Development of a Multienzyme Isothermal Rapid-Amplification Lateral Flow Assay for On-Site Identification of the Japanese Eel (Anguilla japonica)
Abstract
1. Introduction
2. Materials and Methods
2.1. Design of Species-Specific Primers
2.2. Eel Samples and Genomic DNA (gDNA) Extraction
2.3. MIRA-LFA Procedure
2.4. Assay Performance and Validation
3. Results
3.1. Primer Specificity and Accuracy
3.2. Specificity of the A. japonica MIRA-LFA Assay
3.3. Optimization of Amplification Temperature and Time
3.4. Analytical Sensitivity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yuan, Y.; Yuan, Y.; Dai, Y.; Gong, Y.; Yuan, Y. Development status and trends in the eel farming industry in Asia. N. Am. J. Aquacult. 2022, 84, 3–17. [Google Scholar] [CrossRef]
- Rezaei, E.E.; Webber, H.; Asseng, S.; Boote, K.; Durand, J.L.; Ewert, F.; Martre, P.; MacCarthy, D.S. Climate change impacts on crop yields. Net. Rev. Earth Environ. 2023, 14, 831–846. [Google Scholar] [CrossRef]
- Yuan, X.; Li, S.; Chen, J.; Yu, H.; Yang, T.; Wang, C.; Huang, S.; Chen, H.; Ao, X. Impacts of global climate change on agricultural production: A comprehensive review. Agronomy 2024, 14, 1360. [Google Scholar] [CrossRef]
- Righton, D.; Piper, A.; Aarestrup, K.; Amilhat, E.; Belpaire, C.; Casselman, J.; Castonguay, M.; Díaz, E.; Dörner, H.; Faliex, E.; et al. Important Questions to Progress Science and Sustainable Management of Anguillid Eels. Fish Fish. 2021, 22, 762–788. [Google Scholar] [CrossRef]
- Musing, L.; Shiraishi, H.; Crook, V.; Gollock, M.; Levy, E.; Kecse-Nagy, K. Implementation of the CITES Appendix II listing of European eel Anguilla anguilla. CITES AC30 2018, 18, 1. [Google Scholar]
- Jacoby, D.; Gollock, M. Anguilla japonica. In The IUCN Red List of Threatened Species; International Union for Conservation of Nature: Gland, Switzerland, 2014; p. eT166184A1117791. [Google Scholar]
- Pike, C.; Crook, V.; Gollock, M. Anguilla anguilla. In The IUCN Red List of Threatened Species; International Union for Conservation of Nature: Gland, Switzerland, 2020; p. eT60344A152845178. [Google Scholar]
- Pike, C.; Casselman, J.; Crook, V.; DeLucia, M.B.; Jacoby, D.; Gollock, M. Anguilla rostrata. In The IUCN Red List of Threatened Species; International Union for Conservation of Nature: Gland, Switzerland, 2023; p. eT191108A129638652. [Google Scholar]
- Alonso, A.I.; van Uhm, D.P. The illegal trade in European eels: Outsourcing, funding, and complex symbiotic-antithetical relationships. Trends Organ. Crime 2023, 26, 293–307. [Google Scholar] [CrossRef]
- Richards, J.L.; Sheng, V.; Yi, C.W.; Ying, C.L.; Ting, N.S.; Sadovy, Y.; Baker, D. Prevalence of critically endangered European eel (Anguilla anguilla) in Hong Kong supermarkets. Sci. Adv. 2020, 6, eaay0317. [Google Scholar] [CrossRef]
- Barić, O.; Radočaj, T.; Conides, A.; Kitanović, N.; Jug-Dujaković, J.; Gavrilović, A. Functional morphology as an indicator of European eel population status. Diversity 2023, 15, 1223. [Google Scholar] [CrossRef]
- Noh, E.S.; Dong, C.M.; Park, H.J.; Kim, E.M.; Jung, H.S.; Kong, H.J.; Kim, Y.O. Development of species identification techniques for anguillid eels using species-specific genetic markers. Front. Mar. Sci. 2025, 12, 1518562. [Google Scholar] [CrossRef]
- Ely, T.; Patten, N.; Naisbett-Jones, L.C.; Spencer, E.T.; Willette, D.A.; Marko, P.B. Molecular identification of critically endangered European eels (Anguilla anguilla) in US retail outlets. PeerJ 2023, 11, e14531. [Google Scholar] [CrossRef] [PubMed]
