Bioactive Food Proteins: Bridging Nutritional and Functional Benefits with Sustainable Protein Sources
Abstract
1. Introduction
2. Protein Sources: From Conventional to Revolutionary
2.1. Conventional Sources
2.2. Alternative Sources
2.2.1. Plant Based Proteins
2.2.2. Insect-Based Proteins
2.3. High Tech Sources
2.3.1. Microbial Proteins (Single-Cell Proteins)
- Raw materials nutritional profile improvement (e.g., cereals, legumes).
- Microbial biomass production with minimal processing.
- Targeted production of specific metabolites via precision fermentation (e.g., proteins).
2.3.2. Cultures and Lab Grown Proteins
3. Understanding Bioactive Food Proteins
3.1. Definition and Significance
3.2. Mechanisms of Bioactivity
3.2.1. Receptor Interactions and Signalling Modulation
3.2.2. Enzyme Inhibition
3.2.3. Immunomodulation and Anti-Inflammatory Activity
3.2.4. Antioxidant and Antimicrobial Mechanisms
3.2.5. Metabolic Modulation, Anti-Obesogenic Effects, and Gut Microbiota Interaction
3.3. Structure and Its Influence on Bioactivity
3.3.1. Chain Length and Molecular Size
3.3.2. Amino Acid Composition and Sequence Motifs
3.3.3. Conformation and Structural Stability
3.4. Bioavailability and Efficacy
3.4.1. Stability in the Gastrointestinal Tract
3.4.2. Intestinal Absorption and Transport
3.4.3. Effects of the Food Matrix
4. Technological Influence on Bioactive Potential
4.1. Traditional Processing Techniques
- Fermentation enhances protein digestibility and promotes the release of bioactive peptides with antioxidant, antihypertensive, and antimicrobial activities. Traditional foods such as natto are rich in nattokinase, a fibrinolytic enzyme with cardiovascular benefits [94]. Similarly, cheese maturation generates opioid peptides and ACE inhibitors through proteolytic activity [95].
- Thermal processing can increase bioactivity by denaturing proteins and exposing cleavage sites for enzymatic hydrolysis. However, excessive heat may induce Maillard reactions that mask bioactive regions or produce undesirable compounds [96,97]. Careful optimisation is therefore needed to maximise health-promoting properties while minimising negative effects.
- Enzymatic hydrolysis remains one of the most effective strategies for generating bioactive peptides in a targeted manner, as demonstrated by whey hydrolysates and fermented legumes [98].
4.2. Modern Processing Techniques
- Pulsed electric fields (PEF) disrupt cell membranes, improving enzyme accessibility and extraction of bioactive compounds [101].
- Ultrasound-assisted extraction generates acoustic cavitation, which promotes efficient protein hydrolysis and has been shown to increase antioxidant and antihypertensive activity in soy and dairy proteins [102].
5. Applications in Food and Nutrition
5.1. Functional Foods and Beverages
5.2. Nutraceutical and Dietary Supplements
- Collagen peptides support joint, bone, and skin health, with growing interest in marine and insect-derived alternatives to bovine or porcine collagen [142].
- Sports nutrition products use protein hydrolysates enriched in branched-chain amino acids (BCAAs) to stimulate muscle protein synthesis and recovery [143]. Fast-absorbing hydrolysates from whey, soy, and insect larvae (Hermetia illucens) are being used for pre- and post-exercise supplementation [144,145].
5.3. Medical and Clinical Nutrition
- Immunomodulatory peptides from casein, soy, or marine proteins support immune function in patients with chronic inflammation or immune dysregulation [154].
6. Current Outlook and Perspectives: Market, Challenges and Limitations
6.1. Intellectual Property (WIPO–Patent Scope)
6.2. Trends Analysis (VOS Viewer)
- (1)
- Fermentation and microbiology approach (Red): Studies focused on the production of microorganisms through fermentation (fungi, bacteria, yeasts, microalgae, etc.) for the production of specific proteins (bacteriocins and enzymes). Additionally, some studies focused on heterologous production—keywords: Fermentation, bacteria, food preservation, and recombinant protein.
- (2)
- Protein in the food industry (green): Studies focused on the application of protein in food (meats), as well as studies focused on animal protein (whey) and plant protein (soybean protein); as well as sensory studies, process analysis, and applications in the food industry in sectors such as bakeries and meat. Keywords: Protein, plant protein, food industry, meat, texture analysis, bakery, and food production.
