InsectFish—The Use of Insect Meal in the Fish Sector in Creating Farm-to-Fork Value: Chemical and Quality Characteristics of Sparus aurata Fillets Fed Hermetia illucens Larvae-Based Feed
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Statement
2.2. Diet Formulation
2.3. Fish Feeding Trial
2.4. Physical and Chemical Analyses
2.5. X-Ray Fluorescence (XRF) Spectroscopy Analysis
2.6. Fatty Acid Profile and Fillet Oxidation Products
2.7. Sensory Analysis
2.8. Statistical Analysis
3. Results and Discussion
3.1. Proximate and Physico-Chemical Analyses
3.2. X-Ray Fluorescence (XRF) Spectroscopy
3.3. Fatty Acid Profile of Fillets
3.4. Sensory Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bohnes, F.A.; Hauschild, M.Z.; Schlundt, J.; Nielsen, M.; Laurent, A. Environmental Sustainability of Future Aquaculture Production: Analysis of Singaporean and Norwegian Policies. Aquaculture 2022, 549, 737717. [Google Scholar] [CrossRef]
- FAO. The State of World Fisheries and Aquaculture 2024—Blue Transformation in Action; FAO: Rome, Italy, 2024. [Google Scholar]
- FAO. The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation; FAO: Rome, Italy, 2022. [Google Scholar]
- Naylor, R.L.; Hardy, R.W.; Buschmann, A.H.; Bush, S.R.; Cao, L.; Klinger, D.H.; Little, D.C.; Lubchenco, J.; Shumway, S.E.; Troell, M. A 20-Year Retrospective Review of Global Aquaculture. Nature 2021, 591, 551–563. [Google Scholar] [CrossRef]
- Aragão, C.; Gonçalves, A.T.; Costas, B.; Azeredo, R.; Xavier, M.J.; Engrola, S. Alternative Proteins for Fish Diets: Implications beyond Growth. Animals 2022, 12, 1211. [Google Scholar] [CrossRef] [PubMed]
- Porcino, N.; Genovese, L. Review on Alternative Meals for Gilthead Seabream, Sparus Aurata. Aquac. Res. 2022, 53, 2109–2145. [Google Scholar] [CrossRef]
- Yan, Q.; Zhu, X.; Yang, Y.; Han, D.; Xie, S. Feasibility of Partial Replacement of Fishmeal with Proteins from Different Sources in Diets of Korean Rockfish (Sebastes Schlegeli). J. Ocean Univ. China 2014, 13, 1054–1060. [Google Scholar] [CrossRef]
- Hussain, S.M.; Bano, A.A.; Ali, S.; Rizwan, M.; Adrees, M.; Zahoor, A.F.; Sarker, P.K.; Hussain, M.; Arsalan, M.Z.-H.; Yong, J.W.H.; et al. Substitution of Fishmeal: Highlights of Potential Plant Protein Sources for Aquaculture Sustainability. Heliyon 2024, 10, e26573. [Google Scholar] [CrossRef]
- Serra, V.; Pastorelli, G.; Tedesco, D.E.A.; Turin, L.; Guerrini, A. Alternative Protein Sources in Aquafeed: Current Scenario and Future Perspectives. Vet. Anim. Sci. 2024, 25, 100381. [Google Scholar] [CrossRef]
- Krogdahl, Å.; Penn, M.; Thorsen, J.; Refstie, S.; Bakke, A.M. Important Antinutrients in Plant Feedstuffs for Aquaculture: An Update on Recent Findings Regarding Responses in Salmonids. Aquac. Res. 2010, 41, 333–344. [Google Scholar] [CrossRef]
- Hua, K.; Cobcroft, J.M.; Cole, A.; Condon, K.; Jerry, D.R.; Mangott, A.; Praeger, C.; Vucko, M.J.; Zeng, C.; Zenger, K.; et al. The Future of Aquatic Protein: Implications for Protein Sources in Aquaculture Diets. One Earth 2019, 1, 316–329. [Google Scholar] [CrossRef]
