | 3.70 |
Gly | 6.19 | Cys | 2.10 |
His | 6.76 | Ile | 1.01 |
Thr | 5.15 | Leu | 16.82 |
Arg | 4.72 | Phe | 3.83 |
Ala | 9.40 | Lys | 9.50 |
Pro | 5.47 |
Group | Soluble Protein (mg/mL) | Ca2+ (μg/mL) | Phosphorus Content Before Digestion (mg/g) | Phosphorus Content After Digestion (mg/g) | Digestibility (%) |
---|---|---|---|---|---|
C | 0.110 ± 0.004 e | 0.27 ± 0.03 d | 14.10 ± 1.21 b | 12.4 ± 0.31 b | 12.04 ± 2.22 b |
C′ | 0.593 ± 0.002 d | 2.43 ± 0.01 c | / | / | / |
P | 0.692 ± 0.005 c | 3.28 ± 0.03 a | / | / | / |
U | 0.733 ± 0.011 b | 2.59 ± 0.03 b | / | / | / |
PU | 0.784 ± 0.016 a | 3.29 ± 0.03 a | 17.30 ± 0.28 a | 14.38 ± 0.49 a | 16.88 ± 2.85 a |
Group | EYG NPs Content (%) | Calcium Content (mg/g) | Phosphorus Content (mg/g) | Ca/P Ratio |
---|---|---|---|---|
N | 0 | 5.700 | 2.80 | 2.0:1 |
M | 0 | 7.800 | 3.80 | 2.0:1 |
EL | 0.95 | 7.706 | 3.96 | 1.9:1 |
EH | 1.9 | 7.612 | 4.13 | 1.8:1 |
EYG NPs | / | 0.660 | 17.30 | 0.04:1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, W.; Yu, C.; Liu, H.; Zhang, J.; Li, B. Egg Yolk Granule Nanoparticles Promote Longitudinal Bone Growth in HFD-Obese Mice. Foods 2025, 14, 3109. https://doi.org/10.3390/foods14173109
Xue W, Yu C, Liu H, Zhang J, Li B. Egg Yolk Granule Nanoparticles Promote Longitudinal Bone Growth in HFD-Obese Mice. Foods. 2025; 14(17):3109. https://doi.org/10.3390/foods14173109
Chicago/Turabian StyleXue, Wanyu, Chunhui Yu, Haodong Liu, Jingxuan Zhang, and Bo Li. 2025. "Egg Yolk Granule Nanoparticles Promote Longitudinal Bone Growth in HFD-Obese Mice" Foods 14, no. 17: 3109. https://doi.org/10.3390/foods14173109
APA StyleXue, W., Yu, C., Liu, H., Zhang, J., & Li, B. (2025). Egg Yolk Granule Nanoparticles Promote Longitudinal Bone Growth in HFD-Obese Mice. Foods, 14(17), 3109. https://doi.org/10.3390/foods14173109