Carbon Dots as Multifunctional Nanofillers in Sustainable Food Packaging: A Comprehensive Review
Abstract
1. Introduction
2. Preparation of CDs for Food Packaging Applications
2.1. Top–Down Approaches
2.2. Bottom–Up Approaches
Methods of Synthesis of Carbon Dots from Food-Derived Materials
3. Strategies for the Preparation of CD Composite Films
4. CD Films for Food Packaging Applications
4.1. CDs as Reinforcing Agents for Modified Packaging Films
4.1.1. Improvement of Mechanical Properties
4.1.2. Promoting Barrier Properties
4.2. CDs Serve as Active Agents for Regulating the Internal Packaging Environment and Maintaining Food Freshness
4.2.1. Antioxidant Properties
4.2.2. Antimicrobial Properties
4.3. CDs as Indicator for Monitoring Food Freshness
5. Toxicity of CD-Based Films
6. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Khan, S.; Hosseinidoust, Z.; Li, Y.; Filipe, C.D.M.; Didar, T.F. Smart food packaging commercialization. Nat. Rev. Bioeng. 2024, 2, 535–537. [Google Scholar] [CrossRef]
- Sethulekshmi, A.S.; Aparna, A.; Parvathi, P.; Pathak, R.; Punetha, V.D.; Selvaraj, M.; Saritha, A. Advances in doped carbon quantum dots: Synthesis, mechanisms, and applications in sensing technologies. Chem. Eng. J. 2025, 514, 163262. [Google Scholar] [CrossRef]
- Lin, L.; Xue, L.; Duraiarasan, S.; Haiying, C. Preparation of ε-polylysine/chitosan nanofibers for food packaging against Salmonella on chicken. Food Packag. Shelf Life 2018, 17, 134–141. [Google Scholar] [CrossRef]
- Zhou, C.; Abdel-Samie, M.A.; Li, C.; Cui, H.; Lin, L. Active packaging based on swim bladder gelatin/galangal root oil nanofibers: Preparation, properties and antibacterial application. Food Packag. Shelf Life 2020, 26, 100586. [Google Scholar] [CrossRef]
- Ding, F.; Hu, B.; Lan, S.; Wang, H. Flexographic and screen printing of carboxymethyl chitosan based edible inks for food packaging applications. Food Packag. Shelf Life 2020, 26, 100559. [Google Scholar] [CrossRef]
- Liang, Y.; He, J.; Guo, B. Functional Hydrogels as Wound Dressing to Enhance Wound Healing. ACS Nano 2021, 15, 12687–12722. [Google Scholar] [CrossRef] [PubMed]
- Azam, K.; Akhtar, S.; Gong, Y.Y.; Routledge, M.N.; Ismail, A.; Oliveira, C.A.F.; Iqbal, S.Z.; Ali, H. Evaluation of the impact of activated carbon-based filtration system on the concentration of aflatoxins and selected heavy metals in roasted coffee. Food Control. 2021, 121, 107583. [Google Scholar] [CrossRef]
- Xu, X.; Ray, R.; Gu, Y.; Ploehn, H.J.; Gearheart, L.; Raker, K.; Scrivens, W.A. Electrophoretic Analysis and Purification of Fluorescent Single-Walled Carbon Nanotube Fragments. J. Am. Chem. Soc. 2004, 126, 12736–12737. [Google Scholar] [CrossRef]
- Sun, Y.-P.; Zhou, B.; Lin, Y.; Wang, W.; Fernando, K.A.S.; Pathak, P.; Meziani, M.J.; Harruff, B.A.; Wang, X.; Wang, H.; et al. Quantum-Sized Carbon Dots for Bright and Colorful Photoluminescence. J. Am. Chem. Soc. 2006, 128, 7756–7757. [Google Scholar] [CrossRef]
- Xu, C.; Zhou, S.; Song, H.; Hu, H.; Yang, Y.; Zhang, X.; Ma, S.; Feng, X.; Pan, Y.; Gong, S.; et al. Green tea polyphenols-derived hybrid materials in manufacturing, environment, food and healthcare. Nano Today 2023, 52, 101990. [Google Scholar] [CrossRef]
- Kang, Z.; Lee, S.-T. Carbon dots: Advances in nanocarbon applications. Nanoscale 2019, 11, 19214–19224. [Google Scholar] [CrossRef]
- Qi, H.; Teng, M.; Liu, M.; Liu, S.; Li, J.; Yu, H.; Teng, C.; Huang, Z.; Liu, H.; Shao, Q.; et al. Biomass-derived nitrogen-doped carbon quantum dots: Highly selective fluorescent probe for detecting Fe3+ ions and tetracyclines. J. Colloid Interface Sci. 2019, 539, 332–341. [Google Scholar] [CrossRef]
