Reducing Heat Without Impacting Quality: Optimizing Trypsin Inhibitor Inactivation Process in Low-TI Soybean
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material and Chemicals
2.2. Preparation of Soybean Meals
2.3. In Vitro Protein Digestibility
2.4. Quantification of TIs Concentration
2.5. Molecular Weight Profile of Soybean Proteins
2.6. Amino Acid Composition Analysis
2.7. Protein Solubility
2.8. Color Test
2.9. Statistical Analysis
3. Results and Discussion
3.1. In Vitro Protein Digestibility, TI Concentrations, and Correlation Analysis
3.2. Molecular Weight Profile of Soybean Meal Proteins
3.3. Amino Acid Composition
3.4. Protein Solubility
3.5. Color Test
4. Conclusions
5. Future Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ANFs | Anti-nutritional factors |
TI | Trypsin inhibitor |
BBTI | Bowman–Birk trypsin inhibitor |
KTI | Kunitz trypsin inhibitor |
SDS | Sodium dodecyl sulfate |
PAGE | Polyacrylamide gel electrophoresis |
References
- Soybeans|USDA Foreign Agricultural Service. Available online: https://www.fas.usda.gov/data/production/commodity/2222000 (accessed on 2 March 2025).
- Li, X.; Wang, D.; Gong, J.; Yu, L.; Ma, F.; Wang, X.; Zhang, L.; Li, P. Rapid and Nondestructive Detection of Oil Content and Fatty Acids of Soybean Using Hyperspectral Imaging. J. Food Compos. Anal. 2025, 139, 107033. [Google Scholar] [CrossRef]
- Singh, P.; Krishnaswamy, K. Sustainable Zero-Waste Processing System for Soybeans and Soy By-Product Valorization. Trends Food Sci. Technol. 2022, 128, 331–344. [Google Scholar] [CrossRef]
- Padalkar, G.; Mandlik, R.; Sudhakaran, S.; Vats, S.; Kumawat, S.; Kumar, V.; Kumar, V.; Rani, A.; Ratnaparkhe, M.B.; Jadhav, P.; et al. Necessity and Challenges for Exploration of Nutritional Potential of Staple-Food Grade Soybean. J. Food Compos. Anal. 2023, 117, 105093. [Google Scholar] [CrossRef]
- Lambo, M.T.; Ma, H.; Zhang, H.; Song, P.; Mao, H.; Cui, G.; Dai, B.; Li, Y.; Zhang, Y. Mechanism of Action, Benefits, and Research Gap in Fermented Soybean Meal Utilization as a High-Quality Protein Source for Livestock and Poultry. Anim. Nutr. 2024, 16, 130–146. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, S.; Zhang, T.; Zhang, H.; Wang, H.; Deng, J.; Min, S.; Wu, M.; Qiu, X.; Su, H. Effect of Twin-Screw Extrusion Parameters on Quality Attribute and Comprehensive Utilization of Soybean Meal in Ruminants: Insight into Protein Structure, Antioxidant Activity and in Vitro Digestion. LWT 2025, 215, 117278. [Google Scholar] [CrossRef]
- Vagadia, B.H.; Vanga, S.K.; Raghavan, V. Inactivation Methods of Soybean Trypsin Inhibitor—A Review. Trends Food Sci. Technol. 2017, 64, 115–125. [Google Scholar] [CrossRef]
- Wedekind, K.J.; Chen, J.; Yan, F.; Escobar, J.; Vazquez-Anon, M. Efficacy of a Mono-Component Protease Is Affected by Trypsin Inhibitor Concentration in Soybean Meal. Anim. Feed Sci. Technol. 2020, 265, 114502. [Google Scholar] [CrossRef]
- Mravec, J.; Jørgensen, B.; Pedersen, N. Immunohistological Visualization of the Effect of Soybean Processing on Kunitz Trypsin Inhibitor. Anim. Feed Sci. Technol. 2022, 292, 115410. [Google Scholar] [CrossRef]
