Chemo-Sensory Markers for Red Wine Grades: A Correlation Study of Phenolic Profiles and Sensory Attributes
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Instruments and Equipment
2.3. Test Methods
2.3.1. Determination of Basic Physicochemical Indices
2.3.2. Determination of CIELab Parameters
2.3.3. Determination of Phenolic Content
2.3.4. Determination of Taste Indices
2.4. Statistical Analysis
3. Results and Discussion
3.1. Basic Physical and Chemical Indicator Analyses
3.2. Colour Parameter Analysis and Visualization Representation
3.3. Analysis of Taste Characteristic Results
3.4. Analysis of Phenolic Compounds in Red Wine
3.4.1. Analysis of Anthocyanin Content
3.4.2. Analysis of Nonanthocyanin Phenolic Compounds
3.5. Correlation Analysis Between Sensory Indicators and Phenolic Substances
3.6. Building a Quality Prediction Model for Wines of Different Quality Levels
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Sample | Volatile Acid (g/L) | Total Acid (g/L) | pH | Alcoholic Strength (%Vol) | Leftovers (g/L) |
---|---|---|---|---|---|
2024 | |||||
24-A-1 | 0.43 ± 0.09 d | 5.79 ± 0.3 b | 3.79 ± 0.03 b | 13.68 ± 0.18 b | 4.80 ± 0.13 cd |
24-A-2 | 0.59 ± 0.07 bc | 6.11 ± 0.09 a | 3.79 ± 0.04 b | 13.65 ± 0.13 bc | 4.97 ± 0.24 bc |
24-A-3 | 0.70 ± 0.06 ab | 6.15 ± 0.11 a | 3.73 ± 0.02 c | 12.91 ± 0.11 f | 5.38 ± 0.15 a |
24-B-1 | 0.65 ± 0.05 ab | 5.48 ± 0.26 c | 3.82 ± 0.02 ab | 15.21 ± 0.11 a | 5.15 ± 0.07 ab |
24-B-2 | 0.73 ± 0.10 a | 5.45 ± 0.20 c | 3.81 ± 0.05 b | 15.13 ± 0.17 a | 4.49 ± 0.14 e |
24-B-3 | 0.69 ± 0.11 ab | 6.26 ± 0.09 a | 3.80 ± 0.02 b | 13.62 ± 0.16 bc | 5.17 ± 0.14 ab |
24-C-1 | 0.65 ± 0.01 abc | 6.34 ± 0.13 a | 3.79 ± 0.01 b | 13.12 ± 0.19 de | 5.28 ± 0.03 a |
24-C-2 | 0.63 ± 0.03 abc | 6.18 ± 0.16 a | 3.87 ± 0.05 a | 13.02 ± 0.22 de | 5.14 ± 0.09 ab |
24-C-3 | 0.52 ± 0.05 cd | 6.30 ± 0.08 a | 3.80 ± 0.02 b | 13.33 ± 0.31 cd | 4.61 ± 0.19 de |
2023 | |||||
23-A-1 | 0.64 ± 0.03 a | 5.50 ± 0.18 a | 3.70 ± 0.09 a | 14.13 ± 0.12 a | 5.25 ± 0.06 b |
23-B-1 | 0.54 ± 0.01 b | 5.44 ± 0.10 a | 3.87 ± 0.05 b | 11.49 ± 0.14 b | 5.68 ± 0.14 a |
23-B-2 | 0.46 ± 0.03 c | 5.49 ± 0.24 a | 3.96 ± 0.04 a | 12.54 ± 0.06 c | 3.58 ± 0.09 c |
23-C-1 | 0.64 ± 0.02 a | 5.43 ± 0.36 a | 3.71 ± 0.04 b | 12.71 ± 0.21 b | 5.4 ± 0.10 b |
2021 | |||||
21-A-1 | 0.56 ± 0.09 b | 5.57 ± 0.22 b | 3.64 ± 0.06 a | 14.08 ± 0.18 b | 5.15 ± 0.18 c |
21-A-2 | 0.77 ± 0.06 a | 5.95 ± 0.18 a | 3.67 ± 0.04 a | 14.53 ± 0.23 a | 5.90 ± 0.24 a |
21-B-2 | 0.65 ± 0.11 ab | 5.50 ± 0.31 b | 3.66 ± 0.04 a | 13.96 ± 0.16 b | 5.36 ± 0.14 bc |
21-C-1 | 0.61 ± 0.05 b | 5.44 ± 0.05 b | 3.73 ± 0.06 a | 12.69 ± 0.19 c | 5.52 ± 0.09 b |
21-C-2 | 0.53 ± 0.08 b | 5.39 ± 0.15 b | 3.70 ± 0.04 a | 12.57 ± 0.17 c | 5.56 ± 0.19 b |
2019 | |||||
19-A-1 | 0.54 ± 0.07 bc | 5.18 ± 0.08 a | 3.75 ± 0.03 a | 14.23 ± 0.13 a | 5.31 ± 0.27 a |
19-B-1 | 0.45 ± 0.05 c | 5.39 ± 0.16 a | 3.59 ± 0.07 b | 12.94 ± 0.14 b | 4.00 ± 0.19 b |
19-B-2 | 0.63 ± 0.04 ab | 5.27 ± 0.07 a | 3.79 ± 0.01 a | 12.72 ± 0.32 bc | 4.33 ± 0.22 b |
19-C-1 | 0.46 ± 0.02 c | 5.35 ± 0.19 a | 3.75 ± 0.05 a | 12.36 ± 0.16 d | 4.06 ± 0.26 b |
19-C-2 | 0.65 ± 0.06 a | 5.33 ± 0.12 a | 3.71 ± 0.07 a | 12.50 ± 0.09 cd | 4.38 ± 0.17 b |
References
- Aliya; Liu, S.; Zhang, D.; Cao, Y.; Sun, J.; Jiang, S.; Liu, Y. Research on the Evaluation of Baijiu Flavor Quality Based on Intelligent Sensory Technology Combined with Machine Learning. Chemosensors 2024, 12, 125. [Google Scholar] [CrossRef]