- (3)
- Alternative protein, nutritional and consumer approach (Blue): Studies focused on the elucidation of new alternative protein sources (insects, microalgae) and the development of new analogous products (meat). Likewise, some topics of interest in this cluster include aspects of nutritional value, health, diet, and risk factors. Finally, some consumer aspects, such as preference, acceptability, and food neophobia, have been included here—keywords: nutrition, Alternative proteins, diet, and nutritional value.
- (4)
- Health benefits and dietary supplements (Yellow): Studies focusing on the positive health benefits (antioxidant, anti-inflammatory) of dietary supplements, animal model studies, and their impact on the microbiota are visualised in this cluster—keywords: Antioxidant activity, body weight, dietary supplement, intestine, and drug effect.
- (5)
- Environmental and valorization approach (Violet): Studies that focus on new trends in the circular economy through the integration of by-products to generate value-added products. Keywords: Biomass, microalgae, biofuel, food, and animal feed.
6.3. Challenges and Limitations (Legislation)
6.3.1. Regulatory Uncertainty
6.3.2. Ensuring Safety
6.3.3. Intellectual Property Complexities
6.3.4. Consumer Acceptance
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Adhikari, S.; Schop, M.; de Boer, I.J.; Huppertz, T. Protein quality in perspective: A review of protein quality metrics and their applications. Nutrients 2022, 14, 947. [Google Scholar] [CrossRef]
- Watford, M.; Wu, G. Protein. Adv. Nutr. 2018, 9, 651–653. [Google Scholar] [CrossRef]
- Damodaran, S. Food proteins: An overview. In Food Proteins and Their Applications; CRC Press: Boca Raton, FL, USA, 2017; pp. 1–24. [Google Scholar] [CrossRef]
- Hartmann, C.; Siegrist, M. Consumer perception and behaviour regarding sustainable protein consumption: A systematic review. Trends Food Sci. Technol. 2017, 61, 11–25. [Google Scholar] [CrossRef]
- Nadathur, S.; Wanasundara, J.P.; Scanlin, L. Sustainable Protein Sources; Academic Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Auestad, N.; Layman, D.K. Dairy bioactive proteins and peptides: A narrative review. Nutr. Rev. 2021, 79, 36–47. [Google Scholar] [CrossRef]
- Martirosyan, D.; Lampert, T.; Lee, M. A comprehensive review on the role of food bioactive compounds in functional food science. Funct. Food Sci. Online 2022, 2, 64–78. [Google Scholar] [CrossRef]
- Akbarian, M.; Khani, A.; Eghbalpour, S.; Uversky, V.N. Bioactive peptides: Synthesis, sources, applications, and proposed mechanisms of action. Int. J. Mol. Sci. 2022, 23, 1445. [Google Scholar] [CrossRef]
- Shang, N.; Chaplot, S.; Wu, J. 12—Food proteins for health and nutrition. In Proteins in Food Processing, 2nd ed.; Yada, R.Y., Ed.; Woodhead Publishing: Cambridge, UK, 2018; pp. 301–336. [Google Scholar] [CrossRef]
- Karabulut, G.; Subasi, B.G.; Ivanova, P.; Goksen, G.; Chalova, V.; Capanoglu, E. Towards sustainable and nutritional-based plant protein sources: A review on the role of rapeseed. Food Res. Int. 2025, 202, 115553. [Google Scholar] [CrossRef]
- Kiwanuka, E. Chapter 8—The role of diet in the obesity epidemic. In Obesity; Mehrzad, R., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 99–107. [Google Scholar] [CrossRef]
- Vogtschmidt, Y.D.; Raben, A.; Faber, I.; de Wilde, C.; Lovegrove, J.A.; Givens, D.I.; Pfeiffer, A.F.H.; Soedamah-Muthu, S.S. Is protein the forgotten ingredient: Effects of higher compared to lower protein diets on cardiometabolic risk factors. A systematic review and meta-analysis of randomised controlled trials. Atherosclerosis 2021, 328, 124–135. [Google Scholar] [CrossRef] [PubMed]