- Salomone, R.; Saija, G.; Mondello, G.; Giannetto, A.; Fasulo, S.; Savastano, D. Environmental Impact of Food Waste Bioconversion by Insects: Application of Life Cycle Assessment to Process Using Hermetia lllucens. J. Clean. Prod. 2017, 140, 890–905. [Google Scholar] [CrossRef]
- Smetana, S.; Schmitt, E.; Mathys, A. Sustainable Use of Hermetia lllucens Insect Biomass for Feed and Food: Attributional and Consequential Life Cycle Assessment. Resour. Conserv. Recycl. 2019, 144, 285–296. [Google Scholar] [CrossRef]
- Alfiko, Y.; Xie, D.; Astuti, R.T.; Wong, J.; Wang, L. Insects as a Feed Ingredient for Fish Culture: Status and Trends. Aquac. Fish. 2022, 7, 166–178. [Google Scholar] [CrossRef]
- Cappellozza, S.; Leonardi, M.G.; Savoldelli, S.; Carminati, D.; Rizzolo, A.; Cortellino, G.; Terova, G.; Moretto, E.; Badaile, A.; Concheri, G.; et al. A First Attempt to Produce Proteins from Insects by Means of a Circular Economy. Animals 2019, 9, 278. [Google Scholar] [CrossRef]
- Barragan-Fonseca, K.B.; Dicke, M.; van Loon, J.J.A. Nutritional Value of the Black Soldier Fly (Hermetia lllucens L.) and Its Suitability as Animal Feed—A Review. J. Insects Food Feed 2017, 3, 105–120. [Google Scholar] [CrossRef]
- Li, S.; Ji, H.; Zhang, B.; Tian, J.; Zhou, J.; Yu, H. Influence of Black Soldier Fly (Hermetia lllucens) Larvae Oil on Growth Performance, Body Composition, Tissue Fatty Acid Composition and Lipid Deposition in Juvenile Jian Carp (Cyprinus carpio var. Jian). Aquaculture 2016, 465, 43–52. [Google Scholar] [CrossRef]
- Danieli, P.P.; Lussiana, C.; Gasco, L.; Amici, A.; Ronchi, B. The Effects of Diet Formulation on the Yield, Proximate Composition, and Fatty Acid Profile of the Black Soldier Fly (Hermetia lllucens L.) Prepupae Intended for Animal Feed. Animals 2019, 9, 178. [Google Scholar] [CrossRef]
- Fuso, A.; Barbi, S.; Macavei, L.I.; Luparelli, A.V.; Maistrello, L.; Montorsi, M.; Sforza, S.; Caligiani, A. Effect of the Rearing Substrate on Total Protein and Amino Acid Composition in Black Soldier Fly. Foods 2021, 10, 1773. [Google Scholar] [CrossRef] [PubMed]
- Finke, M.D. Complete Nutrient Content of Four Species of Feeder Insects. Zoo Biol. 2013, 32, 27–36. [Google Scholar] [CrossRef]
- Hua, K. A meta-analysis of the effects of replacing fish meals with insect meals on growth performance of fish. Aquaculture 2021, 530, 735732. [Google Scholar] [CrossRef]
- Llorente, I.; Fernández-Polanco, J.; Baraibar-Diez, E.; Odriozola, M.D.; Bjørndal, T.; Asche, F.; Guillen, J.; Avdelas, L.; Nielsen, R.; Cozzolino, M.; et al. Assessment of the Economic Performance of the Seabream and Seabass Aquaculture Industry in the European Union. Mar. Polic. 2020, 117, 103876. [Google Scholar] [CrossRef]
- Mhalhel, K.; Levanti, M.; Abbate, F.; Laurà, R.; Guerrera, M.C.; Aragona, M.; Porcino, C.; Briglia, M.; Germanà, A.; Montalbano, G. Review on Gilthead Seabream (Sparus aurata) Aquaculture: Life Cycle, Growth, Aquaculture Practices and Challenges. J. Mar. Sci. Eng. 2023, 11, 2008. [Google Scholar] [CrossRef]