- Niyogisubizo, J.; Ninteretse, J.d.D.; Nziyumva, E.; Nshimiyimana, M.; Murwanashyaka, E.; Habiyakare, E. Towards Predicting the Quality of Red Wine Using Novel Machine Learning Methods for Classification, Data Visualization, and Analysis. Artif. Intell. Appl. 2024, 3, 31–42. [Google Scholar] [CrossRef]
- Filipe-Ribeiro, L.; Milheiro, J.; Matos, C.C.; Cosme, F.; Nunes, F.M. Reduction of 4-ethylphenol and 4-ethylguaiacol in red wine by activated carbons with different physicochemical characteristics: Impact on wine quality. Food Chem. 2017, 229, 242–251. [Google Scholar] [CrossRef] [PubMed]
- Hosu, A.; Cristea, V.-M.; Cimpoiu, C. Analysis of total phenolic, flavonoids, anthocyanins and tannins content in Romanian red wines: Prediction of antioxidant activities and classification of wines using artificial neural networks. Food Chem. 2014, 150, 113–118. [Google Scholar] [CrossRef]
- Lukić, K.; Brnčić, M.; Ćurko, N.; Tomašević, M.; Valinger, D.; Denoya, G.I.; Barba, F.J.; Ganić, K.K. Effects of high power ultrasound treatments on the phenolic, chromatic and aroma composition of young and aged red wine. Ultrason. Sonochem. 2019, 59, 104725. [Google Scholar] [CrossRef]
- Fan, S.; Liu, C.; Li, Y.; Zhang, Y. Visual Representation of Red Wine Color: Methodology, Comparison and Applications. Foods 2023, 12, 924. [Google Scholar] [CrossRef]
- Shi, N.; Li, H.-Q.; Lu, H.-C.; Tian, M.-B.; Han, X.; He, F.; Wang, J. Adjusting the pomace ratio during red wine fermentation: Effects of adding white grape pomace and juice runoff on wine flavoromics and sensory qualities. Food Chem. X 2023, 20, 100939. [Google Scholar] [CrossRef]
- Cadot, Y.; Caillé, S.; Samson, A.; Barbeau, G.; Cheynier, V. Sensory representation of typicality of Cabernet franc wines related to phenolic composition: Impact of ripening stage and maceration time. Anal. Chim. Acta 2012, 732, 91–99. [Google Scholar] [CrossRef]
- Acero, N.; Manrique, J.; Mingarro, D.M.; Solís, I.M.; Bosch, F. Vitis vinifera L. Leaves as a Source of Phenolic Compounds with Anti-Inflammatory and Antioxidant Potential. Antioxidants 2025, 14, 279. [Google Scholar] [CrossRef]
- Li, L.; Sun, B. Grape and wine polymeric polyphenols: Their importance in enology. Crit. Rev. Food Sci. Nutr. 2017, 59, 563–579. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, H.; Gao, M.; Gu, C.; Wang, R. Effects of different iron treatments on wine grape berry quality and peel flavonoid contents. Food Sci. Nutr. 2022, 10, 3598–3607. [Google Scholar] [CrossRef]
- Yuan, J.-F.; Lai, Y.-T.; Chen, Z.-Y.; Song, H.-X.; Zhang, J.; Wang, D.-H.; Gong, M.-G.; Sun, J.-R. Microwave Irradiation: Effects on the Change of Colour Characteristics and Main Phenolic Compounds of Cabernet Gernischt Dry Red Wine during Storage. Foods 2022, 11, 1778. [Google Scholar] [CrossRef]
- Marcel, H.; Marina, S.; Jörg, F.; Dominik, D. New Insights into Wine Color Analysis: A Comparison of Analytical Methods to Sensory Perception for Red and White Varietal Wines. J. Agric. Food Chem. 2024, 72, 2008–2017. [Google Scholar]
- Fan, S.; Zhang, Y.; Li, Y. A New Approach for Quantitative Classification of Red Wine Color from the Perspective of Micro and Macro Levels. Fermentation 2023, 9, 519. [Google Scholar] [CrossRef]
- Muñoz-Bernal, Ó.A.; Vazquez-Flores, A.A.; de la Rosa, L.A.; Rodrigo-García, J.; Martínez-Ruiz, N.R.; Alvarez-Parrilla, E. Enriched Red Wine: Phenolic Profile, Sensory Evaluation and In Vitro Bioaccessibility of Phenolic Compounds. Foods 2023, 12, 1194. [Google Scholar] [CrossRef]