- Duan, H.; Zhang, M.; Deng, Y.; Zheng, L.; Wang, T.; Sun, B.; Chen, G. Multifunctional carbon dots with full-band UV-to-HEBL shielding and antibacterial properties in polyvinyl alcohol film for enhancing food preservation. Food Packag. Shelf Life 2025, 48, 101468. [Google Scholar] [CrossRef]
- Hassan, M.M.; Xu, Y.; Zareef, M.; Li, H.; Rong, Y.; Chen, Q. Recent advances of nanomaterial-based optical sensor for the detection of benzimidazole fungicides in food: A review. Crit. Rev. Food Sci. Nutr. 2023, 63, 2851–2872. [Google Scholar] [CrossRef]
- Das, R.; Bandyopadhyay, R.; Pramanik, P. Carbon quantum dots from natural resource: A review. Mater. Today Chem. 2018, 8, 96–109. [Google Scholar] [CrossRef]
- Cuevas, A.; Campos, B.B.; Romero, R.; Algarra, M.; Vázquez, M.I.; Benavente, J. Eco-friendly modification of a regenerated cellulose based film by silicon, carbon and N-doped carbon quantum dots. Carbohydr. Polym. 2019, 206, 238–244. [Google Scholar] [CrossRef] [PubMed]
- Deepika Kumar, L.; Gaikwad, K.K. Carbon dots for food packaging applications. Sustain. Food Technol. 2023, 1, 185–199. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, Z.; Wang, X.; Hao, Y.; Yang, J.; Wang, H.; Qu, S. Recent Advances in Highly Luminescent Carbon Dots. Adv. Funct. Mater. 2025, 35, 2420587. [Google Scholar] [CrossRef]
- Moradi, M.; Molaei, R.; Kousheh, S.A.; Guimarães, J.T.; McClements, D.J. Carbon dots synthesized from microorganisms and food by-products: Active and smart food packaging applications. Crit. Rev. Food Sci. Nutr. 2023, 63, 1943–1959. [Google Scholar] [CrossRef]
- Egorova, M.N.; Kapitonov, A.N.; Alekseev, A.A.; Obraztsova, E.A. Properties of Carbon Dots Synthesized Solvothermally from Citric Acid and Urea. J. Struct. Chem. 2020, 61, 811–817. [Google Scholar] [CrossRef]
- Abdelaal, S.H.; El-Kosasy, A.M.; Abdelrahman, M.H. One-pot synthesis of N-doped carbon dots from microwave-irradiated egg white: Application to raspberry ketone assay by photo-induced charge transfer fluorescence sensing. Chem. Pap. 2023, 77, 3867–3879. [Google Scholar] [CrossRef]
- Ayisha Naziba, T.; Praveen Kumar, D.; Karthikeyan, S.; Sriramajayam, S.; Djanaguiraman, M.; Sundaram, S.; Ghamari, M.; Prasada Rao, R.; Ramakrishna, S.; Ramesh, D. Biomass Derived Biofluorescent Carbon Dots for Energy Applications: Current Progress and Prospects. Chem. Rec. 2024, 24, e202400030. [Google Scholar] [CrossRef]
- Chen, J.; Guo, X.; Tan, R.; Huang, M.; Ren, J.; Liu, W.; Wang, M.; Li, B.; Ma, Z.; Zhang, Q. Achieving the simultaneous improvement of degradation, thermal, and mechanical properties of polylactic acid composite films by carbon quantum dots. Compos. Part B Eng. 2025, 299, 112442. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Kiani-Salmi, N.; Tavassoli, M.; McClements, D.J.; Ehsani, A.; Khezerlou, A.; Sani, M.A. Monitoring food spoilage using smart plant-based packaging materials: Methylcellulose/soy protein films loaded with betacyanin and carbon dots. Future Foods 2025, 11, 100610. [Google Scholar] [CrossRef]
- Ponnusamy, A.; Khan, A.; Prodpran, T.; Kim, J.T.; Benjakul, S.; Rhim, J.-W. Active packaging film based on chitosan/gelatin blend incorporated with mango peel carbon dots: Properties and shelf life extension of minced pork. Int. J. Biol. Macromol. 2025, 288, 138692. [Google Scholar] [CrossRef] [PubMed]
- Kuchaiyaphum, P.; Amornsakchai, T.; Chotichayapong, C.; Saengsuwan, N.; Yordsri, V.; Thanachayanont, C.; Batpo, P.; Sotawong, P. Pineapple stem starch-based films incorporated with pineapple leaf carbon dots as functional filler for active food packaging applications. Int. J. Biol. Macromol. 2024, 282, 137224. [Google Scholar] [CrossRef]