- Sogari, G.; Oddon, S.B.; Gasco, L.; van Huis, A.; Spranghers, T.; Mancini, S. Review: Recent Advances in Insect-Based Feeds: From Animal Farming to the Acceptance of Consumers and Stakeholders. Animal 2023, 17, 100904. [Google Scholar] [CrossRef] [PubMed]
- Secci, G.; Mancini, S.; Iaconisi, V.; Gasco, L.; Basto, A.; Parisi, G. Can the Inclusion of Black Soldier Fly (Hermetia lllucens) in Diet Affect the Flesh Quality/Nutritional Traits of Rainbow Trout (Oncorhynchus mykiss) after Freezing and Cooking? Int. J. Food Sci. Nutr. 2019, 70, 161–171. [Google Scholar] [CrossRef]
- Pulido, L.; Secci, G.; Maricchiolo, G.; Gasco, L.; Gai, F.; Serra, A.; Conte, G.; Parisi, G. Effect of Dietary Black Soldier Fly Larvae Meal on Fatty Acid Composition of Lipids and Sn-2 Position of Triglycerides of Marketable Size Gilthead Sea Bream Fillets. Aquaculture 2022, 546, 737351. [Google Scholar] [CrossRef]
- Busti, S.; Magnani, M.; Badiani, A.; Silvi, M.; Baldi, G.; Soglia, F.; Petracci, M.; Sirri, F.; Gasco, L.; Brambilla, F.; et al. Effect of Different Inclusion Levels of Defatted Hermetia lllucens Larvae Meal on Fillet Quality of Gilthead Sea Bream (Sparus aurata). J. Insects Food Feed 2023, 9, 1615–1629. [Google Scholar] [CrossRef]
- Moutinho, S.; Oliva-Teles, A.; Pulido-Rodríguez, L.; Parisi, G.; Magalhães, R.; Monroig, Ó.; Peres, H. Effects of Black Soldier Fly (Hermetia lllucens) Larvae Oil on Fillet Quality and Nutritional Traits of Gilthead Seabream. Aquaculture 2024, 579, 740219. [Google Scholar] [CrossRef]
- Randazzo, B.; Zarantoniello, M.; Cardinaletti, G.; Cerri, R.; Giorgini, E.; Belloni, A.; Contò, M.; Tibaldi, E.; Olivotto, I. Hermetia illucens and poultry by-product meals as alternatives to plant protein sources in gilthead seabream (Sparus aurata) diet: A multidisciplinary study on fish gut status. Animals 2021, 11, 677. [Google Scholar] [CrossRef] [PubMed]
- Bosi, A.; Banfi, D.; Moroni, F.; Ceccotti, C.; Giron, M.C.; Antonini, M.; Giaroni, C.; Terova, G. Effect of partial substitution of fishmeal with insect meal (Hermetia illucens) on gut neuromuscular function in Gilthead sea bream (Sparus aurata). Sci. Rep. 2021, 11, 21788. [Google Scholar] [CrossRef] [PubMed]
- Official Recommendations on Uniform Colour Spaces, Colour Differences Equations and Metric Colour Terms. Commission Internationale de l’Eclairage: Paris, France, 1976.
- Sharma, G. Digital Color Imaging Handbook; Chapter 1; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Lim, C.M.; Carey, M.; Williams, P.N.; Koidis, A. Rapid Classification of Commercial Teas According to Their Origin and Type Using Elemental Content with X-Ray Fluorescence (XRF) Spectroscopy. Curr. Res. Food Sci. 2021, 4, 45–52. [Google Scholar] [CrossRef]
- Rigaku Soils Plant Mater. (1385). Available online: https://rigaku.com/products/xrf-spectrometers/edxrf/application-notes/edxrf1385-agricultural-soils-plant-materials (accessed on 12 February 2025).