- Cáceres-Mella, A.; Peña-Neira, Á.; Avilés-Gálvez, P.; Medel-Marabolí, M.; del Barrio-Galán, R.; López-Solís, R.; Canals, J.M. Phenolic composition and mouthfeel characteristics resulting from blending Chilean red wines. J. Sci. Food Agric. 2013, 94, 666–676. [Google Scholar] [CrossRef]
- Soares, S.; Brandão, E.; Mateus, N.; de Freitas, V. Sensorial properties of red wine polyphenols: Astringency and bitterness. Crit. Rev. Food Sci. Nutr. 2016, 57, 937–948. [Google Scholar] [CrossRef]
- Garde-Cerdán, T.; Gutiérrez-Gamboa, G.; Ayestarán, B.; González-Lázaro, M.; Rubio-Bretón, P.; Pérez-Álvarez, E.P. Influence of seaweed foliar application to Tempranillo grapevines on grape and wine phenolic compounds over two vintages. Food Chem. 2021, 345, 128843. [Google Scholar] [CrossRef]
- Crespo, D.M.B.; Manjón, E.; Bailón, M.T.E.; Dueñas, M. Wine pH could affect the interaction between yeast mannoproteins and flavanolic compounds. J. Sci. Food Agric. 2025, 105, 6044–6052. [Google Scholar] [CrossRef]
- Ross, C.F. Considerations of the use of the electronic tongue in sensory science. Curr. Opin. Food Sci. 2021, 40, 87–93. [Google Scholar] [CrossRef]
- Diker, N.Y.; Kutluay, V.M. The evaluation of the antidiabetic effects of red wine polyphenols with the view of in silico prediction methods. Food Biosci. 2021, 40, 100920. [Google Scholar] [CrossRef]
- Zhang, Q.; Ma, J.; Yang, Y.; Deng, J.; Zhu, K.; Yi, Y.; Tang, J.; Jiang, X.; Zhu, C.; Laghi, L. Effects of S. cerevisiae strains on the sensory characteristics and flavor profile of kiwi wine based on E-tongue, GC-IMS and 1H-NMR. LWT 2023, 185, 115193. [Google Scholar] [CrossRef]
- Kutyła-Olesiuk, A.; Wesoły, M.; Wróblewski, W. Hybrid Electronic Tongue as a Tool for the Monitoring of Wine Fermentation and Storage Process. Electroanalysis 2018, 30, 1983–1989. [Google Scholar] [CrossRef]
- Lvova, L.; Natale, C.D.; Paolesse, R. E-tongue based on Porphyrin Electropolymers for Apulian Red Wines Defects Detection. In Proceedings of the Eurosensors 2017, Paris, France, 3–6 September 2017. [Google Scholar]
- Potter, R.I.; Warren, C.A.; Lee, J.; Ross, C.F. Comparative assessment of Riesling wine fault development by the electronic tongue and a sensory panel. J. Food Sci. 2024, 89, 3006–3018. [Google Scholar] [CrossRef]
- Cai, D.; Li, X.; Liu, H.; Wen, L.; Qu, D. Machine learning and flavoromics-based research strategies for determining the characteristic flavor of food: A review. Trends Food Sci. Technol. 2024, 154, 104794. [Google Scholar] [CrossRef]
- GB/T 15038-2006; Analytical Methods of Wine and Fruit Wine. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China: Beijing, China, 2006.
- Yang, P.; Yuan, C.; Wang, H.; Han, F.; Liu, Y.; Wang, L.; Liu, Y. Stability of Anthocyanins and Their Degradation Products from Cabernet Sauvignon Red Wine under Gastrointestinal pH and Temperature Conditions. Molecules 2018, 23, 354. [Google Scholar] [CrossRef]
- Li, H.; Gao, X.; Wang, Y.; Lu, H.; Tian, M.; Duan, C.; Wang, J. Artificial shading of teinturier grape Kolor clusters reveals light-responsive biomarkers: Focus on flavonoid profiles and metabolism. Front. Plant Sci. 2024, 15, 1356799. [Google Scholar] [CrossRef] [PubMed]
- GB/T 15037-2006; Wines. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China: Beijing, China, 2006.
