Nutritionally Enriched Maize- and Rice-Based Gluten-Free Biscuits: Leveraging Local Legume Flours for Improved Quality
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Raw Material Characterization
2.3. Preparation of Biscuits
2.4. Optimization of the GF Biscuit Recipe
2.5. GF Biscuits Quality Characterization
2.5.1. Physical Characterization
2.5.2. Nutritional Characterization
2.6. Sensory Evaluation
2.7. Statistical and Data Analysis
3. Results and Discussion
3.1. Flour Characterization
3.2. Optimization of Gluten-Free Biscuits Enriched with Legume Flour
3.2.1. Experimental Design Methodology
3.2.2. Effect of the Different Flours on the Studied Responses
3.3. Physicochemical Analysis of the GF Optimum Biscuit Compared to the Control
3.4. Sensory Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
GF | Gluten-free |
aw | Water Activity |
TPP | Total Polyphenol |
GA | Gallic Acid |
GAE | Gallic Acid Equivalent |
DM | Dry Matter |
References
- Sollid, L.M. Coeliac disease: Dissecting a complex inflammatory disorder. Nat. Rev. Immunol. 2002, 2, 647–655. [Google Scholar] [CrossRef] [PubMed]
- Cosnes, J.; Cellier, C.; Viola, S.; Colombel, J.F.; Michaud, L.; Sarles, J.; Hugot, J.P.; Ginies, J.L.; Dabadie, A.; Mouterde, O. Incidence of autoimmune diseases in celiac disease: Protective effect of the gluten-free diet. Clin. Gastroenterol. Hepatol. 2008, 6, 753–758. [Google Scholar] [CrossRef] [PubMed]
- Malandrino, N.; Capristo, E.; Farnetti, S.; Leggio, L.; Abenavoli, L.; Addolorato, G.; Gasbarrini, G. Metabolic and nutritional features in adult celiac patients. Dig. Dis. 2008, 26, 128–133. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, S.A.; Mahmud, M.C.; Abdi, G.; Wanich, U.; Farooqi, M.Q.U.; Settapramote, N.; Khan, S.; Wani, S.A. New alternatives from sustainable sources to wheat in bakery foods: Science, technology, and challenges. J. Food Biochem. 2022, 46, e14185. [Google Scholar] [CrossRef] [PubMed]
- Laleg, K.; Cassan, D.; Barron, C.; Prabhasankar, P.; Micard, V. Structural, culinary, nutritional and anti-nutritional properties of high protein, gluten free, 100% legume pasta. PLoS ONE 2016, 11, e0160721. [Google Scholar] [CrossRef] [PubMed]
- Boye, J.; Zare, F.; Pletch, A. Pulse proteins: Processing, characterization, functional properties and applications in food and feed. Food Res. Int. 2010, 43, 414–431. [Google Scholar] [CrossRef]
- Grasso, N.; Lynch, N.L.; Arendt, E.K.; O’Mahony, J.A. Chickpea protein ingredients: A review of composition, functionality, and applications. Compr. Rev. Food Sci. Food Saf. 2022, 21, 435–452. [Google Scholar] [CrossRef] [PubMed]
- Benkadri, S.; Salvador, A.; Zidoune, M.N.; Sanz, T. Gluten-free biscuits based on composite rice–chickpea flour and xanthan gum. Food Sci. Technol. Int. 2018, 24, 607–616. [Google Scholar] [CrossRef] [PubMed]
- Motawei, A.M.; Hussien, M.; Yousef, E.A. Preparation of Gluten Free Biscuits from Quinoa, Rice and Chickpeas for Celiac Disease Patients. J. Food Dairy Sci. 2022, 13, 41–45. [Google Scholar] [CrossRef]