- Okedigba, A.O.; Rosso, M.L.; Yu, D.; Shang, C.; Huang, H.; Zhang, B.; Capelluto, D.G.S. Comparative Binding Affinity Analysis of Soybean Meal Bowman-Birk and Kunitz Trypsin Inhibitors in Interactions with Animal Serine Proteases. ACS Food Sci. Technol. 2023, 3, 1344–1352. [Google Scholar] [CrossRef]
- Cid-Gallegos, M.S.; Corzo-Ríos, L.J.; Jiménez-Martínez, C.; Sánchez-Chino, X.M. Protease Inhibitors from Plants as Therapeutic Agents—A Review. Plant Foods Hum. Nutr. 2022, 77, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Kuenz, S.; Thurner, S.; Hoffmann, D.; Kraft, K.; Wiltafsky-Martin, M.; Damme, K.; Windisch, W.; Brugger, D. Effects of Gradual Differences in Trypsin Inhibitor Activity on the Estimation of Digestible Amino Acids in Soybean Expellers for Broiler Chickens. Poult. Sci. 2022, 101, 101740. [Google Scholar] [CrossRef]
- Oliva, M.L.V.; Silva, M.C.C.; Sallai, R.C.; Brito, M.V.; Sampaio, M.U. A Novel Subclassification for Kunitz Proteinase Inhibitors from Leguminous Seeds. Biochimie 2010, 92, 1667–1673. [Google Scholar] [CrossRef]
- Paul, D.C.; Bhattacharjee, M. Revisiting the Significance of Natural Protease Inhibitors: A Comprehensive Review. Int. J. Biol. Macromol. 2024, 280, 135899. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Chen, Y.; Xue, Z.; Gao, X.; Jia, Y.; Wang, Y.; Lu, Y.; Zhang, J.; Zhang, M.; Chen, H. Insight into the Inactivation Mechanism of Soybean Bowman-Birk Trypsin Inhibitor (BBTI) Induced by Epigallocatechin Gallate and Epigallocatechin: Fluorescence, Thermodynamics and Docking Studies. Food Chem. 2020, 303, 125380. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Wang, C.; Zhu, Q.; Qian, G. Optimization of Solid-State Fermentation with Lactobacillus Brevis and Aspergillus Oryzae for Trypsin Inhibitor Degradation in Soybean Meal. J. Integr. Agric. 2013, 12, 869–876. [Google Scholar] [CrossRef]
- Ge, G.; Guo, W.; Zheng, J.; Zhao, M.; Sun, W. Effect of Interaction between Tea Polyphenols with Soymilk Protein on Inactivation of Soybean Trypsin Inhibitor. Food Hydrocoll. 2021, 111, 106177. [Google Scholar] [CrossRef]
- Hsieh, K.-C.; Liao, W.-H.; Lin, K.-Y.; Cheng, K.-C.; Ting, Y. Reducing of Lipoxygenase and Trypsin Inhibitor in Soy Milk for Improving Nutritional Quality through Atmospheric Cold Plasma Pretreated Soybeans. Food Bioprod. Process. 2024, 148, 538–546. [Google Scholar] [CrossRef]
- Wu, Y.; Li, W.; Martin, G.J.O.; Ashokkumar, M. Mechanism of Low-Frequency and High-Frequency Ultrasound-Induced Inactivation of Soy Trypsin Inhibitors. Food Chem. 2021, 360, 130057. [Google Scholar] [CrossRef]
- Wu, Y.; Li, W.; Zhu, H.; Martin, G.J.O.; Ashokkumar, M. Ultrasound-Enhanced Interfacial Adsorption and Inactivation of Soy Trypsin Inhibitors. Ultrason. Sonochem. 2023, 94, 106315. [Google Scholar] [CrossRef]
- Wang, Z.; Shea, Z.; Rosso, L.; Shang, C.; Li, J.; Bewick, P.; Li, Q.; Zhao, B.; Zhang, B. Development of New Mutant Alleles and Markers for KTI1 and KTI3 via CRISPR/Cas9-Mediated Mutagenesis to Reduce Trypsin Inhibitor Content and Activity in Soybean Seeds. Front. Plant Sci. 2023, 14, 1111680. [Google Scholar] [CrossRef]