- Luan, C.; Li, Z.; Lin, J.; Lin, X.; Zhu, J.; Feng, J.; Sun, X.; Wu, Y.; Yang, J. Designing high-performance fruit packaging: Gelatin films enriched with marine seaweed polysaccharides and carbon dots. Food Hydrocoll. 2025, 163, 111056. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, J.; Huang, X.; Zhai, X.; Li, Z.; Shi, J.; Sobhy, R.; Khalifa, I.; Zou, X. Lemon-derived carbon quantum dots incorporated guar gum/sodium alginate films with enhanced the preservability for blanched asparagus active packaging. Food Res. Int. 2025, 202, 115736. [Google Scholar] [CrossRef] [PubMed]
- Hadavifar, S.; Abedi-Firoozjah, R.; Bahramian, B.; Jafari, N.; Sadeghi, S.M.; Majnouni, S.; Ebrahimi, B.; Ehsani, A.; Tavassoli, M. Multifunctional performance of chitosan/soy protein isolation-based films impregnated carbon dots/anthocyanin derived from purple hull pistachio for tracking and extending the shelf life of fish. Food Hydrocoll. 2025, 159, 110678. [Google Scholar] [CrossRef]
- Chen, J.; Liao, L.; Shang, L.; Du, L.; Lai, Y.; Liu, J.; Yang, Z.; Ma, Y.; Peng, W.; Zhang, F. Mechanical and thermo-oxidative resistance properties of natural rubber film reinforced by orange peel-based carbon dots. Ind. Crops Prod. 2025, 223, 120150. [Google Scholar] [CrossRef]
- Chen, K.; Zhang, M.; Bhandari, B.; Deng, D. 3D printed cinnamon essential oil/banana peel carbon dots loaded corn starch/gelatin bilayer film with enhanced functionality for food packaging application. Food Chem. 2024, 448, 139176. [Google Scholar] [CrossRef] [PubMed]
- Qin, W.; Zou, L.; Hou, Y.; Wu, Z.; Loy, D.A.; Lin, D. Characterization of novel anthocyanins film @ carbon quantum dot nanofiber intelligent active double-layer film, physicochemical properties and fresh-keeping monitoring in Ictalurus punctatus fish. Chem. Eng. J. 2024, 496, 154041. [Google Scholar] [CrossRef]
- Wen, F.; Li, P.; Yan, H.; Su, W. Turmeric carbon quantum dots enhanced chitosan nanocomposite films based on photodynamic inactivation technology for antibacterial food packaging. Carbohydr. Polym. 2023, 311, 120784. [Google Scholar] [CrossRef]
- Yang, L.; Jackson, J.C.; Camargos, C.H.M.; Maia, M.T.; Martinez, D.S.T.; de Paula, A.J.; Rezende, C.A.; Faria, A.F. Thin-Film Composite Polyamide Membranes Decorated with Photoactive Carbon Dots for Antimicrobial Applications. ACS Appl. Nano Mater. 2024, 7, 1477–1490. [Google Scholar] [CrossRef]
- Roy, S.; Ezati, P.; Rhim, J.-W. Gelatin/Carrageenan-Based Functional Films with Carbon Dots from Enoki Mushroom for Active Food Packaging Applications. ACS Appl. Polym. Mater. 2021, 3, 6437–6445. [Google Scholar] [CrossRef]
- Jafarzadeh, S.; Jafari, S.M.; Salehabadi, A.; Nafchi, A.M.; Kumar, U.S.U.; Khalil, H.P.S.A. Biodegradable green packaging with antimicrobial functions based on the bioactive compounds from tropical plants and their by-products. Trends Food Sci. Technol. 2020, 100, 262–277. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, M.; Mujumdar, A.S.; Adhikari, B.; Wang, H. Preparation of a Novel Carbon Dot/Polyvinyl Alcohol Composite Film and Its Application in Food Preservation. ACS Appl. Mater. Interfaces 2022, 14, 37528–37539. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, J.; Zhou, L.; Yasen, N.; Abudinaibi, A.; Huang, X.; Zhai, X.; Li, Z.; Shi, J.; Sobhy, R.; et al. Two different fabrication method of high-hydrophobic Bi-layer indicators based on sodium alginate-polyvinyl alcohol/chitosan-zein incorporated with alizarin@ZIF-8 for beef freshness visualization. Int. J. Biol. Macromol. 2025, 307, 141954. [Google Scholar] [CrossRef]
- Commission, E. Commission Regulation (EU) No 10/2011 of 14 January 2011 on Plastic Materials and Articles Intended to Come into Contact with Food; Official Journal of the European Union: Brussels, Belgium, 2011; pp. 1–89. [Google Scholar]
- Cui, F.; Wang, X.; Wang, D.; Ren, L.; Meng, Y.; Ma, R.; Wang, S.; Liu, Z.; Jiang, Y.; Lu, Y.; et al. Multifunctional visible light photocatalytic carbon dots synergize with reactive oxygen species for anti-quorum sensing and anti-bacteria for salmon preservation. Chem. Eng. J. 2024, 499, 156546. [Google Scholar] [CrossRef]