- Folch, J.; Lees, M.; Stanley, G.H.S. A Simple Method for the Isolation and Purification of Total Lipides from Animal Tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Christie, W.W. A Simple Procedure for Rapid Transmethylation of Glycerolipids and Cholesteryl Esters. J. Lipid Res. 1982, 23, 1072–1075. [Google Scholar] [CrossRef]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary Heart Disease: Seven Dietary Factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Fernandes, C.E.; Vasconcelos, M.A.d.S.; Ribeiro, M.d.A.; Sarubbo, L.A.; Andrade, S.A.C.; Filho, A.B.d.M. Nutritional and Lipid Profiles in Marine Fish Species from Brazil. Food Chem. 2014, 160, 67–71. [Google Scholar] [CrossRef]
- Dal Bosco, A.; Cavallo, M.; Menchetti, L.; Angelucci, E.; Mancinelli, A.C.; Vaudo, G.; Marconi, S.; Camilli, E.; Galli, F.; Castellini, C.; et al. The Healthy Fatty Index Allows for Deeper Insights into the Lipid Composition of Foods of Animal Origin When Compared with the Atherogenic and Thrombogenicity Indexes. Foods 2024, 13, 1568. [Google Scholar] [CrossRef] [PubMed]
- Vyncke, W. Direct Determination of the Thiobarbituric Acid Value in Trichloracetic Acid Extracts of Fish as a Measure of Oxidative Rancidity. Fette Seifen Anstrichm. 1970, 72, 1084–1087. [Google Scholar] [CrossRef]
- ISO 10399:2017; Sensory Analysis—Methodology—Duo-Trio Test. ISO: Geneva, Switzerland, 2017.
- JMP® PRO 18; JMP Statistical Discovery LLC: Cary, NC, USA.
- Anedda, R.; Melis, R.; Palomba, A.; Vitangeli, I.; Biosa, G.; Braca, A.; Antonini, M.; Moroni, F.; Rimoldi, S.; Terova, G.; et al. Balanced Replacement of Fish Meal with Hermetia lllucens Meal Allows Efficient Hepatic Nutrient Metabolism and Increases Fillet Lipid Quality in Gilthead Sea Bream (Sparus aurata). Aquaculture 2023, 576, 739862. [Google Scholar] [CrossRef]
- Karapanagiotidis, I.T.; Neofytou, M.C.; Asimaki, A.; Daskalopoulou, E.; Psofakis, P.; Mente, E.; Rumbos, C.I.; Athanassiou, C.G. Fishmeal Replacement by Full-Fat and Defatted Hermetia lllucens Prepupae Meal in the Diet of Gilthead Seabream (Sparus aurata). Sustainability 2023, 15, 786. [Google Scholar] [CrossRef]
- Matos, E.; Dias, J.; Dinis, M.T.; Silva, T.S. Sustainability vs. Quality in Gilthead Seabream (Sparus aurata L.) Farming: Are Trade-offs Inevitable? Rev. Aquac. 2017, 9, 388–409. [Google Scholar] [CrossRef]
- García de la Serrana, D.; Fontanillas, R.; Koppe, W.; Fernández-Borràs, J.; Blasco, J.; Martín-Pérez, M.; Navarro, I.; Gutiérrez, J. Effects of Variable Protein and Lipid Proportion in Gilthead Sea Bream (Sparus aurata) Diets on Fillet Structure and Quality. Aquac. Nutr. 2013, 19, 368–381. [Google Scholar] [CrossRef]
- Pulcini, D.; Capoccioni, F.; Franceschini, S.; Martinoli, M.; Tibaldi, E. Skin Pigmentation in Gilthead Seabream (Sparus aurata L.) Fed Conventional and Novel Protein Sources in Diets Deprived of Fish Meal. Animals 2020, 10, 2138. [Google Scholar] [CrossRef]
- Renna, M.; Schiavone, A.; Gai, F.; Dabbou, S.; Lussiana, C.; Malfatto, V.; Prearo, M.; Capucchio, M.T.; Biasato, I.; Biasibetti, E.; et al. Evaluation of the Suitability of a Partially Defatted Black Soldier Fly (Hermetia lllucens L.) Larvae Meal as Ingredient for Rainbow Trout (Oncorhynchus Mykiss Walbaum) Diets. J. Anim. Sci. Biotechnol. 2017, 8, 57. [Google Scholar] [CrossRef]
- El Rammouz, R.; Abboud, J.S.; Abboud, M.; Mur, A.E.; Yammine, S.; Jammal, B.H. pH, Rigor Mortis and Physical Properties of Fillet in Fresh Water Fish: The Case of Rainbow Trout (Oncorynchus mykiss). J. Appl. Sci. Res. 2013, 9, 5746–5755. [Google Scholar]
- FAO. The Nutrition and Feed of Farmed Fish and Shrimps. Available online: https://www.fao.org/4/ab470e/ab470e06.htm (accessed on 13 July 2025).