- Sakr, A.M.; Hussien, H.A. Nutritional quality of gluten free biscuits supplemented with sweet chickpeas and date palm powder. Int. J. Food Sci. Nutr. 2017, 2, 128–134. [Google Scholar]
- Abd Rabou, E. Effect of enriched gluten free biscuits with chickpea flour or kareish cheese on chemical, nutritional value, physical and sensory properties. Alex. J. Agric. Sci. 2017, 62, 93–101. [Google Scholar] [CrossRef]
- Emir, A.A.; Yildiz, E.; Sumnu, G. Utilization of Lentils in Different Food Products; Lentils: Production, Processing Technologies, Products, and Nutritional Profile; WILEY: Hoboken, NJ, USA, 2023. [Google Scholar]
- Sozer, N.; Holopainen-Mantila, U.; Poutanen, K. Traditional and new food uses of pulses. Cereal Chem. 2017, 94, 66–73. [Google Scholar] [CrossRef]
- Osman, M.A.; Hamad, F.S.A. Production of Biscuit from Faba beans (Vicia faba) as a Gluten Free Product; Sudan University of Science & Technology: Khartoum, Sudan, 2020. [Google Scholar]
- Schmelter, L.; Rohm, H.; Struck, S. Gluten-free bakery products: Cookies made from different Vicia faba bean varieties. Future Foods 2021, 4, 100038. [Google Scholar] [CrossRef]
- Yadav, L.Y.A. Standardization, development and organoleptic evaluation of food products prepared from gluten free flour mix. Pharm. Inno J. 2020, 9, 247–252. [Google Scholar] [CrossRef]
- Papandreou, C.; Becerra-Tomás, N.; Bulló, M.; Martínez-González, M.Á.; Corella, D.; Estruch, R.; Ros, E.; Arós, F.; Schroder, H.; Fitó, M. Legume consumption and risk of all-cause, cardiovascular, and cancer mortality in the PREDIMED study. Clin. Nutr. 2019, 38, 348–356. [Google Scholar] [CrossRef] [PubMed]
- Saricaoglu, F.T. Application of high-pressure homogenization (HPH) to modify functional, structural and rheological properties of lentil (Lens culinaris) proteins. Int. J. Biol. Macromol. 2020, 144, 760–769. [Google Scholar] [CrossRef] [PubMed]
- Portman, D.; Maharjan, P.; McDonald, L.; Laskovska, S.; Walker, C.; Irvin, H.; Blanchard, C.; Naiker, M.; Panozzo, J.F. Nutritional and functional properties of cookies made using down-graded lentil—A candidate for novel food production and crop utilization. Cereal Chem. 2020, 97, 95–103. [Google Scholar] [CrossRef]
- Hajas, L.; Sipos, L.; Csobod, É.C.; Bálint, M.V.; Juhász, R.; Benedek, C. Lentil (Lens culinaris Medik.) flour varieties as promising new ingredients for gluten-free cookies. Foods 2022, 11, 2028. [Google Scholar] [CrossRef] [PubMed]
- Baik, B.K.; Han, I.H. Cooking, roasting, and fermentation of chickpeas, lentils, peas, and soybeans for fortification of leavened bread. Cereal Chem. 2012, 89, 269–275. [Google Scholar] [CrossRef]
- Dewanto, V.; Wu, X.; Adom, K.K.; Liu, R.H. Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J. Agric. Food Chem. 2002, 50, 3010–3014. [Google Scholar] [CrossRef] [PubMed]
- I.S. EN 15510:2017; Animal Feeding Stuffs: Methods of Sampling and Analysis-Determination of Calcium, Sodium, Phosphorus, Magnesium, Potassium, Iron, Zinc, Copper, Manganese, Cobalt, Molybdenum and Lead by ICP-AES. Lithuanian Standards Board: Vilnius, Lithuania, 2017.