- Ramezani, G.; Assadpour, E.; Zhang, W.; Jafari, S.M. Carbon nanomaterial-based sensors for smart packaging of food products. Ind. Crops Prod. 2025, 232, 121315. [Google Scholar] [CrossRef]
- Ezati, P.; Rhim, J.-W.; Molaei, R.; Rezaei, Z. Carbon quantum dots-based antifungal coating film for active packaging application of avocado. Food Packag. Shelf Life 2022, 33, 100878. [Google Scholar] [CrossRef]
- Min, S.; Ezati, P.; Rhim, J.-W. Gelatin-based packaging material incorporated with potato skins carbon dots as functional filler. Ind. Crops Prod. 2022, 181, 114820. [Google Scholar] [CrossRef]
- Ananda, B.; Radha Krushna, B.R.; Gagana, M.; Sharma, S.C.; Ray, S.; Subha, V.J.; Kumari, B.N.; Manjunatha, K.; Wu, S.Y.; Nagabhushana, H. Biodegradable chitosan-based carbon dot-infused intelligent films with UV-blocking and shape memory properties for shrimp preservation and milk freshness monitoring. J. Ind. Eng. Chem. 2025. [Google Scholar] [CrossRef]
- Ponnusamy, A.; Khan, A.; Prodpran, T.; Rhim, J.-W.; Benjakul, S. Multifunctional fish gelatin film incorporated with chitosan carbon dots and butterfly pea flower anthocyanins for active/smart packaging of Pacific white shrimp. Food Biosci. 2024, 62, 105483. [Google Scholar] [CrossRef]
- Hong, S.J.; Riahi, Z.; Shin, G.H.; Kim, J.T. Poly(vinyl alcohol)-based multifunctional smart packaging films with carbon dots-loaded metal-organic frameworks for freshness indicator and shelf-life extension of shrimp. Prog. Org. Coat. 2025, 198, 108899. [Google Scholar] [CrossRef]
- S, F.C.; Murali, A.M.; S, S.K.; Daniel, S. Probing the food packaging applications of green carbon quantum dots. J. Food Eng. 2025, 397, 112575. [Google Scholar] [CrossRef]
- Tammina, S.K.; Priyadarshi, R.; Packialakshmi, J.S.; Rhim, J.-W. Functional edible coating based on carbon dots and gelatin/cellulose nanofibers for fresh egg preservation. Food Packag. Shelf Life 2025, 47, 101430. [Google Scholar] [CrossRef]
- Yang, J.; Li, Y.; Liu, B.; Wang, K.; Li, H.; Peng, L. Carboxymethyl cellulose-based multifunctional film integrated with polyphenol-rich extract and carbon dots from coffee husk waste for active food packaging applications. Food Chem. 2024, 448, 139143. [Google Scholar] [CrossRef]
- Liu, T.; Jiang, L.; Wang, Y.; Li, M.; Li, Z.; Liu, Y. Bilayer pH-sensitive colorimetric indicator films based on chitosan/purple carrot extract and gellan gum/Mg-carbon dots for visual monitoring of pork freshness. Food Packag. Shelf Life 2024, 45, 101336. [Google Scholar] [CrossRef]
- Zhang, L.; Peng, L.; Liang, S.; Xie, X.; Lyu, S.; Wang, S. Poly(vinyl alcohol)/nanocellulose film integrated with phenolic waste-based carbon dots for ultraviolet-blocking and flame retardant applications. Prog. Org. Coat. 2023, 184, 107872. [Google Scholar] [CrossRef]
- Ribeiro, E.R.F.R.; Correa, L.B.; Ricci-Junior, E.; Souza, P.F.N.; dos Santos, C.C.; de Menezes, A.S.; Rosas, E.C.; Bhattarai, P.; Attia, M.F.; Zhu, L.; et al. Chitosan-graphene quantum dot based active film as smart wound dressing. J. Drug Deliv. Sci. Technol. 2023, 80, 104093. [Google Scholar] [CrossRef]
- Jayakumar, A.; Radoor, S.; Shin, G.H.; Kim, J.T. Lemon peel-based fluorescent carbon quantum dots as a functional filler in polyvinyl alcohol-based films for active packaging applications. Ind. Crops Prod. 2024, 209, 117968. [Google Scholar] [CrossRef]
- Tammina, S.K.; Rhim, J.-W. Carboxymethylcellulose/agar-based functional film incorporated with nitrogen-doped polyethylene glycol-derived carbon dots for active packaging applications. Chemosphere 2023, 313, 137627. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.; Li, Z.; Liu, J.; Yu, J.; Ren, J.; Li, Q. Combining in/ex-situ synthesis of ZIF-8@CNF composite films with enhanced water vapor barrier and antibacterial properties for fruit preservation. Chem. Eng. J. 2024, 502, 158092. [Google Scholar] [CrossRef]