- Borgese, L.; Bilo, F.; Dalipi, R.; Bontempi, E.; Depero, L.E. Total Reflection X-Ray Fluorescence as a Tool for Food Screening. Spectrochim. Acta Part B At. Spectrosc. 2015, 113, 1–15. [Google Scholar] [CrossRef]
- Oteri, M.; Rosa, A.R.D.; Presti, V.L.; Giarratana, F.; Toscano, G.; Chiofalo, B. Black Soldier Fly Larvae Meal as Alternative to Fish Meal for Aquaculture Feed. Sustainability 2021, 13, 5447. [Google Scholar] [CrossRef]
- Suryati, T.; Julaeha, E.; Farabi, K.; Ambarsari, H.; Hidayat, A.T. Lauric Acid from the Black Soldier Fly (Hermetia lllucens) and Its Potential Applications. Sustainability 2023, 15, 10383. [Google Scholar] [CrossRef]
- Fabrikov, D.; Barroso, F.G.; Sánchez-Muros, M.J.; Hidalgo, M.C.; Cardenete, G.; Tomás-Almenar, C.; Melenchón, F.; Guil-Guerrero, J.L. Effect of Feeding with Insect Meal Diet on the Fatty Acid Compositions of Sea Bream (Sparus aurata), Tench (Tinca tinca) and Rainbow Trout (Oncorhynchus mykiss) Fillets. Aquaculture 2021, 545, 737170. [Google Scholar] [CrossRef]
- Bruni, L.; Randazzo, B.; Cardinaletti, G.; Zarantoniello, M.; Mina, F.; Secci, G.; Tulli, F.; Olivotto, I.; Parisi, G. Dietary Inclusion of Full-Fat Hermetia lllucens Prepupae Meal in Practical Diets for Rainbow Trout (Oncorhynchus mykiss): Lipid Metabolism and Fillet Quality Investigations. Aquaculture 2020, 529, 735678. [Google Scholar] [CrossRef]
- Mancini, S.; Medina, I.; Iaconisi, V.; Gai, F.; Basto, A.; Parisi, G. Impact of Black Soldier Fly Larvae Meal on the Chemical and Nutritional Characteristics of Rainbow Trout Fillets. Animal 2018, 12, 1672–1681. [Google Scholar] [CrossRef]
- Caimi, C.; Biasato, I.; Chemello, G.; Oddon, S.B.; Lussiana, C.; Malfatto, V.M.; Capucchio, M.T.; Colombino, E.; Schiavone, A.; Gai, F.; et al. Dietary Inclusion of a Partially Defatted Black Soldier Fly (Hermetia lllucens) Larva Meal in Low Fishmeal-Based Diets for Rainbow Trout (Oncorhynchus mykiss). J. Anim. Sci. Biotechnol. 2021, 12, 50. [Google Scholar] [CrossRef]
- Belghit, I.; Waagbø, R.; Lock, E.; Liland, N.S. Insect-based Diets High in Lauric Acid Reduce Liver Lipids in Freshwater Atlantic Salmon. Aquac. Nutr. 2019, 25, 343–357. [Google Scholar] [CrossRef]
- Szendrő, K.; Zotte, A.D.; Fülöp, N.; Garamvölgyi, J.; Tóth, K. Consumer Views on the Healthiness of Meat from Various Animal Species: A Comprehensive Survey Including Fish. Appl. Food Res. 2024, 4, 100533. [Google Scholar] [CrossRef]