- Tyagi, P.; Chauhan, A.K. Optimization and characterization of functional cookies with addition of Tinospora cordifolia as a source of bioactive phenolic antioxidants. LWT 2020, 130, 109639. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of the Association of Official Analytical Chemists; The Association: Arlington, VA, USA, 1990. [Google Scholar]
- Kedare, S.B.; Singh, R. Genesis and development of DPPH method of antioxidant assay. J. Food Sci. Technol. 2011, 48, 412–422. [Google Scholar] [CrossRef] [PubMed]
- Marteau, C.; Nardello-Rataj, V.; Favier, D.; Aubry, J.M. Dual role of phenols as fragrances and antioxidants: Mechanism, kinetics and drastic solvent effect. Flavour Fragr. J. 2013, 28, 30–38. [Google Scholar] [CrossRef]
- Cornell, J.A. A Primer on Experiments with Mixtures; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Millar, K.A.; Barry-Ryan, C.; Burke, R.; Hussey, K.; McCarthy, S.; Gallagher, E. Effect of pulse flours on the physiochemical characteristics and sensory acceptance of baked crackers. Int. J. Food Sci. Technol. 2017, 52, 1155–1163. [Google Scholar] [CrossRef]
- Millar, K.A.; Gallagher, E.; Burke, R.; McCarthy, S.; Barry-Ryan, C. Proximate composition and anti-nutritional factors of fava-bean (Vicia faba), green-pea and yellow-pea (Pisum sativum) flour. J. Food Compos. Anal. 2019, 82, 103233. [Google Scholar] [CrossRef]
- Di Cairano, M.; Condelli, N.; Caruso, M.C.; Marti, A.; Cela, N.; Galgano, F. Functional properties and predicted glycemic index of gluten free cereal, pseudocereal and legume flours. Lwt 2020, 133, 109860. [Google Scholar] [CrossRef]
- De Angelis, D.; Pasqualone, A.; Allegretta, I.; Porfido, C.; Terzano, R.; Squeo, G.; Summo, C. Antinutritional factors, mineral composition and functional properties of dry fractionated flours as influenced by the type of pulse. Heliyon 2021, 7, e0617. [Google Scholar] [CrossRef] [PubMed]
- Chicco, D.; Warrens, M.J.; Jurman, G. The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Comput. Sci. 2021, 7, e623. [Google Scholar] [CrossRef] [PubMed]
- Sabanis, D.; Tzia, C. Selected structural characteristics of HPMC-containing gluten free bread: A response surface methodology study for optimizing quality. Int. J. Food Prop. 2011, 14, 417–431. [Google Scholar] [CrossRef]
- Capriles, V.D.; Arêas, J.A.G. Novel approaches in gluten-free breadmaking: Interface between food science, nutrition, and health. Compr. Rev. Food Sci. Food Saf. 2014, 13, 871–890. [Google Scholar] [CrossRef]
- Papalamprou, E.; Doxastakis, G.; Biliaderis, C.; Kiosseoglou, V. Influence of preparation methods on physicochemical and gelation properties of chickpea protein isolates. Food Hydrocoll. 2009, 23, 337–343. [Google Scholar] [CrossRef]