- Wang, L.; Liu, X.; Qi, P.; Sun, J.; Jiang, S.; Li, H.; Gu, X.; Zhang, S. Enhancing the thermostability, UV shielding and antimicrobial activity of transparent chitosan film by carbon quantum dots containing N/P. Carbohydr. Polym. 2022, 278, 118957. [Google Scholar] [CrossRef]
- Khan, A.; Ezati, P.; Rhim, J.-W. Chitosan/Starch-Based Active Packaging Film with N, P-Doped Carbon Dots for Meat Packaging. ACS Appl. Bio Mater. 2023, 6, 1294–1305. [Google Scholar] [CrossRef]
- Khan, A.; Ezati, P.; Rhim, J.-W. Chitosan/gelatin-based multifunctional film integrated with green tea carbon dots to extend the shelf life of pork. Food Packag. Shelf Life 2023, 37, 101075. [Google Scholar] [CrossRef]
- Wang, D.; Wang, X.; Zhou, S.; Ren, L.; Meng, Y.; Ma, R.; Wang, S.; Liu, Z.; Alamri, A.S.; Alhomrani, M.; et al. Radish residue carbon dots-based novel starch/chitosan film with high antioxidant, biocompatibility, and antibacterial activities for salmon fillets’ active packaging. Int. J. Biol. Macromol. 2024, 273, 133107. [Google Scholar] [CrossRef]
- Cheng, S.; Li, J.; Ma, J.; Tan, M. Active polyvinyl alcohol packaging films incorporated with spermine functionalized carbon dots as antibacterial agents for salmon preservation. Food Packag. Shelf Life 2024, 46, 101414. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, M.; Wang, H.; Devahastin, S. Effect of addition of carbon dots to the frying oils on oxidative stabilities and quality changes of fried meatballs during refrigerated storage. Meat Sci. 2022, 185, 108715. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, J.; Hu, X.; Huang, X.; Zhang, X.; Zou, X.; Shi, J. Preparation of edible antibacterial films based on corn starch/carbon nanodots for bioactive food packaging. Food Chem. 2024, 444, 138467. [Google Scholar] [CrossRef] [PubMed]
- Gong, D.; Zhang, X.; Li, J.; Li, Y.; Guo, J.; Zhang, X.; Zhang, W. Carbon dot/g-C3N4-mediated self-activated antimicrobial nanocomposite films for active packaging applications. Food Chem. 2024, 438, 137939. [Google Scholar] [CrossRef]
- Sharma, N.; Sharma, A.; Lee, H.-J. The antioxidant properties of green carbon dots: A review. Environ. Chem. Lett. 2025, 23, 1061–1109. [Google Scholar] [CrossRef]
- Das, P.; Ganguly, S.; Margel, S.; Gedanken, A. Immobilization of Heteroatom-Doped Carbon Dots onto Nonpolar Plastics for Antifogging, Antioxidant, and Food Monitoring Applications. Langmuir 2021, 37, 3508–3520. [Google Scholar] [CrossRef]
- Gulcin, İ. Antioxidants and antioxidant methods: An updated overview. Arch. Toxicol. 2020, 94, 651–715. [Google Scholar] [CrossRef]
- Gao, F.; Liu, J.; Gong, P.; Yang, Y.; Jiang, Y. Carbon dots as potential antioxidants for the scavenging of multi-reactive oxygen and nitrogen species. Chem. Eng. J. 2023, 462, 142338. [Google Scholar] [CrossRef]
- Singh, S.R.; Kanamadi, G.R.; Thokchom, B.; Bhavi, S.M.; Abbigeri, M.B.; Joshi, P.; Kulkarni, S.R.; Padti, A.C.; Harini, B.P.; Yarajarla, R.B. A study on the antioxidant, cytotoxicity, and coagulation potential of carbon quantum dots derived from the leaves of Lagerstroemia speciosa. Hybrid Adv. 2025, 10, 100430. [Google Scholar] [CrossRef]
- Zhao, W.-B.; Liu, K.-K.; Wang, Y.; Li, F.-K.; Guo, R.; Song, S.-Y.; Shan, C.-X. Antibacterial Carbon Dots: Mechanisms, Design, and Applications. Adv. Healthc. Mater. 2023, 12, 2300324. [Google Scholar] [CrossRef]
- Deng, S.; Ma, Y.; Chen, A.; Cai, C.; Zhan, Q.; He, J.; Luo, J.; Zheng, J.; Lei, C. Fabrication of silver phosphate@carbon dots-embedded hydrogels with photodynamic and cationic synergistic antibacterial activity. Chem. Eng. Sci. 2025, 310, 121548. [Google Scholar] [CrossRef]