- Lan, Y.; Liu, M.; Zhang, X.; Li, S.; Shi, Y.; Duan, C. Regional Variation of Chemical Characteristics in Young Marselan (Vitis vinifera L.) Red Wines from Five Regions of China. Foods 2022, 11, 787. [Google Scholar] [CrossRef] [PubMed]
- Parpinello, G.P.; Versari, A.; Chinnici, F.; Galassi, S. Relationship among sensory descriptors, consumer preference and color parameters of Italian Novello red wines. Food Res. Int. 2009, 42, 1389–1395. [Google Scholar] [CrossRef]
- Xie, Y.; Jiang, J.; Cui, M.; Chen, Y.; Li, Y.; Hu, Y.; Yin, R.; Ma, X.; Niu, J.; Cheng, W.; et al. Influence of different geographical origins and bottle storage times on the chemical composition, antioxidant activity and sensory properties of Cabernet Sauvignon wine. Food Chem. X 2024, 24, 101978. [Google Scholar] [CrossRef]
- Carvalho, M.J.; Pereira, V.; Pereira, A.C.; Pinto, J.L.; Marques, J.C. Evaluation of Wine Colour Under Accelerated and Oak-Cask Ageing Using CIELab and Chemometric Approaches. Food Bioprocess Technol. 2015, 8, 2309–2318. [Google Scholar] [CrossRef]
- Zhang, X.-K.; Lan, Y.-B.; Huang, Y.; Zhao, X.; Duan, C.-Q. Targeted metabolomics of anthocyanin derivatives during prolonged wine aging: Evolution, color contribution and aging prediction. Food Chem. 2021, 339, 127795. [Google Scholar] [CrossRef]
- Pascual, O.; González-Royo, E.; Gil, M.; Gómez-Alonso, S.; García-Romero, E.; Canals, J.M.; Hermosín-Gutíerrez, I.; Zamora, F. Influence of Grape Seeds and Stems on Wine Composition and Astringency. J. Agric. Food Chem. 2016, 64, 6555–6566. [Google Scholar] [CrossRef] [PubMed]
- Gombau, J.; Pons-Mercadé, P.; Conde, M.; Asbiro, L.; Pascual, O.; Gómez-Alonso, S.; García-Romero, E.; Miquel Canals, J.; Hermosín-Gutiérrez, I.; Zamora, F. Influence of grape seeds on wine composition and astringency of Tempranillo, Garnacha, Merlot and Cabernet Sauvignon wines. Food Sci. Nutr. 2020, 8, 3442–3455. [Google Scholar] [CrossRef]
- Xia, N.-Y.; Liu, A.-Y.; Qi, M.-Y.; Zhang, H.-L.; Huang, Y.-C.; He, F.; Duan, C.-Q.; Pan, Q.-H. Enhancing the color and astringency of red wines through white grape seeds addition: Repurposing wine production byproducts. Food Chem. X 2024, 23, 101700. [Google Scholar] [CrossRef]
- Yu, Y.; Li, L.; Xue, R.; Wang, C.; Chen, M.; Ramos, J.; Zhang, S.; Sun, B. Impact of Different Oak Chips’ Aging on the Volatile Compounds and Sensory Characteristics of Vitis amurensis Wines. Foods 2022, 11, 1126. [Google Scholar] [CrossRef]