- Kaur, M.; Singh, N. Studies on functional, thermal and pasting properties of flours from different chickpea (Cicer arietinum L.) cultivars. Food Chem. 2005, 91, 403–411. [Google Scholar] [CrossRef]
- Santos, F.G.; Fratelli, C.; Muniz, D.G.; Capriles, V.D. Mixture design applied to the development of chickpea-based gluten-free bread with attractive technological, sensory, and nutritional quality. J. Food Sci. 2018, 83, 188–197. [Google Scholar] [CrossRef] [PubMed]
- Pareyt, B.; Delcour, J.A. The role of wheat flour constituents, sugar, and fat in low moisture cereal based products: A review on sugar-snap cookies. Crit. Rev. Food Sci. Nutr. 2008, 48, 824–839. [Google Scholar] [CrossRef] [PubMed]
- McWatters, K. Cookie baking properties of defatted peanut, soybean, and field pea flours. Cereal Chem 1978, 55, 853–863. [Google Scholar]
- Hegazy, N.A.; Faheid, S.M. Rheological and sensory characteristics of doughs and cookies based on wheat, soybean, chick pea and lupine flour. Food/Nahr. 1990, 34, 835–841. [Google Scholar] [CrossRef]
- Bose, D.; Shams-Ud-Din, M. The effect of chickpea (Cicer arietinim) husk on the properties of cracker biscuits. J. Bangladesh Agric. Univ. 2010, 8, 6. [Google Scholar] [CrossRef]
- Tiwari, B.; Brennan, C.; Jaganmohan, R.; Surabi, A.; Alagusundaram, K. Utilisation of pigeon pea (Cajanus cajan L) byproducts in biscuit manufacture. LWT-Food Sci. Technol. 2011, 44, 1533–1537. [Google Scholar] [CrossRef]
- Yadav, R.B.; Yadav, B.S.; Dhull, N. Effect of incorporation of plantain and chickpea flours on the quality characteristics of biscuits. J. Food Sci. Technol. 2012, 49, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Tas, O.; Ertugrul, U.; Grunin, L.; Oztop, M.H. An investigation of functional quality characteristics and water interactions of navy bean, chickpea, pea, and lentil flours. Legume Sci. 2022, 4, e136. [Google Scholar] [CrossRef]
- Ammar, I.; Gharsallah, H.; Brahim, A.B.; Attia, H.; Ayadi, M.; Hadrich, B.; Felfoul, I. Optimization of gluten-free sponge cake fortified with whey protein concentrate using mixture design methodology. Food Chem. 2021, 343, 128457. [Google Scholar] [CrossRef] [PubMed]
- Arimi, J.; Duggan, E.; O’sullivan, M.; Lyng, J.; O’riordan, E. Effect of water activity on the crispiness of a biscuit (Crackerbread): Mechanical and acoustic evaluation. Food Res. Int. 2010, 43, 1650–1655. [Google Scholar] [CrossRef]
- Kissell, L.; Yamazaki, T. Protein Enrichment of Cookie Flours with Wheat. Cereal Chem. 1975, 52, 638–649. [Google Scholar]
- Singh, M.; Mohamed, A. Influence of gluten–soy protein blends on the quality of reduced carbohydrates cookies. LWT-Food Sci. Technol. 2007, 40, 353–360. [Google Scholar] [CrossRef]
- Sahni, P.; Singh, B.; Sharma, S. Functionality of proteins and its interventions in food. IFI Mag 2018, 37, 41–52. [Google Scholar]