- Arai, T.; Taha, H.; Mohd-Riduan, M.N.; Mokti, S.S.A. Molecular and morphological evidence for the identity of the giant mottled eel, Anguilla marmorata in Southeast Asia. Trop. Ecol. 2020, 61, 429–436. [Google Scholar] [CrossRef]
- Takeuchi, A.; Sado, T.; Gotoh, R.O.; Watanabe, S.; Tsukamoto, K.; Miya, M. New PCR primers for metabarcoding environmental DNA from freshwater eels, genus Anguilla. Sci. Rep. 2019, 9, 7977. [Google Scholar] [CrossRef]
- Wells, J.D.; Stevens, J.R. Application of DNA-based methods in forensic entomology. Annu. Rev. Entomol. 2008, 53, 103–120. [Google Scholar] [CrossRef]
- Singh, M.; Young, R.G.; Hellberg, R.S.; Hanner, R.H.; Corradini, M.G.; Farber, J.M. Twenty-three years of PCR-based seafood authentication assay development: What have we learned? Compr. Rev. Food Sci. Food Saf. 2024, 23, e13401. [Google Scholar] [CrossRef]
- Watanabe, S.; Minegishi, Y.; Yoshinaga, T.; Aoyama, J.; Tsukamoto, K. A quick method for species identification of Japanese eel (Anguilla japonica) using real-time PCR: An onboard application for use during sampling surveys. Mar. Biotechnol. 2024, 6, 566–574. [Google Scholar] [CrossRef]
- Srivastava, P.; Prasad, D. Isothermal nucleic acid amplification and its uses in modern diagnostic technologies. 3 Biotech 2023, 13, 200. [Google Scholar] [CrossRef]
- Glökler, J.; Lim, T.S.; Ida, J.; Frohme, M. Isothermal amplifications—A comprehensive review on current methods. Crit. Rev. Biochem. Mol. Biol. 2021, 56, 543–586. [Google Scholar] [CrossRef]
- Tan, M.; Liao, C.; Liang, L.; Yi, X.; Zhou, Z.; Wei, G. Recent advances in recombinase polymerase amplification: Principle, advantages, disadvantages and applications. Front. Cell. Infect. Microbiol. 2022, 12, 1019071. [Google Scholar] [CrossRef]
- Heng, P.; Liu, J.; Song, Z.; Wu, C.; Yu, X.; He, Y. Rapid detection of Staphylococcus aureus using a novel multienzyme isothermal rapid amplification technique. Front. Microbiol. 2022, 13, 1027785. [Google Scholar] [CrossRef]
- Chen, H.; Zhao, Z.; Liang, L.; Dong, M.; Zhang, X.; Ma, C.; Lu, Y.; You, J.; Feng, X. Development of two novel on-site detection visualization methods for murine hepatitis virus based on the multienzyme isothermal rapid amplification. Microb. Pathog. 2024, 193, 106776. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, J.; Xu, X.; Guo, L.; Xu, L.; Sun, M.; Hu, S.; Kuang, H.; Xu, C.; Li, A. An overview for the nanoparticles-based quantitative lateral flow assay. Small Methods 2021, 6, 2101143. [Google Scholar] [CrossRef] [PubMed]
- Kumar, D.; Kumar, R.R.; Rana, P.; Mendiratta, S.K.; Agarwal, R.K.; Singh, P.; Kumari, S.; Jawla, J. On point identification of species origin of food animals by recombinase polymerase amplification–lateral flow (RPA-LF) assay targeting mitochondrial gene sequences. J. Food Sci. Technol. 2021, 58, 1286–1294. [Google Scholar] [CrossRef] [PubMed]
- Jarvi, S.I.; Atkinson, E.S.; Kaluna, L.M.; Snook, K.A.; Steel, A. Development of a recombinase polymerase amplification (RPA-EXO) and lateral flow assay (RPA-LFA) based on the ITS1 gene for the detection of Angiostrongylus cantonensis in gastropod intermediate hosts. Parasitology 2021, 148, 251–258. [Google Scholar] [CrossRef] [PubMed]
- Filonzi, L.; Ardenghi, A.; Rontani, P.M.; Voccia, A.; Ferrari, C.; Papa, R.; Bellin, N.; Nonnis Marzano, F. Molecular barcoding: A tool to guarantee correct seafood labelling and quality and preserve the conservation of endangered species. Foods 2023, 12, 2420. [Google Scholar] [CrossRef]
- Park, S.B.; Zhang, Y. Development of multienzyme isothermal rapid amplification (MIRA) combined with lateral-flow dipstick (LFD) assay to detect species-specific tlh and pathogenic trh and tdh genes of Vibrio parahaemolyticus. Pathogens 2024, 13, 57. [Google Scholar] [CrossRef]