- Merkytė, V.; Longo, E.; Windisch, G.; Boselli, E. Phenolic Compounds as Markers of Wine Quality and Authenticity. Foods 2020, 9, 1785. [Google Scholar] [CrossRef]
- Zhao, X.; Ding, B.-W.; Qin, J.-W.; He, F.; Duan, C.-Q. Intermolecular copigmentation between five common 3-O-monoglucosidic anthocyanins and three phenolics in red wine model solutions: The influence of substituent pattern of anthocyanin B ring. Food Chem. 2020, 326, 12960. [Google Scholar] [CrossRef]
- Bimpilas, A.; Tsimogiannis, D.; Balta-Brouma, K.; Lymperopoulou, T.; Oreopoulou, V. Evolution of phenolic compounds and metal content of wine during alcoholic fermentation and storage. Food Chem. 2015, 178, 164–171. [Google Scholar] [CrossRef]
- Rousserie, P.; Rabot, A.; Geny-Denis, L. From Flavanols Biosynthesis to Wine Tannins: What Place for Grape Seeds? J. Agric. Food Chem. 2019, 67, 1325–1343. [Google Scholar] [CrossRef]
Sample | Acylated Anthocyanins | Non-Acylated Anthocyanins | Coumarylated Anthocyanins | Delphinidin Anthocyanins | Cyanidin Anthocyanins | Petunidin Anthocyanins | Peonidin Anthocyanins | Malvidin Anthocyanins | Anthocyanins |
---|---|---|---|---|---|---|---|---|---|
2024 | |||||||||
24-A-1 | 308.0 ± 1.6 a | 420.7 ± 0.3 a | 122.3 ± 3.5 a | 24.0 ± 0.3 a | 3.4 ± 0.3 a | 55.4 ± 2.2 a | 47.3 ± 1.8 a | 720.9 ± 5.1 a | 851.0 ± 4.2 a |
24-A-2 | 284.3 ± 3.1 c | 399.6 ± 1.7 b | 111.1 ± 3.0 b | 21.4 ± 0.7 c | 3.0 ± 0.1 ab | 49.7 ± 0.5 b | 36.3 ± 1.8 c | 684.6 ± 3.7 b | 795.0 ± 5.2 b |
24-A-3 | 293.1 ± 3.0 b | 377.1 ± 1.9 c | 108.5 ± 2.3 b | 22.0 ± 0.5 bc | 3.2 ± 0.2 ab | 50.5 ± 1.3 b | 42.8 ± 1.2 b | 660.3 ± 3.8 c | 778.7 ± 3.7 c |
24-B-1 | 245.1 ± 0.4 f | 283.3 ± 5.2 g | 93.2 ± 1.3 c | 15.9 ± 0.4 e | 3.0 ± 0.2 ab | 34.5 ± 5.5 d | 27.4 ± 0.6 e | 540.9 ± 1.8 f | 621.6 ± 5.3 f |
24-B-2 | 284.7 ± 0.9 c | 338.7 ± 1.6 e | 92.8 ± 1.2 c | 22.7 ± 1.0 b | 3.2 ± 0.6 ab | 45.9 ± 0.8 c | 30.9 ± 1.4 d | 613.6 ± 2.2 d | 716.2 ± 1.1 d |
24-B-3 | 275.9 ± 2.8 d | 345.7 ± 4.4 d | 90.8 ± 1.4 cd | 22.4 ± 0.8 bc | 2.8 ± 0.1 b | 43.7 ± 0.7 c | 24.6 ± 0.5 f | 618.9 ± 5.5 d | 712.5 ± 5.7 d |
24-C-1 | 255.4 ± 3.2 e | 310.0 ± 4.3 f | 81.5 ± 0.5 d | 18.0 ± 0.8 d | 2.8 ± 0.0 b | 37.0 ± 0.4 d | 24.0 ± 0.5 f | 565.1 ± 0.5 e | 646.9 ± 1.5 e |
24-C-2 | 182.8 ± 0.5 g | 259.4 ± 1.1 i | 57.7 ± 0.5 f | 10.3 ± 0.1 g | 1.4 ± 0.0 d | 23.5 ± 0.1 f | 16.2 ± 0.2 h | 448.4 ± 0.7 h | 499.9 ± 0.5 h |
24-C-3 | 183.9 ± 3.8 g | 269.7 ± 2.4 h | 70.1 ± 0.8 e | 11.4 ± 0.5f | 2.0 ± 0.0 c | 27.5 ± 0.8 e | 20.5 ± 0.8g | 462.4 ± 1.9 g | 523.7 ± 1.1 g |
2023 | |||||||||
23-A-1 | 84.8 ± 1.3 c | 77.5 ± 0.8 c | 30.6 ± 0.3 c | 6.5 ± 0.2 c | 0.9 ± 0.0 d | 15.1 ± 0.3 c | 7.9 ± 0.1 d | 162.5 ± 0.6 c | 192.9 ± 0.8 c |