- Witte, N.H. Erickson, D.R., Ed.; Chapter 7—Soybean Meal Processing and Utilization. In Practical Handbook of Soybean Processing and Utilization; AOCS Press: Urbana, IL, USA, 1995; pp. 93–116. [Google Scholar]
- Hsu, H.W.; Vavak, D.L.; Satterlee, L.D.; Miller, G.A. A Multienzyme Technique for Estimating Protein Digestibility. J. Food Sci. 1977, 42, 1269–1273. [Google Scholar] [CrossRef]
- Tinus, T.; Damour, M.; Van Riel, V.; Sopade, P.A. Particle Size-Starch–Protein Digestibility Relationships in Cowpea (Vigna Unguiculata). J. Food Eng. 2012, 113, 254–264. [Google Scholar] [CrossRef]
- Rosso, M.L.; Shang, C.; Correa, E.; Zhang, B. An Efficient HPLC Approach to Quantify Kunitz Trypsin Inhibitor in Soybean Seeds. Crop Sci. 2018, 58, 1616–1623. [Google Scholar] [CrossRef]
- Hong, S.; Lin, Y.; Dia, V.P. Anti-Inflammatory and Antioxidant Properties of Hempseed Protein Enzymatic Hydrolysates. Food Hydrocoll. Health 2022, 2, 100082. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International; Method 982.30, chp. 45.3.05; AOAC International: Rockville, MD, USA, 2006. [Google Scholar]
- Shen, Y.; Tang, X.; Li, Y. Drying Methods Affect Physicochemical and Functional Properties of Quinoa Protein Isolate. Food Chem. 2021, 339, 127823. [Google Scholar] [CrossRef]
- Kamiloglu, S.; Tomas, M.; Ozkan, G.; Ozdal, T.; Capanoglu, E. In Vitro Digestibility of Plant Proteins: Strategies for Improvement and Health Implications. Curr. Opin. Food Sci. 2024, 57, 101148. [Google Scholar] [CrossRef]
- Del Rivera Rio, A.; Boom, R.M.; Janssen, A.E.M. Effect of Fractionation and Processing Conditions on the Digestibility of Plant Proteins as Food Ingredients. Foods 2022, 11, 870. [Google Scholar] [CrossRef]
- Sreechithra, T.V.; Sakhare, S.D. Impact of Processing Techniques on the Nutritional Quality, Antinutrients, and In Vitro Protein Digestibility of Milled Soybean Fractions. Food Chem. 2025, 485, 144565. [Google Scholar] [CrossRef]
- Muhammad, R.J.; Zulfiqar, A.; Muhammad, W.; Tahir, M.; Abid, H.; Muhammad, A.; Muhammad, F.M.; Gholamreza, A. Effect of Microwave Heat Processing on Nutritional, Antioxidant, Antinutrient, and Sensory Indices of Soy Flour Enriched Functional Noodles. J. Agric. Food Res. 2024, 18, 101426. [Google Scholar] [CrossRef]
- Tang, J.; Wichers, H.J.; Hettinga, K.A. Heat-Induced Unfolding Facilitates Plant Protein Digestibility during In Vitro Static Infant Digestion. Food Chem. 2022, 375, 131878. [Google Scholar] [CrossRef]
- Kohli, V.; Singha, S. Protein Digestibility of Soybean: How Processing Affects Seed Structure, Protein and Non-Protein Components. Discov. Food 2024, 4, 7. [Google Scholar] [CrossRef]
- Cabrera-Orozco, A.; Jiménez-Martínez, C.; Dávila-Ortiz, G.; Cabrera-Orozco, A.; Jiménez-Martínez, C.; Dávila-Ortiz, G. Soybean: Non-Nutritional Factors and Their Biological Functionality. In Soybean—Bio-Active Compounds; IntechOpen: London, UK, 2013. [Google Scholar]