- Bouasla, A.; Wójtowicz, A.; Zidoune, M.N. Gluten-free precooked rice pasta enriched with legumes flours: Physical properties, texture, sensory attributes and microstructure. Lwt 2017, 75, 569–577. [Google Scholar] [CrossRef]
- Jayasena, V.; Nasar-Abbas, S.M. Effect of lupin flour incorporation on the physical characteristics of dough and biscuits. Qual. Assur. Saf. Crop. Foods 2011, 3, 140–147. [Google Scholar] [CrossRef]
- Thongram, S.; Tanwar, B.; Chauhan, A.; Kumar, V. Physicochemical and organoleptic properties of cookies incorporated with legume flours. Cogent Food Agric. 2016, 2, 1172389. [Google Scholar] [CrossRef]
- Rababah, T.M.; Al-Mahasneh, M.A.; Ereifej, K.I. Effect of chickpea, broad bean, or isolated soy protein additions on the physicochemical and sensory properties of biscuits. J. Food Sci. 2006, 71, S438–S442. [Google Scholar] [CrossRef]
- Heidenreich, S.; Jaros, D.; Rohm, H.; Ziems, A. Relationship between water activity and crispness of extruded rice crisps. J. Texture Stud. 2004, 35, 621–633. [Google Scholar] [CrossRef]
- de la Rosa-Millán, J.; Pérez-Carrillo, E.; Guajardo-Flores, S. Effect of germinated black bean cotyledons (Phaseolus vulgaris L.) as an extruded flour ingredient on physicochemical characteristics, in vitro digestibility starch, and protein of nixtamalized blue maize cookies. Starch-Stärke 2017, 69, 1600085. [Google Scholar] [CrossRef]
Flours | Faba Bean “Bachar” | Lentil “Kef” | Chickpea “Beja 1” | Rice | Maize | |
---|---|---|---|---|---|---|
Moisture (g/100 g DM) | 11.85 ± 0.03 b | 12.13 ± 0.46 bc | 10.40 ± 0.01 a | 13.36 ± 0.01 c | 12.18 ± 0.54 bc | |
Carbohydrates (g/100 g DM) | 55.72 ± 0.51 a | 57.32 ± 0.31 ab | 59.22 ± 0.57 b | 75.25 ± 0.63 d | 71.90 ± 0.25 c | |
Ash (g/100 g DM) | 2.37 ± 0.005 b | 2.43 ± 0.02 b | 2.64 ± 0.001 b | 0.71 ± 0.03 a | 0.95 ± 0.0004 a | |
Protein (g/100 g DM) | 28.71 ± 0.16 c | 26.35 ± 0.37 c | 22.67 ± 0.64 b | 10.26 ± 0.62 a | 10.42 ± 0.20 a | |
Fat (g/100 g DM) | 1.88 ± 0.01 c | 1.6 ± 0.08 b | 5.06 ± 0.05 e | 0.40 ± 0.03 a | 4.15 ± 0.01 d | |
Total Polyphenols (mg GAE/g DM) | 0.43 ± 0.02 b | 0.29 ± 0.008 ab | 0.65 ± 0.01 c | 0.2 ± 0.01 a | 1.04 ± 0.06 d | |
CIE Lab Parameters | L* | 92.93 ± 0.17 b | 85.15 ± 0.35 a | 93.81 ± 0.25 b | 93.57 ± 0.17 b | 85 ± 0.42 a |
a* | −1 ± 0.05 b | −1.21 ± 0.11 b | −2.57 ± 0.02 a | −0.175 ± 0.005 c | −2.45 ± 0.11 a | |
b* | 7.4 ± 0.19 b | 11.72 ± 0.23 c | 18.49 ± 0.4 d | 3.86 ± 0.002 a | 39.39 ± 0.005 e | |
Mineral Composition | Fe (ppm) | 53.97 ± 2.45 b | 152.45 ± 2.85 d | 119.75 ± 0.75 c | 26.98 ± 0.45 a | 24 ± 0.3 a |
Zn (ppm) | 48.22 ± 1.98 d | 39.18 ± 0.25 c | 51.28 ± 0.44 d | 18 ± 0.65 a | 25 ± 0.02 b | |
K (%) | 1.10 ± 0.002 c | 0.87 ± 0.004 b | 1.072 ± 0.039 c | 0.15 ± 0.001 a | 0.23 ± 0.002 a |
Exp | X1 (%) | X2 (%) | X3 (%) | X4 (%) | X5 (%) | Biscuit Hardness (N) | aw | Spread Ratio | Backing Loss (%) | L* | a* | b* |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 17.50 | 12.50 | 12.50 | 17.25 | 40.25 | 66.00 | 0.34 | 4.26 | 19.94 | 85.71 | 0.50 | 32.86 |