23-B-1 | 120.0 ± 1.2 b | 90.7 ± 2.0 b | 38.6 ± 0.8 b | 9.2 ± 0.4 b | 1.6 ± 0.0 a | 20.3 ± 0.3 b | 14.5 ± 0.3 a | 203.7 ± 0.8 b | 249.3 ± 1.0 b |
23-B-2 | 155.2 ± 0.8 a | 118.7 ± 0.9 a | 58.8 ± 0.8 a | 10.5 ± 0.1 a | 1.5 ± 0.0 b | 27.2 ± 0.6 a | 14.2 ± 0.1 b | 279.5 ± 1.4 a | 332.8 ± 0.6 a |
23-C-1 | 80.9 ± 0.2 d | 64.2 ± 0.4 d | 30.1 ± 0.2 d | 4.2 ± 0.1 d | 1.0 ± 0.0 c | 11.8 ± 0.1 d | 12.0 ± 0.1 c | 146.2 ± 0.2 d | 175.2 ± 0.4 d |
2021 | |||||||||
21-A-1 | 56.2 ± 0.6 b | 42.3 ± 0.5 c | 21.1 ± 0.4 b | 2.8 ± 0.2 b | 0.6 ± 0.0 b | 8.1 ± 0.1 b | 6.3 ± 0.6 b | 101.8 ± 0.9 b | 119.6 ± 1.4 b |
21-A-2 | 75.8 ± 0.6 a | 60.5 ± 0.9 a | 27.9 ± 1.5 a | 3.9 ± 0.1 a | 1.0 ± 0.0 a | 10.7 ± 0.3 a | 11.9 ± 0.3 a | 136.6 ± 2.4 a | 164.2 ± 2.5 a |
21-B-2 | 38.2 ± 0.5 d | 53.6 ± 1.4 b | 11.1 ± 0.3 c | 2.4 ± 0.3 c | 0.5 ± 0.0 c | 4.4 ± 0.6 c | 4.9 ± 0.3 c | 90.8 ± 0.2 c | 103.0 ± 1.5 c |
21-C-1 | 76.0 ± 0.2 a | 59.4 ± 0.7 a | 27.5 ± 0.2 a | 3.7 ± 0.2 a | 1.0 ± 0.0 a | 10.0 ± 0.6 a | 11.2 ± 0.1 a | 137.1 ± 0.0 a | 163.0 ± 0.7 a |
21-C-2 | 40.9 ± 0.5 c | 36.4 ± 0.4 d | 17.7 ± 0.2 b | 2.1 ± 0.0 c | 0.4 ± 0.0 d | 5.2 ± 0.0 c | 4.2 ± 0.5 c | 83.3 ± 0.6 d | 95.1 ± 1.1 d |
2019 | |||||||||
19-A-1 | 41.1 ± 0.4 a | 35.1 ± 1.5 a | 14.6 ± 0.5 a | 2.5 ± 0.1 a | 0.6 ± 0.0 a | 5.6 ± 0.5 a | 7.4 ± 1.0 a | 74.7 ± 0.8 a | 90.8 ± 2.3 a |
19-B-1 | 37.5 ± 0.4 c | 35.1 ± 0.3 a | 13.7 ± 0.4 ab | 2.2 ± 0.0 b | 0.6 ± 0.0 a | 5.3 ± 0.2 a | 7.5 ± 0.3 a | 70.8 ± 0.5 b | 86.3 ± 0.5 b |
19-B-2 | 29.4 ± 0.3 d | 28.4 ± 0.4 b | 12.1 ± 0.1 bc | 1.6 ± 0.0 c | 0.4 ± 0.0 b | 4.2 ± 0.1 b | 4.1 ± 0.1 b | 59.6 ± 0.6 c | 69.9 ± 0.6 c |
19-C-1 | 38.5 ± 0.4 b | 34.8 ± 0.8 a | 14.0 ± 0.1 ab | 2.2 ± 0.0 b | 0.6 ± 0.0 a | 5.4 ± 0.1 a | 7.8 ± 0.1 a | 71.3 ± 0.8 b | 87.3 ± 0.9 b |
19-C-2 | 26.9 ± 0.2 e | 27.0 ± 0.2 c | 11.3 ± 0.5 c | 1.5 ± 0.1 d | 0.3 ± 0.0 c | 3.6 ± 0.0 c | 4.0 ± 0.1 b | 55.7 ± 0.6 d | 65.1 ± 0.6 d |
Sample | Isorham -Netin | Myricetin | Quercetin | Kaemp -Ferol | Syringe -Tin | Flavonols | Catechin | Epicate -Chin | Gallocate -Chin | Epigallo -Catechin | Procya -Nin B1 | Procya -Nin B2 | Flavan-3-ols |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2024 | |||||||||||||
24-A-1 | 53.1 ± 1.3 f | 69.0 ± 2.0 e | 35.4 ± 1.8 c | 1.8 ± 1.6 a | 42.2 ± 0.5 a | 201.5 ± 4.8 d | 58.6 ± 0.2 g | 32.6 ± 0.3 c | 4.9 ± 0.0 bc | 2.3 ± 0.0 a | 11.9 ± 0.1 c | 6.8 ± 0.0 ab | 117.1 ± 0.2 b |