- Amponsah, A.; Nayak, B. Effects of Microwave and Ultrasound Assisted Extraction on the Recovery of Soy Proteins for Soy Allergen Detection. J. Food Sci. 2016, 81, T2876–T2885. [Google Scholar] [CrossRef]
- L’hocine, L.; Boye, J.I.; Arcand, Y. Composition and Functional Properties of Soy Protein Isolates Prepared Using Alternative Defatting and Extraction Procedures. J. Food Sci. 2006, 71, C137–C145. [Google Scholar] [CrossRef]
- Ippoushi, K.; Wakagi, M.; Hashimoto, N.; Takano-Ishikawa, Y. Absolute Quantification of the α, A′, and β Subunits of β-Conglycinin from Soybeans by Liquid Chromatography/Tandem Mass Spectrometry Using Stable Isotope-Labelled Peptides. Food Res. Int. 2019, 116, 1223–1228. [Google Scholar] [CrossRef]
- Sui, X.; Zhang, T.; Jiang, L. Soy Protein: Molecular Structure Revisited and Recent Advances in Processing Technologies. Annu. Rev. Food Sci. Technol. 2021, 12, 119–147. [Google Scholar] [CrossRef]
- Zhang, J.; Li, M.; Lv, Y.; Guo, S.; Yang, B. Protein Aggregation Impacts In Vitro Protein Digestibility, Peptide Profiling and Potential Bioactive Peptides of Soymilk and Dry-Heated Soybeans. LWT 2023, 182, 114857. [Google Scholar] [CrossRef]
- Medic, J.; Atkinson, C.; Hurburgh, C.R. Current Knowledge in Soybean Composition. J. Am. Oil Chem. Soc. 2014, 91, 363–384. [Google Scholar] [CrossRef]
- Nasri, M.H.F.; France, J.; Danesh Mesgaran, M.; Kebreab, E. Effect of Heat Processing on Ruminal Degradability and Intestinal Disappearance of Nitrogen and Amino Acids in Iranian Whole Soybean. Livest. Sci. 2008, 113, 43–51. [Google Scholar] [CrossRef]
- Grossmann, L.; McClements, D.J. Current Insights into Protein Solubility: A Review of Its Importance for Alternative Proteins. Food Hydrocoll. 2023, 137, 108416. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, J.; Li, M.; Guo, S.; Lv, Y. Effects of Heat Treatment on Protein Molecular Structure and in Vitro Digestion in Whole Soybeans with Different Moisture Content. Food Res. Int. 2022, 155, 111115. [Google Scholar] [CrossRef]
- Žilić, S.; Božović, I.; Savić, S.; Šobajić, S. Heat Processing of Soybean Kernel and Its Effect on Lysine Availability and Protein Solubility. Open Life Sci. 2006, 1, 572–583. [Google Scholar] [CrossRef]
- Jiménez-González, O.; González-Pérez, J.; Mejía-Garibay, B.; López-Malo, A.; Guerrero-Beltrán, J.Á. Caramel Colour Pigments from Black Sapote (Diospyros digyna): Obtention and Food Application. Sustain. Food Technol. 2023, 1, 555–566. [Google Scholar] [CrossRef]
- Dahmer, A.M.; Rigo, A.A.; Steffens, J.; Steffens, C.; Carrão-Panizzi, M.C. Thermal Treatment for Soybean Flour Processing with High-Quality Color and Reduced Kunitz Trypsin Inhibitor. J. Food Process Eng. 2018, 41, e12925. [Google Scholar] [CrossRef]
- ISAAA. GM Approval Database. International Service for the Acquisition of Agri-biotech Applications. Available online: https://www.isaaa.org/gmapprovaldatabase/ (accessed on 18 July 2025).
- European Commission. EU Register of Authorised GMOs. Available online: https://food.ec.europa.eu/plants/genetically-modified-organisms/gmo-register_en (accessed on 18 July 2025).