2 | 25.00 | 20.00 | 6.50 | 24.00 | 24.50 | 55.50 | 0.24 | 3.96 | 18.60 | 73.38 | 2.53 | 35.06 |
3 | 10.00 | 5.00 | 18.50 | 10.50 | 56.00 | 54.00 | 0.20 | 3.09 | 17.35 | 75.54 | 1.11 | 33,62 |
4 | 10.00 | 20.00 | 5.00 | 10.50 | 54.50 | 44.50 | 0.19 | 3.96 | 18.19 | 76.16 | 0.33 | 35.02 |
5 | 10.00 | 18.50 | 5.00 | 10.50 | 56.00 | 42.50 | 0.19 | 3.89 | 12.60 | 76.66 | 0.75 | 36.21 |
6 | 25.00 | 5.00 | 5.00 | 10.50 | 54.50 | 54.50 | 0.27 | 3.85 | 16.92 | 73.87 | 2.16 | 35.96 |
7 | 25.00 | 20.00 | 5.00 | 24.00 | 26.00 | 71.50 | 0.28 | 3.86 | 15.81 | 75.26 | 1.85 | 36.88 |
8 | 25.00 | 5.00 | 20.00 | 10.50 | 39.50 | 49.00 | 0.24 | 3.50 | 9.69 | 76.00 | 1.39 | 35.36 |
9 | 25.00 | 20.00 | 5.00 | 10.50 | 39.50 | 57.00 | 0.24 | 3.86 | 13.44 | 76.35 | 0.86 | 35.45 |
10 | 10.00 | 2000 | 20.00 | 10.50 | 39.50 | 65.50 | 0.21 | 3.65 | 13.88 | 73.35 | 2.38 | 36.45 |
11 | 25.00 | 6.50 | 20.00 | 24.00 | 24.50 | 70.50 | 0.25 | 3.25 | 11.11 | 72.99 | 2.74 | 37.22 |
12 | 10.00 | 5.00 | 5.00 | 24.00 | 56.00 | 82.50 | 0.19 | 3.90 | 11.92 | 74.95 | 1.71 | 36.98 |
13 | 17.50 | 12.50 | 12.50 | 17.25 | 40.25 | 57.00 | 0.19 | 3.56 | 12.76 | 74.93 | 1.93 | 37.32 |
14 | 10.00 | 20.00 | 20.00 | 24.00 | 26.00 | 65.00 | 0.23 | 3.25 | 11.02 | 70.20 | 4.00 | 37.79 |
15 | 10.00 | 5.00 | 20.00 | 24.00 | 41.00 | 57.50 | 0.35 | 4.02 | 14.60 | 74.96 | 1.68 | 34.14 |
16 | 11.50 | 20.00 | 20.00 | 24.00 | 24.50 | 58.50 | 0.26 | 4.25 | 15.97 | 76.18 | 1.11 | 34.98 |
17 | 25.00 | 20.00 | 20.00 | 10.50 | 24.50 | 57.00 | 0.23 | 4.05 | 16.32 | 74.82 | 1.79 | 34.94 |
18 | 17.50 | 12.50 | 12.50 | 17.25 | 40.25 | 70.50 | 0.21 | 3.41 | 15.46 | 74.88 | 2.030 | 36.75 |
19 | 10.00 | 20.00 | 5.00 | 24.00 | 41.00 | 39.50 | 0.21 | 3.75 | 14.78 | 72.54 | 2.73 | 36.34 |
20 | 25.00 | 5.00 | 5.00 | 24.00 | 41.00 | 57.00 | 0.26 | 3.40 | 13.83 | 74.45 | 1.72 | 35.87 |
21 | 25.00 | 5.00 | 20.00 | 24.00 | 26.00 | 55.50 | 0.37 | 3.96 | 13.78 | 75.05 | 1.57 | 34.83 |
22 | 23.50 | 5.00 | 5.00 | 10.50 | 56.00 | 54.50 | 0.39 | 3.95 | 11.27 | 74.99 | 1.46 | 34.96 |
23 | 10.00 | 5.00 | 20.00 | 10.50 | 54.50 | 58.00 | 0.39 | 3.68 | 11.10 | 74.81 | 1.69 | 35.29 |
Sum of Squares | F | Significance | R2Adj (%) | R2 (%) | |
---|---|---|---|---|---|
Biscuit hardness (N) | 1156.90 | 5.17 | ** | 43.12 | 53.46 |
Spread ratio | 4.35 | 475.60 | *** | 99.76 | 99.97 |
Baking loss (%) | 157.33 | 6.63 | * | 80.37 | 94.65 |
Water activity (aw) | 0.09 | 35.64 | *** | 95.94 | 98.71 |
L* | 162.99 | 262.79 | *** | 99.51 | 99.89 |
a* | 14.69 | 90.88 | *** | 98.66 | 99.76 |
b* | 32.99 | 82.05 | *** | 98.22 | 99.43 |
Responses | Target | Values | Desirability (%) | Factors | Real Values (%) |
---|---|---|---|---|---|