- Rodrigues, D.P.; Ameixa, O.M.C.C.; Vázquez, J.A.; Calado, R. Improving the Lipid Profile of Black Soldier Fly (Hermetia lllucens) Larvae for Marine Aquafeeds: Current State of Knowledge. Sustainability 2022, 14, 6472. [Google Scholar] [CrossRef]
- FAO. Fats and Fatty Acids in Human Nutrition. Report of an Expert Consultation. FAO Food Nutr. Pap. 2010, 91, 1–166. [Google Scholar]
- EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA). Scientific Opinion on Dietary Reference Values for Fats, Including Saturated Fatty Acids, Polyunsaturated Fatty Acids, Monounsaturated Fatty Acids, Trans Fatty Acids, and Cholesterol. EFSA J. 2010, 8, 1461. [Google Scholar] [CrossRef]
- Chen, J.; Liu, H. Nutritional Indices for Assessing Fatty Acids: A Mini-Review. Int. J. Mol. Sci. 2020, 21, 5695. [Google Scholar] [CrossRef]
- Zhang, X.; Ning, X.; He, X.; Sun, X.; Yu, X.; Cheng, Y.; Yu, R.-Q.; Wu, Y. Fatty Acid Composition Analyses of Commercially Important Fish Species from the Pearl River Estuary, China. PLoS ONE 2020, 15, e0228276. [Google Scholar] [CrossRef]
- Aberoumand, A.; Baesi, F. Evaluation of Fatty Acid-related Nutritional Quality Indices in Processed and Raw (Lethrinus lentjan) Fish Fillets. Food Sci. Nutr. 2023, 11, 963–971. [Google Scholar] [CrossRef]
- Orban, E.; Nevigato, T.; Lena, G.D.; Casini, I.; Marzetti, A. Differentiation in the Lipid Quality of Wild and Farmed Seabass (Dicentrarchus labrax) and Gilthead Sea Bream (Sparus aurata). J. Food Sci. 2003, 68, 128–132. [Google Scholar] [CrossRef]
- Borgogno, M.; Dinnella, C.; Iaconisi, V.; Fusi, R.; Scarpaleggia, C.; Schiavone, A.; Monteleone, E.; Gasco, L.; Parisi, G. Inclusion of Hermetia lllucens Larvae Meal on Rainbow Trout (Oncorhynchus mykiss) Feed: Effect on Sensory Profile According to Static and Dynamic Evaluations. J. Sci. Food Agric. 2017, 97, 3402–3411. [Google Scholar] [CrossRef]
- Lock, E.R.; Arsiwalla, T.; Waagbø, R. Insect Larvae Meal as an Alternative Source of Nutrients in the Diet of Atlantic Salmon (Salmo Salar) Postsmolt. Aquac. Nutr. 2016, 22, 1202–1213. [Google Scholar] [CrossRef]
- Sealey, W.M.; Gaylord, T.G.; Barrows, F.T.; Tomberlin, J.K.; McGuire, M.A.; Ross, C.; St-Hilaire, S. Sensory Analysis of Rainbow Trout, Oncorhynchus Mykiss, Fed Enriched Black Soldier Fly Prepupae, Hermetia lllucens. J. World Aquac. Soc. 2011, 42, 34–45. [Google Scholar] [CrossRef]
Ingredients | CTRL | IF |
---|---|---|
Fish meal | 22.8 | 14.1 |
Black soldier fly larvae meal | 0.0 | 10.0 |
Fish oil (trimming by-product) | 1.2 | 2.8 |
Fish oil (whole-fish bycatch) | 9.7 | 7.9 |