- Hao, X.; Huang, L.; Zhao, C.; Chen, S.; Lin, W.; Lin, Y.; Zhang, L.; Sun Aa Miao, C.; Lin, X.; Chen, M.; et al. Antibacterial activity of positively charged carbon quantum dots without detectable resistance for wound healing with mixed bacteria infection. Mater. Sci. Eng. C 2021, 123, 111971. [Google Scholar] [CrossRef]
- Liu, J.; Cheng, W.; Zhang, K.; Liu, H.; Li, J.; Tressel, J.; Chen, S. High-Efficiency Photodynamic Antibacterial Activity of NH2-MIL-101(Fe)@MoS2/ZnO Ternary Composites. ACS Appl. Bio Mater. 2022, 5, 3912–3922. [Google Scholar] [CrossRef]
- Wu, S.; Xu, C.; Zhu, Y.; Zheng, L.; Zhang, L.; Hu, Y.; Yu, B.; Wang, Y.; Xu, F.-J. Biofilm-Sensitive Photodynamic Nanoparticles for Enhanced Penetration and Antibacterial Efficiency. Adv. Funct. Mater. 2021, 31, 2103591. [Google Scholar] [CrossRef]
- Sun, J.; Song, L.; Fan, Y.; Tian, L.; Luan, S.; Niu, S.; Ren, L.; Ming, W.; Zhao, J. Synergistic Photodynamic and Photothermal Antibacterial Nanocomposite Membrane Triggered by Single NIR Light Source. ACS Appl. Mater. Interfaces 2019, 11, 26581–26589. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, H.; Wang, Y.; Shiu, B.-C.; Lin, J.-H.; Zhang, S.; Lou, C.-W.; Li, T.-T. Synergistic antibacterial strategy based on photodynamic therapy: Progress and perspectives. Chem. Eng. J. 2022, 450, 138129. [Google Scholar] [CrossRef]
- Wang, D.; Dong, H.; Jiang, Y.; Ren, L.; Meng, Y.; Ma, R.; Wang, S.; Liu, Z.; Li, X.; Cui, F.; et al. Super antioxidant and high antibacterial ability bi-functional xylitol/2-hydroxypropyl-β-cyclodextrin carbon dots with hydroxyl-functionalized for rainbow trout preservation. Food Res. Int. 2025, 203, 115792. [Google Scholar] [CrossRef]
- Zheng, M.; Chen, M.; Xiao, R.; Feng, J.; Su, H.; Lin, F.; Chen, J.; Tan, K.B.; Zhu, Y. Xanthan gum/hydroxypropyl methylcellulose/carbon quantum dots composite to enhance mango shelf life by triggering metacaspase-dependent apoptosis in Colletotrichum gloeosporioides. Int. J. Biol. Macromol. 2025, 311, 143935. [Google Scholar] [CrossRef]
- Liu, H.; Sun, Y.; Li, Z.; Yang, J.; Aryee, A.A.; Qu, L.; Du, D.; Lin, Y. Lysosome-targeted carbon dots for ratiometric imaging of formaldehyde in living cells. Nanoscale 2019, 11, 8458–8463. [Google Scholar] [CrossRef]
- Ezati, P.; Khan, A.; Bhattacharya, T.; Zaitoon, A.; Zhang, W.; Roy, S.; Rhim, J.-W.; Lim, L.-T. New Opportunities and Recent Advances in Carbon Dots for Sustainable and Intelligent Food Packaging. Food Bioprocess Technol. 2025, 18, 4195–4221. [Google Scholar] [CrossRef]
- Ding, J.; Liao, X.; Li, W.; Lin, X.; Hu, H.; Zhang, Y.; Gan, T.; Huang, Z. Preparation of pH sensitive P-doped carbon dots-loaded starch/polyvinyl alcohol packaging film for real-time monitoring freshness of pork. Food Biosci. 2024, 61, 104654. [Google Scholar] [CrossRef]
- Song, W.; Zhai, X.; Shi, J.; Zou, X.; Xue, Y.; Sun, Y.; Sun, W.; Zhang, J.; Huang, X.; Li, Z.; et al. A ratiometric fluorescence amine sensor based on carbon quantum dot-loaded electrospun polyvinylidene fluoride film for visual monitoring of food freshness. Food Chem. 2024, 434, 137423. [Google Scholar] [CrossRef] [PubMed]
- Priyadarshi, R.; Riahi, Z.; Khan, A.; Rhim, J.-W. The Use of Carbon Dots for Food Packaging and Preservation: Toxic or Beneficial? Compr. Rev. Food Sci. Food Saf. 2025, 24, e70180. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Sun, T.; Zheng, M.; Xie, Z. Carbon Dots Based Nanoscale Covalent Organic Frameworks for Photodynamic Therapy. Adv. Funct. Mater. 2020, 30, 2004680. [Google Scholar] [CrossRef]
- Zaidi, Z.; Maiti, N.; Ali, M.I.; Sharma, G.; Moin, S.; Padhy, H.; Balaji, G.L.; Sundramurthy, V.P. Fabrication, Characteristics, and Therapeutic Applications of Carbon-Based Nanodots. J. Nanomater. 2022, 2022, 8031495. [Google Scholar] [CrossRef]