24-A-2 | 71.3 ± 0.8 b | 75.3 ± 0.7 c | 40.7 ± 0.5 b | 1.1 ± 1.9 a | 41.8 ± 0.3 ab | 230.2 ± 3.1 b | 41.0 ± 0.7 h | 24.2 ± 0.7 d | 4.1 ± 0.1 d | 1.4 ± 0.0 d | 12.9 ± 0.9 ab | 6.7 ± 0.5 ab | 111.3 ± 16.8 b |
24-A-3 | 80.3 ± 0.1 a | 120.5 ± 0.5 a | 23.6 ± 1.0 e | 1.7 ± 0.0 a | 40.9 ± 0.7 bc | 267.0 ± 1.4 a | 64.1 ± 0.3 b | 32.5 ± 0.3 c | 3.3 ± 0.0 f | 1.6 ± 0.0 c | 9.3 ± 0.1 d | 3.7 ± 0.0 f | 114.6 ± 0.0 b |
24-B-1 | 59.2 ± 0.3 d | 99.1 ± 0.3 b | 9.4 ± 0.4 f | 1.5 ± 0.1 a | 41.0 ± 0.8 bc | 210.2 ± 1.1 c | 72.4 ± 0.6 a | 36.4 ± 0.9 a | 3.7 ± 0.0 e | 1.7 ± 0.0 b | 11.0 ± 0.0 e | 4.5 ± 0.1 e | 129.7 ± 0.5 a |
24-B-2 | 63.5 ± 0.4 c | 70.9 ± 0.6 d | 33.9 ± 0.5 c | 2.3 ± 0.1 a | 40.4 ± 0.3 c | 211.0 ± 0.7 c | 61.1 ± 0.6 de | 33.7 ± 0.4 b | 4.9 ± 0.1 bc | 1.5 ± 0.1 d | 13.2 ± 0.2 a | 7.0 ± 0.1 a | 121.3 ± 1.0 ab |
24-B-3 | 56.5 ± 0.3 e | 74.1 ± 0.7 c | 42.9 ± 0.8 a | 1.6 ± 0.1 a | 36.2 ± 0.8 d | 211.3 ± 0.7 c | 60.2 ± 1.3 ef | 31.7 ± 0.7 c | 6.3 ± 0.1 a | 1.7 ± 0.0 b | 12.6 ± 0.0 b | 6.5 ± 0.0 bc | 119.0 ± 0.7 b |
24-C-1 | 37.2 ± 0.8 g | 38.9 ± 0.9 h | 22.3 ± 1.0 e | 1.0 ± 0.3 a | 28.1 ± 0.4 g | 127.5 ± 3.2 f | 59.3 ± 0.4 fg | 31.6 ± 0.5 c | 4.9 ± 0.0 c | 1.5 ± 0.0 d | 12.7 ± 0.1 ab | 6.2 ± 0.0 cd | 116.1 ± 0.3 b |
24-C-2 | 36.5 ± 0.4 g | 40.7 ± 0.5 g | 22.8 ± 0.2 e | 1.4 ± 0.1 a | 29.6 ± 0.2 f | 131.0 ± 0.2 f | 61.4 ± 0.2 cd | 31.8 ± 0.4 c | 5.0 ± 0.0 bc | 1.4 ± 0.0 e | 12.9 ± 0.1 ab | 6.3 ± 0.0 cd | 118.7 ± 0.6 b |
24-C-3 | 53.3 ± 0.3 f | 52.6 ± 0.5 f | 28.5 ± 0.4 d | 0.8 ± 0.0 a | 31.1 ± 0.3 e | 166.3 ± 1.0 e | 62.2 ± 0.2 c | 32.4 ± 0.7 c | 5.0 ± 0.0 bc | 1.4 ± 0.0 e | 11.3 ± 0.0 d | 6.1 ± 0.1 d | 118.3 ± 0.6 b |
2023 | |||||||||||||
23-A-1 | 39.5 ± 0.9 a | 27.1 ± 0.5 b | 17.7 ± 0.1 a | - | 7.4 ± 0.1 a | 91.7 ± 1.1 a | 15.4 ± 0.5 d | 10.5 ± 0.1 b | 2.9 ± 0.0 c | 0.4 ± 0.1 c | 3.1 ± 0.0 d | 1.1 ± 0.0 c | 33.3 ± 0.5 d |
23-B-1 | 24.1 ± 0.7 c | 24.0 ± 1.1 c | 9.9 ± 0.4 c | - | 4.2 ± 0.0 a | 62.2 ± 2.1 c | 19.3 ± 0.3 c | 9.7 ± 0.0 c | 3.7 ± 0.1 a | 1.2 ± 0.1 a | 3.3 ± 0.2 c | 1.2 ± 0.1 b | 38.4 ± 0.4 c |
23-B-2 | 30.6 ± 0.3 b | 30.0 ± 0.4 a | 12.2 ± 0.1 b | - | 3.9 ± 3.7 a | 76.7 ± 4.1 b | 22.2 ± 0.5 a | 11.6 ± 0.1 a | 3.4 ± 0.2 b | 1.3 ± 0.1 a | 3.8 ± 0.0 b | 1.2 ± 0.0 b | 43.5 ± 0.7 a |
23-C-1 | 20.2 ± 0.7 d | 21.4 ± 0.9 d | 4.9 ± 0.3 d | 0.1 ± 0.0 a | 6.2 ± 0.1 a | 52.8 ± 1.3 d | 21.4 ± 0.2 b | 10.7 ± 0.2 b | 2.8 ± 0.0 c | 1.1 ± 0.0 b | 4.3 ± 0.1 a | 1.5 ± 0.0 a | 41.7 ± 0.1 b |
2021 | |||||||||||||
21-A-1 | 35.6 ± 0.5 c | 27.4 ± 0.3 b | 11.3 ± 0.4 c | - | 6.7 ± 0.3 ab | 81.0 ± 0.6 d | 14.6 ± 0.1 c | 8.1 ± 0.1 b | 2.4 ± 0.1 bc | 0.7 ± 0.1 c | - | 2.6 ± 0.0 a | 28.5 ± 0.2 c |