Soybean meal | 13.2 | 13.2 |
Guar meal | 10.5 | 10.6 |
Wheat flour | 7.9 | 5.4 |
Maize gluten meal | 26.4 | 26.4 |
Wheat gluten meal | 4.9 | 5.7 |
DL-methionine | 0.3 | 0.3 |
Emulsifier (E484) | 0.2 | 0.2 |
Monoammonium phosphate | 0.8 | 1.2 |
HCl lysine | 0.3 | 0.4 |
Premix vitamins and minerals | 0.5 | 0.5 |
Taurine | 0.2 | 0.3 |
Hydrolyzed shrimp protein (liquid) | 1.0 | 1.0 |
Rovimix® Stay C 35% | 0.1 | 0.1 |
Proximate composition (% as fed) | ||
Crude fat | 15.8 | 15.8 |
Crude protein | 49.2 | 49.2 |
Fibre | 1.4 | 2.4 |
Ash | 5.8 | 5.4 |
Gross energy (MJ/kg) | 19.4 | 19.1 |
Fatty acid composition (% of total fatty acids) | ||
C12:0 | 0.1 | 1.8 |
C14:0 | 1.8 | 2.1 |
C18:0 | 3.2 | 3.1 |
ƩSFA | 18.5 | 20.5 |
C18:1 | 40.5 | 39.3 |
ƩMUFA | 46.5 | 45.3 |
C18:3n-3 | 5.0 | 4.9 |
C20:5n-3 | 2.1 | 2.0 |
C22:6n-3 | 3.5 | 3.2 |
ƩPUFAn-3 | 12.1 | 11.7 |
C18:2n-6 cis | 21.2 | 20.8 |
ƩPUFAn-6 | 22.3 | 21.9 |
ƩPUFA | 35.1 | 34.3 |
Proximate Composition | CTRL | IF | RMSE | p-Value |
---|---|---|---|---|
n | 3 | 3 | ||
Dry matter% | 29.95 | 30.48 | 2.059 | 0.664 |
Ether extract (on dry matter %) | 31.24 | 29.52 | 4.569 | 0.530 |
Crude protein (on dry matter %) | 64.22 | 60.74 | 3.307 | 0.098 |
Ashes (on dry matter %) | 4.47 | 4.60 | 0.181 | 0.267 |
CTRL | IF | RMSE | p-Value | ||
---|---|---|---|---|---|
n | 3 | 3 | |||
Skin | |||||
L* | 71.36 | 73.80 | 6.938 | 0.158 | |
a* | 0.72 | 0.49 | 0.559 | 0.100 | |
b* | 5.61 | 6.02 | 2.090 | 0.428 | |
Fillet | |||||
L* | 44.63 | 44.19 | 5.223 | 0.736 | |
a* | 1.78 | 1.84 | 0.949 | 0.803 | |
b* | −0.54 | −0.64 | 1.079 | 0.700 | |
pH | 7.35 | 7.34 | 0.055 | 0.616 |
Mineral | CTRL | IF | RMSE | p-Value |
---|---|---|---|---|
n | 3 | 3 | ||
Mg | 777.90 | 647.53 | 59.341 | 0.004 |
Al | 145.51 | 145.93 | 5.478 | 0.895 |
P | 6704.21 | 5969.08 | 312.379 | 0.002 |
S | 5925.39 | 5093.25 | 297.032 | 0.001 |
Cl | 1391.65 | 1383.63 | 59.921 | 0.821 |
K | 15117.90 | 14490.40 | 700.077 | 0.152 |
Ca | 433.98 | 533.87 | 45.641 | 0.004 |
Fe | 14.72 | 14.42 | 1.286 | 0.697 |
Cu | 4.19 | 4.21 | 0.997 | 0.978 |
Zn | 14.92 | 12.89 | 1.326 | 0.025 |
Fatty Acid | CTRL | IF | RMSE | p-Value |
---|---|---|---|---|
n | 3 | 3 | ||
C12:0 | 0.04 | 0.15 | 0.061 | 0.009 |
C14:0 | 1.43 | 1.54 | 0.083 | 0.049 |
C16:0 | 11.23 | 11.16 | 0.252 | 0.644 |
C18:0 | 2.81 | 2.61 | 0.121 | 0.017 |
C20:0 | 0.28 | 0.29 | 0.017 | 0.558 |
C22:0 | 0.15 | 0.14 | 0.016 | 0.442 |
ƩSFA | 16.59 | 16.55 | 0.348 | 0.846 |
C16:1 | 3.15 | 3.30 | 0.189 | 0.207 |