Amino Acids (w/w%) | High TI 80 °C | High TI 100 °C | High TI 121 °C | Low TI 80 °C | Low TI 100 °C | Low TI 121 °C |
---|---|---|---|---|---|---|
Essential amino acids | ||||||
Histidine | 1.18 | 1.28 | 1.13 | 1.21 | 1.26 | 1.26 |
Isoleucine | 2.26 | 2.28 | 2.27 | 2.18 | 2.32 | 2.33 |
Leucine | 3.44 | 3.55 | 3.42 | 3.36 | 3.55 | 3.64 |
Lysine | 2.73 | 3.00 | 2.94 | 2.88 | 3.00 | 2.85 |
Methionine | 0.62 | 0.64 | 0.64 | 0.60 | 0.66 | 0.65 |
Phenylalanine | 2.27 | 2.36 | 2.27 | 2.23 | 2.38 | 2.41 |
Threonine | 1.74 | 1.78 | 1.70 | 1.66 | 1.75 | 1.79 |
Tryptophan | 0.45 | 0.33 | 0.47 | 0.48 | 0.35 | 0.51 |
Valine | 2.31 | 2.33 | 2.33 | 2.25 | 2.40 | 2.42 |
Non-essential amino acids | ||||||
Alanine | 1.95 | 2.04 | 1.93 | 1.90 | 2.04 | 2.06 |
Arginine | 3.03 | 3.24 | 3.22 | 3.06 | 3.39 | 3.33 |
Aspartic Acid | 5.15 | 5.27 | 5.24 | 5.01 | 5.33 | 5.37 |
Cysteine | 0.59 | 0.67 | 0.66 | 0.59 | 0.68 | 0.60 |
Glutamic Acid | 8.25 | 8.68 | 8.54 | 8.31 | 8.62 | 8.95 |
Glycine | 1.90 | 1.91 | 1.90 | 1.84 | 1.95 | 1.99 |
Proline | 2.21 | 2.29 | 2.21 | 2.19 | 2.29 | 2.34 |
Serine | 1.83 | 1.90 | 1.90 | 1.76 | 1.85 | 1.90 |
Tyrosine | 1.28 | 1.40 | 1.24 | 1.22 | 1.75 | 1.76 |
Non-proteinogenic amino acids | ||||||
Taurine | 0.08 | 0.09 | 0.08 | 0.10 | 0.12 | 0.13 |
Hydroxyproline | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Lanthionine | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Ornithine | 0.06 | 0.06 | 0.03 | 0.05 | 0.05 | 0.09 |
Hydroxylysine | 0.00 | 0.06 | 0.02 | 0.03 | 0.06 | 0.02 |
Total | 42.91 | 45.80 | 46.40 | 43.33 | 45.16 | 44.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, R.; Rosso, L.; Walker, T.; Reilly, P.; Zhang, B.; Huang, H. Reducing Heat Without Impacting Quality: Optimizing Trypsin Inhibitor Inactivation Process in Low-TI Soybean. Foods 2025, 14, 3039. https://doi.org/10.3390/foods14173039
Xiao R, Rosso L, Walker T, Reilly P, Zhang B, Huang H. Reducing Heat Without Impacting Quality: Optimizing Trypsin Inhibitor Inactivation Process in Low-TI Soybean. Foods. 2025; 14(17):3039. https://doi.org/10.3390/foods14173039
Chicago/Turabian StyleXiao, Ruoshi, Luciana Rosso, Troy Walker, Patrick Reilly, Bo Zhang, and Haibo Huang. 2025. "Reducing Heat Without Impacting Quality: Optimizing Trypsin Inhibitor Inactivation Process in Low-TI Soybean" Foods 14, no. 17: 3039. https://doi.org/10.3390/foods14173039
APA StyleXiao, R., Rosso, L., Walker, T., Reilly, P., Zhang, B., & Huang, H. (2025). Reducing Heat Without Impacting Quality: Optimizing Trypsin Inhibitor Inactivation Process in Low-TI Soybean. Foods, 14(17), 3039. https://doi.org/10.3390/foods14173039