- Spielmann, G.; Ziegler, S.; Haszprunar, G.; Busch, U.; Huber, I.; Pavlovic, M. Using loop-mediated isothermal amplification for fast species delimitation in eels (genus Anguilla), with special reference to the European eel (Anguilla anguilla). Food Control. 2019, 101, 156–162. [Google Scholar] [CrossRef]
- Holz, N.; Wax, N.; Oest, M.; Fischer, M. REASSURED test system for food control-Preparation of LAMP reaction mixtures for in-field identification of plant and animal species. Appl. Sci. 2024, 14, 10946. [Google Scholar] [CrossRef]
- Cardeñosa, D.; Quinlan, J.; Shea, K.H.; Chapman, D.D. Multiplex real-time PCR assay to detect illegal trade of CITES-listed shark species. Sci. Rep. 2018, 8, 16313. [Google Scholar] [CrossRef]
- Li, T.; Jalbani, Y.M.; Zhang, G.; Zhao, Z.; Wang, Z.; Zhao, Y.; Zhao, X.; Chen, A. Rapid authentication of mutton products by recombinase polymerase amplification coupled with lateral flow dipsticks. Sens. Actuators B-Chem. 2019, 290, 242–248. [Google Scholar] [CrossRef]
- Velasco, A.; Ramilo-Fernández, G.; Denis, F.; Oliveira, L.; Shum, P.; Silva, H.; Sotelo, C.G. A new rapid method for the authentication of common octopus (Octopus vulgaris) in seafood products using recombinase polymerase amplification (rpa) and lateral flow assay (lfa). Foods 2021, 10, 1825. [Google Scholar] [CrossRef]
- Ding, W.; Fang, T.; Liu, Y.; Zhang, L.; Wang, B.; Sun, W. Multi-throughput POCT technology based on RPA and CRISPR/Cas12a and its application in detection of adulterated meat. ACS Food Sci. Technol. 2023, 3, 514–523. [Google Scholar] [CrossRef]
Primer Name | Sequence (5′ to 3′) | Modification | Length |
---|---|---|---|
AJ-MIRAF | CAGTACTTCTCGCTGTCGCATTCCTGACACTCCTG | 5′-FAM | 35 bp |
AJ-MIRAR | GCCAGTACGAATAAAATTCCTAGGTTTAGC | 5′-Biotin | 30 bp |
Species | Accession Number | Number of Data |
---|---|---|
Anguilla japonica | NFIRD-FI-TS-0073097~0073104 | 8 |
Anguilla anguilla | NFRDI-FI-TS-0073157~0073164 | 8 |
Anguilla rostrata | NFRDI-FI-TS-0077939~0077940 | 2 |
Anguilla bicolor pacifica | NFRDI-FI-TS-0075207~0075214 | 8 |
Anguilla marmorata | NFRDI-FI-TS-0073247~0073254 | 8 |
DNA Concentration | 39 °C | 24 °C | ||||
---|---|---|---|---|---|---|
5 min | 10 min | 15 min | 15 min | 20 min | 25 min | |
10 ng/μL | ++ | +++ | +++ | + | ++ | ++ |
1 ng/μL | − | +++ | +++ | − | − | − |
0.1 ng/μL | − | +++ | +++ | − | − | − |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noh, E.S.; Dong, C.-M.; Jung, H.S.; Park, J.; Hwang, I.; Kang, J.-H. Development of a Multienzyme Isothermal Rapid-Amplification Lateral Flow Assay for On-Site Identification of the Japanese Eel (Anguilla japonica). Foods 2025, 14, 3100. https://doi.org/10.3390/foods14173100
Noh ES, Dong C-M, Jung HS, Park J, Hwang I, Kang J-H. Development of a Multienzyme Isothermal Rapid-Amplification Lateral Flow Assay for On-Site Identification of the Japanese Eel (Anguilla japonica). Foods. 2025; 14(17):3100. https://doi.org/10.3390/foods14173100
Chicago/Turabian StyleNoh, Eun Soo, Chun-Mae Dong, Hyo Sun Jung, Jungwook Park, Injun Hwang, and Jung-Ha Kang. 2025. "Development of a Multienzyme Isothermal Rapid-Amplification Lateral Flow Assay for On-Site Identification of the Japanese Eel (Anguilla japonica)" Foods 14, no. 17: 3100. https://doi.org/10.3390/foods14173100
APA StyleNoh, E. S., Dong, C.-M., Jung, H. S., Park, J., Hwang, I., & Kang, J.-H. (2025). Development of a Multienzyme Isothermal Rapid-Amplification Lateral Flow Assay for On-Site Identification of the Japanese Eel (Anguilla japonica). Foods, 14(17), 3100. https://doi.org/10.3390/foods14173100