- Li, F.; Zhu, S.; Du, Y.; Zhe, T.; Ma, K.; Liu, M.; Wang, L. Carrageenan/polyvinyl alcohol composite film reinforced with spermidine carbon dots: An active packaging material with dual-mode antibacterial activity. Int. J. Biol. Macromol. 2024, 266, 131343. [Google Scholar] [CrossRef]
- Meng, W.; Bai, X.; Wang, B.; Liu, Z.; Lu, S.; Yang, B. Biomass-Derived Carbon Dots and Their Applications. Energy Environ. Mater. 2019, 2, 172–192. [Google Scholar] [CrossRef]
- Li, D.; Na, X.; Wang, H.; Xie, Y.; Cong, S.; Song, Y.; Xu, X.; Zhu, B.-W.; Tan, M. Fluorescent Carbon Dots Derived from Maillard Reaction Products: Their Properties, Biodistribution, Cytotoxicity, and Antioxidant Activity. J. Agric. Food Chem. 2018, 66, 1569–1575. [Google Scholar] [CrossRef] [PubMed]
- Liao, H.; Jiang, C.; Liu, W.; Vera, J.M.; Seni, O.D.; Demera, K.; Yu, C.; Tan, M. Fluorescent Nanoparticles from Several Commercial Beverages: Their Properties and Potential Application for Bioimaging. J. Agric. Food Chem. 2015, 63, 8527–8533. [Google Scholar] [CrossRef]
- Hola, K.; Zhang, Y.; Wang, Y.; Giannelis, E.P.; Zboril, R.; Rogach, A.L. Carbon dots—Emerging light emitters for bioimaging, cancer therapy and optoelectronics. Nano Today 2014, 9, 590–603. [Google Scholar] [CrossRef]
- Nygård, J.; Cobden, D.H.; Lindelof, P.E. Kondo physics in carbon nanotubes. Nature 2000, 408, 342–346. [Google Scholar] [CrossRef]
Method | Advantages | Limitations | Food Packaging Suitability | Key Metrics |
---|---|---|---|---|
Top–down |
|
| Moderate (requires purification) |
|
Bottom–up |
|
| High (direct food contact) |
|
Source | Method of Synthesis | Synthetic Conditions | Properties | References |
---|---|---|---|---|
Wheat straw powder | Hydrothermal | 180 °C for 12 h | Biodegradability, mechanical properties, and thermal performance | [23] |
M. jalapa petals | Hydrothermal | 200 °C for 6 h | UV-blocking properties (from 96.8 to 99.9%), reduced their water vapor permeability (from 2.91 to 2.13 × 10−11 g·m/m2·s·Pa) | [24] |
Dried mango peel | Hydrothermal | 200 °C for 6 h | Enhanced UV-barrier, antioxidant and antibacterial properties of films | [25] |
Pineapple leaf | Hydrothermal | 200 °C for 12–16 h | Blocked over 95% of UV radiation and exhibited potent antioxidant activity | [26] |
Sargassum fusiforme | Hydrothermal | 175 °C–200 °C for 6 h | Antioxidant activity and antibacterial efficacy against S. aureus and E. coli | [27] |
Lemon peels | Hydrothermal | 200 °C for 3 h | UV-blocking capabilities, mechanical strength (38.80 MPa), and antioxidant activity (43.45%) | [28] |
Purple hull pistachio | Hydrothermal | 190 °C for 8 h | 100% UV protection, potent antibacterial activity against S. aureus and E. coli strains, and antioxidant properties (DPPH; 82.3 ± 0.1% and ABTS; 90.6 ± 0.1%) | [29] |
Orange peel | Hydrothermal | 160 °C for 6 h | Improved the thermo-oxidative resistance and mechanical properties of the film | [30] |
Banana peel | Hydrothermal | 200 °C for 2 h | Antioxidant and UV blocking properties | [31] |
Highland barley bran | Hydrothermal | 200 °C for 10 h | Generate ROS and impede bacterial proliferation | [32] |
Turmeric | Hydrothermal | 180 °C for 12 h | exhibited reductions of approximately 3.19 and 2.05 Log10 CFU/mL for S. aureus and E. coli | [33] |
Elephant grass leaves | Hydrothermal | 1.05 bar, 121 °C for 40 min | Inactivate 69.9 ± 1.7, 76.4 ± 1.8, and 99.92 ± 0.03% of attached E. coli cells | [34] |
Enoki mushrooms | Hydrothermal | 200 °C for 6 h | Antioxidant activity in the DPPH and ABTS | [35] |
Nanofiller Type | Advantages | Disadvantages | Key Differentiators of CDs |
---|---|---|---|
CDs | Excellent biocompatibility Tunable fluorescence Low toxicity Water solubility Easy functionalization | Lower conductivity than carbon nanotubes Limited mechanical reinforcement Batch-to-batch variability | — |