Biscuit Hardness (N) | 55.00 | 61.04 | 63.35 | Faba bean flour | 24.50 |
Spread Ratio | 4.45 | 4.43 | 97.28 | Lentil flour | 19.92 |
Backing Loss (%) | 15.00 | 15.68 | 86,16 | Chickpea flour | 6.89 |
aw | 0.28 | 0. 27 | 83. 93 | Rice flour | 24.67 |
L* | 80.00 | 75.17 | 50.72 | Maize flour | 24 |
a* | 3.00 | 1.43 | 37.22 | ||
b* | 35.00 | 35.09 | 96.55 | ||
Total Desirability | 73.01 |
Optimum | Control | |
---|---|---|
Protein (g/100 g DM) | 11.90 ± 0.09 b | 6.46 ± 0.12 a |
Fat (g/100 g DM) | 16.50 ± 0.11 a | 16.37 ± 0.08 a |
Ash (g/100 g DM) | 1.25 ± 0.02 b | 0.58 ± 0.06 a |
Moisture (%) | 7.69 ± 0.06 b | 7.35 ± 0.01 a |
Insoluble Dietary Fiber (g/100 g DM) | 16.85 ± 1.06 b | 12.80 ± 0.63 a |
Total Dietary Fiber (g/100 g DM) | 21.13 ± 0.38 b | 15.73 ± 0.64 a |
Carbohydrates (g/100 g DM) | 41.54 ± 0.59 a | 53.45 ± 0.89 b |
Diameter (mm) | 42.16 ± 0.26 a | 43.75 ± 0.14 b |
Thickness (mm) | 8.86 ± 0.08 a | 8.90 ± 0,10 a |
Spread Ratio | 4.75 ± 0.01 a | 4.91 ± 0.07 a |
Baking Loss (%) | 10.63 ± 0.03 a | 12.93 ± 0.26 b |
aw | 0.17± 0.0005 a | 0.23± 0.001 b |
L* | 71.07 ± 1.53 a | 79.74 ± 0.62 b |
a* | 1.73 ± 0.04 b | −0.72 ± 0.04 a |
b* | 36.38 ± 0.04 b | 31.33 ± 0.09 a |
Hardness (N) | 34.66 ± 3.68 b | 22.00 ± 1.41 a |
Fracturability (mm) | 0.98 ± 0.098 b | 0.74 ± 0.07 a |
Dough Hardness (N) | 6.95 ± 0.03 b | 5.79 ± 0.07 a |
Total Polyphenol (mg GAE/g DM) | 0.34 ± 0.01 b | 0.18 ± 0.006 a |
DPPH (%) | 72.72 ± 0.32 b | 31.49 ± 4.54 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Allouch Tounsi, W.; Debbabi, H.; Hadj Yahia, N.; Zarroug, Y.O.; Sebii, H.; Doggui, L.; Bouhadida, M.; Ouji, A.; Kharrat, M.; Sfayhi Terras, D. Nutritionally Enriched Maize- and Rice-Based Gluten-Free Biscuits: Leveraging Local Legume Flours for Improved Quality. Foods 2025, 14, 3050. https://doi.org/10.3390/foods14173050
Allouch Tounsi W, Debbabi H, Hadj Yahia N, Zarroug YO, Sebii H, Doggui L, Bouhadida M, Ouji A, Kharrat M, Sfayhi Terras D. Nutritionally Enriched Maize- and Rice-Based Gluten-Free Biscuits: Leveraging Local Legume Flours for Improved Quality. Foods. 2025; 14(17):3050. https://doi.org/10.3390/foods14173050
Chicago/Turabian StyleAllouch Tounsi, Wafa, Hajer Debbabi, Nesrine Hadj Yahia, Youkabed Ouederni Zarroug, Haifa Sebii, Leila Doggui, Mariem Bouhadida, Ali Ouji, Mohamed Kharrat, and Dorra Sfayhi Terras. 2025. "Nutritionally Enriched Maize- and Rice-Based Gluten-Free Biscuits: Leveraging Local Legume Flours for Improved Quality" Foods 14, no. 17: 3050. https://doi.org/10.3390/foods14173050
APA StyleAllouch Tounsi, W., Debbabi, H., Hadj Yahia, N., Zarroug, Y. O., Sebii, H., Doggui, L., Bouhadida, M., Ouji, A., Kharrat, M., & Sfayhi Terras, D. (2025). Nutritionally Enriched Maize- and Rice-Based Gluten-Free Biscuits: Leveraging Local Legume Flours for Improved Quality. Foods, 14(17), 3050. https://doi.org/10.3390/foods14173050