21-A-2 | 34.9 ± 0.4 d | 30.3 ± 0.4 a | 11.6 ± 0.4 c | - | 6.0 ± 0.1 b | 82.8 ± 0.4 c | 13.8 ± 0.1 d | 7.7 ± 0.1 d | 2.3 ± 0.1 c | 0.9 ± 0.0 b | 2.1 ± 0.0 d | 0.5 ± 0.0 c | 27.3 ± 0.1 e |
21-B-2 | 36.8 ± 0.4 b | 29.6 ± 0.4 a | 11.5 ± 0.4 c | - | 7.4 ± 1.0 a | 85.3 ± 1.0 b | 13.8 ± 0.1 b | 7.9 ± 0.1 c | 2.4 ± 0.0 bc | 0.9 ± 0.0 b | 2.3 ± 0.1 c | 0.5 ± 0.0 c | 27.7 ± 0.2 d |
21-C-1 | 36.2 ± 0.1 b | 25.3 ± 0.4 c | 14.0 ± 0.6 b | - | 6.2 ± 0.2 b | 81.7 ± 0.7 cd | 16.9 ± 0.1 a | 10.4 ± 0.0 a | 2.4 ± 0.1 b | 1.0 ± 0.1 a | 2.8 ± 0.1 b | 1.1 ± 0.1 b | 34.6 ± 0.1 a |
21-C-2 | 38.1 ± 0.1 a | 26.7 ± 0.5 b | 15.7 ± 0.7 a | - | 6.2 ± 0.1 b | 86.7 ± 0.6 a | 16.2 ± 0.1 b | 10.3 ± 0.1 a | 2.9 ± 0.0 a | 0.5 ± 0.0 d | 3.0 ± 0.0 a | - | 32.9 ± 0.2 b |
2019 | |||||||||||||
19-A-1 | 39.5 ± 0.1 a | 30.2 ± 0.3 a | 12.1 ± 0.5 b | - | 7.3 ± 0.4 a | 89.1 ± 1.2 a | 14.5 ± 0.1 b | 8.4 ± 0.3 c | 3.2 ± 0.1 a | 0.9 ± 0.0 a | 2.5 ± 0.0 b | 0.7 ± 0.0 b | 30.3 ± 0.2 c |
19-B-1 | 32.6 ± 0.1 e | 23.9 ± 0.4 d | 13.5 ± 0.6 a | - | 6.8 ± 0.1 d | 76.8 ± 0.4 d | 15.2 ± 0.1 a | 10.3 ± 0.1 b | 2.9 ± 0.1 bc | 1.0 ± 0.1 a | 2.2 ± 0.2 c | 0.8 ± 0.1 ab | 32.4 ± 0.3 b |
19-B-2 | 35.5 ± 0.1 c | 25.9 ± 0.3 c | 12.4 ± 0.3 b | - | 5.1 ± 0.1 b | 78.9 ± 0.1 c | 14.5 ± 0.0 b | 10.5 ± 0.2 b | 2.9 ± 0.1 bc | 1.0 ± 0.0 a | 2.6 ± 0.0 b | 0.8 ± 0.2 ab | 32.3 ± 0.3 b |
19-C-1 | 33.6 ± 0.1 d | 24.2 ± 0.2 d | 10.6 ± 0.7 c | - | 5.7 ± 0.1 c | 74.1 ± 0.7 e | 15.3 ± 0.1 a | 10.9 ± 0.1 a | 3.0 ± 0.1 b | 1.0 ± 0.1 a | 2.7 ± 0.0 ab | 0.9 ± 0.0 a | 33.8 ± 0.3 a |
19-C-2 | 36.7 ± 0.0 b | 27.2 ± 0.3 b | 12.0 ± 0.4 b | - | 6.7 ± 0.3 b | 82.6 ± 0.6 b | 15.3 ± 0.1 a | 10.8 ± 0.1 a | 2.8 ± 0.0 c | 1.0 ± 0.1 a | 2.7 ± 0.0 a | 0.9 ± 0.1 a | 33.6 ± 0.2 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, N.; Wu, Y. Chemo-Sensory Markers for Red Wine Grades: A Correlation Study of Phenolic Profiles and Sensory Attributes. Foods 2025, 14, 3047. https://doi.org/10.3390/foods14173047
Xu N, Wu Y. Chemo-Sensory Markers for Red Wine Grades: A Correlation Study of Phenolic Profiles and Sensory Attributes. Foods. 2025; 14(17):3047. https://doi.org/10.3390/foods14173047
Chicago/Turabian StyleXu, Na, and Yun Wu. 2025. "Chemo-Sensory Markers for Red Wine Grades: A Correlation Study of Phenolic Profiles and Sensory Attributes" Foods 14, no. 17: 3047. https://doi.org/10.3390/foods14173047
APA StyleXu, N., & Wu, Y. (2025). Chemo-Sensory Markers for Red Wine Grades: A Correlation Study of Phenolic Profiles and Sensory Attributes. Foods, 14(17), 3047. https://doi.org/10.3390/foods14173047