Metal Nanoparticles | High electrical/thermal conductivity Plasmonic effects Antimicrobial properties | Potential cytotoxicity High cost Oxidation issues | CDs are non-toxic and cheaper |
Carbon Nanotubes | Exceptional mechanical strength High conductivity Thermal stability | Poor dispersion Potential pulmonary toxicity Complex functionalization | CDs disperse easily and are biocompatible |
Graphene | Ultra-high surface area Excellent conductivity Mechanical strength | Restacking issues Expensive production Limited luminescence | CDs offer intrinsic fluorescence |
Cellulose Nanocrystals | Biodegradable Low cost High stiffness | Hydrophilic (moisture sensitive) No electrical functionality Limited optical properties | CDs provide optoelectronic functionality |
Source | Substrate | Proportion | Mechanical Properties | Barrier Performance | Food Types | Ref. |
---|---|---|---|---|---|---|
Sargassum fusiforme | Sargassum fusiforme Polysaccharides/Gelatin | 1 wt % | TS: 18.02 MPa→32 MPa EB: 46.87%→100% | OTR: ↓0.85 × 10−3 g/m2 s Pa → | Blueberry | [27] |
Sodium citrate, ethyl ferulate, ethylenediamine | Polyvinyl alcohol | 0.8 wt% | / | UV–vis-shielding: 0.59→0.06 (OD445) | Strawberries, jujubes, and pasteurized milk | [13] |
Glucose | Chitosan/gelatin | 2 wt% based on polymer | TS: 79.5 MPa→82.3 MPa EB: 7.3%→8.2% | T280: 4.5%→0.03%, T600: 90.9%→82.5% | Avocado | [42] |
Potato skins | Gelatin | 4 wt% based on polymer | TS: 60.7 MPa→50.3 MPa EB: 12.2%→11.8% | WVP (×10−10 g·m/m2·Pa·s): 7.9% →9.9%, WCA: 70.7°→61.5 ° | / | [43] |
Coffee ground | Chitosan | 5 wt% based on polymer | TS: 40.15 MPa→48.24 MPa EB: 4.39%→4.01% | WCA: 71°→101°, UV-C-shielding: 21.49→99.17, UV-B-shielding: 19.36→96.58, UV-A-shielding: 18.86→93.76, | Shrimp | [44] |
Chitosan | Fish gelatin | 5 wt% based on polymer | TS: 23.5 MPa→36.2 MPa EB: 47.1%→46.8% | WVP (×10−10 g·m/m2·Pa·s): 9.47%→9.05% | Pacific white shrimps | [45] |
Citric acid and urea | PVA/glycerol | 0.16 wt% | TS: 35.42 MPa→41.95 MPa EB: 273.7%→381.65% | WVP (×10−9 g·m/m2·Pa·s): 8.11%→6.76%, WCA (deg.): 49.18→67.1 | Shrimp | [46] |
Jute | PVA | 2.5 wt% based on polymer | TS: 1 MPa→1.05 MPa EB: 111.7% →134.93% | WVTR (gm−2 h−1): 118.89 →115.49 | Banana, plum | [47] |
Coconut husk | PVA | 2.5 wt% based on polymer | TS: 1 MPa→1.25 MPa EB: 111.7%→181.2% | WVTR (gm−2 h−1): 118.89 →101.91 | Banana, plum | [47] |
Banana | PVA | 2.5 wt% based on polymer | TS: 1 MPa→1.50 MPa EB: 111.7%→181.2% | WVTR (gm−2 h−1): 118.89→98.51 | Banana, plum | [47] |
Water hyacinth | PVA | 2.5 wt% based on polymer | TS: 1 MPa→1.72 MPa EB: 111.7%→223.8% | WVTR (gm−2 h−1): 118.89 →95.11 | Banana, plum | [47] |
Pullulan, ethylenediamine, citric acid | Gelatin/ CNF | 5 wt% based on polymer | TS: 53.0 MPa→15.0 MPa EB: 9.1%→17.5% | T280: 40.2%→2.1%, T600: 89.2%→87.6% | Egg | [48] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Li, W.; Feng, Y.; Shi, J. Carbon Dots as Multifunctional Nanofillers in Sustainable Food Packaging: A Comprehensive Review. Foods 2025, 14, 3082. https://doi.org/10.3390/foods14173082
Wu Y, Li W, Feng Y, Shi J. Carbon Dots as Multifunctional Nanofillers in Sustainable Food Packaging: A Comprehensive Review. Foods. 2025; 14(17):3082. https://doi.org/10.3390/foods14173082
Chicago/Turabian StyleWu, Yuqing, Wenlong Li, Yuerong Feng, and Jiyong Shi. 2025. "Carbon Dots as Multifunctional Nanofillers in Sustainable Food Packaging: A Comprehensive Review" Foods 14, no. 17: 3082. https://doi.org/10.3390/foods14173082
APA StyleWu, Y., Li, W., Feng, Y., & Shi, J. (2025). Carbon Dots as Multifunctional Nanofillers in Sustainable Food Packaging: A Comprehensive Review. Foods, 14(17), 3082. https://doi.org/10.3390/foods14173082