C18:1 | 37.86 | 38.59 | 1.018 | 0.242 |
C20:1 | 2.32 | 2.37 | 0.097 | 0.425 |
C22:1 | 1.20 | 1.26 | 0.007 | 0.146 |
ƩMUFA | 45.04 | 46.02 | 1.178 | 0.178 |
C18:3n-3 | 8.33 | 7.35 | 0.946 | 0.103 |
C18:4n-3 | 0.29 | 0.32 | 0.040 | 0.224 |
C20:5n-3 | 1.30 | 1.36 | 0.097 | 0.320 |
C22:6n-3 | 3.85 | 3.85 | 0.401 | 0.980 |
ƩPUFAn-3 | 15.39 | 14.45 | 1.040 | 0.151 |
C18:2n-6 cis | 20.90 | 20.92 | 0.522 | 0.950 |
C18:3n-6 | 0.14 | 0.17 | 0.050 | 0.406 |
C20:2n-6 | 0.69 | 0.65 | 0.073 | 0.299 |
ƩPUFAn-6 | 22.54 | 22.51 | 0.515 | 0.945 |
ƩPUFA | 38.37 | 37.43 | 1.355 | 0.255 |
Others | 3.53 | 3.49 | 0.143 | 0.622 |
n-3/n-6 | 0.68 | 0.64 | 0.042 | 0.119 |
AI | 0.20 | 0.21 | 0.007 | 0.219 |
TI | 0.19 | 0.20 | 0.010 | 0.490 |
h/H | 5.61 | 5.57 | 0.182 | 0.739 |
HFI | 6.32 | 6.15 | 0.235 | 0.238 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Copelotti, E.; Sogari, G.; Andreani, G.; Fronte, B.; Moruzzo, R.; Sangiacomo, C.; Zanzot, A.; Serra, A.; Parisi, G.; Tucciarone, I.; et al. InsectFish—The Use of Insect Meal in the Fish Sector in Creating Farm-to-Fork Value: Chemical and Quality Characteristics of Sparus aurata Fillets Fed Hermetia illucens Larvae-Based Feed. Foods 2025, 14, 3107. https://doi.org/10.3390/foods14173107
Copelotti E, Sogari G, Andreani G, Fronte B, Moruzzo R, Sangiacomo C, Zanzot A, Serra A, Parisi G, Tucciarone I, et al. InsectFish—The Use of Insect Meal in the Fish Sector in Creating Farm-to-Fork Value: Chemical and Quality Characteristics of Sparus aurata Fillets Fed Hermetia illucens Larvae-Based Feed. Foods. 2025; 14(17):3107. https://doi.org/10.3390/foods14173107
Chicago/Turabian StyleCopelotti, Emma, Giovanni Sogari, Giulia Andreani, Baldassare Fronte, Roberta Moruzzo, Chiara Sangiacomo, Asia Zanzot, Andrea Serra, Giuliana Parisi, Isabella Tucciarone, and et al. 2025. "InsectFish—The Use of Insect Meal in the Fish Sector in Creating Farm-to-Fork Value: Chemical and Quality Characteristics of Sparus aurata Fillets Fed Hermetia illucens Larvae-Based Feed" Foods 14, no. 17: 3107. https://doi.org/10.3390/foods14173107
APA StyleCopelotti, E., Sogari, G., Andreani, G., Fronte, B., Moruzzo, R., Sangiacomo, C., Zanzot, A., Serra, A., Parisi, G., Tucciarone, I., Fihurska, L., Carey, M., Campbell, K., & Mancini, S. (2025). InsectFish—The Use of Insect Meal in the Fish Sector in Creating Farm-to-Fork Value: Chemical and Quality Characteristics of Sparus aurata Fillets Fed Hermetia illucens Larvae-Based Feed. Foods, 14(17), 3107. https://doi.org/10.3390/foods14173107