- Awasthi, M.K.; Harirchi, S.; Sar, T.; Vs, V.; Rajendran, K.; Gómez-García, R.; Hellwig, C.; Binod, P.; Sindhu, R.; Madhavan, A.; et al. Myco-biorefinery approaches for food waste valorization: Present status and future prospects. Bioresour. Technol. 2022, 360, 127592. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, A.; Sharma, N.; Kaur, G.; Sharma, N.; Liu, J. Plant-based proteins: Overview and impact on sustainable nutrition access. In Plant-Based Proteins: Sources, Extraction, Applications, Value-Chain and Sustainability; CRC Press: Boca Raton, FL, USA, 2024; pp. 1–43. [Google Scholar] [CrossRef]
- Linder, T. What next for mycoprotein? Curr. Opin. Food Sci. 2024, 58, 101199. [Google Scholar] [CrossRef]
- Ferrari, L.; Panaite, S.-A.; Bertazzo, A.; Visioli, F. Animal- and Plant-Based Protein Sources: A Scoping Review of Human Health Outcomes and Environmental Impact. Nutrients 2022, 14, 5115. [Google Scholar] [CrossRef]
- Singh, N.; Paul, M.; Mudgal, S.; Kaur, A. Chapter 18—Nutritional properties of proteins from different sources and their role in sports performance. In Future Proteins; Tiwari, B.K., Healy, L.E., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 391–407. [Google Scholar] [CrossRef]
- Thakur, S.; Pandey, A.K.; Verma, K.; Shrivastava, A.; Singh, N. Plant-based protein as an alternative to animal proteins: A review of sources, extraction methods and applications. Int. J. Food Sci. Technol. 2024, 59, 488–497. [Google Scholar] [CrossRef]
- Pinckaers, P.J.M.; Trommelen, J.; Snijders, T.; van Loon, L.J.C. The Anabolic Response to Plant-Based Protein Ingestion. Sports Med. 2021, 51, 59–74. [Google Scholar] [CrossRef]
- Merlo, M.; Hennessy, T.; Buckley, C.; O’Mahony, J. A comparison of animal and plant-based proteins from an economic, environmental, and nutritional perspective in the Republic of Ireland. Agric. Syst. 2024, 221, 104143. [Google Scholar] [CrossRef]
- Korkmaz, F. Safflower protein as a potential plant protein powder: Optimization of extraction and spray-drying process parameters and determination of physicochemical and functional properties. J. Sci. Food Agric. 2024, 104, 7408–7416. [Google Scholar] [CrossRef]
- Akyüz, A.; Ersus, S. Optimization of enzyme assisted extraction of protein from the sugar beet (Beta vulgaris L.) leaves for alternative plant protein concentrate production. Food Chem. 2021, 335, 127673. [Google Scholar] [CrossRef]
- Munialo, C.D.; Euston, S.R.; de Jongh, H.H.J. 19—Protein gels. In Proteins in Food Processing, 2nd ed.; Yada, R.Y., Ed.; Woodhead Publishing: Cambridge, UK, 2018; pp. 501–521. [Google Scholar] [CrossRef]
- Szepe, K.J.; Dyer, P.S.; Johnson, R.I.; Salter, A.M.; Avery, S.V. Influence of environmental and genetic factors on food protein quality: Current knowledge and future directions. Curr. Opin. Food Sci. 2021, 40, 94–101. [Google Scholar] [CrossRef]
- de Castro, R.J.S.; Ohara, A.; Aguilar, J.G.d.S.; Domingues, M.A.F. Nutritional, functional and biological properties of insect proteins: Processes for obtaining, consumption and future challenges. Trends Food Sci. Technol. 2018, 76, 82–89. [Google Scholar] [CrossRef]
- Ma, Z.; Mondor, M.; Goycoolea Valencia, F.; Hernández-Álvarez, A.J. Current state of insect proteins: Extraction technologies, bioactive peptides and allergenicity of edible insect proteins. Food Funct. 2023, 14, 8129–8156. [Google Scholar] [CrossRef]
- Liceaga, A.M. Processing insects for use in the food and feed industry. Curr. Opin. Insect Sci. 2021, 48, 32–36. [Google Scholar] [CrossRef] [PubMed]
- Rocchetti, G.; Leni, G.; Rebecchi, A.; Dordoni, R.; Giuberti, G.; Lucini, L. The distinctive effect of different insect powders as meat extenders in beef burgers subjected to cooking and in vitro gastrointestinal digestion. Food Chem. 2024, 442, 138422. [Google Scholar] [CrossRef]
- Krawczyk, A.; Fernández-López, J.; Zimoch-Korzycka, A. Insect Protein as a Component of Meat Analogue Burger. Foods 2024, 13, 1806. [Google Scholar] [CrossRef]
- Anyasi, T.A.; Acharya, P.; Udenigwe, C.C. Edible insects as an alternative protein source: Nutritional composition and global consumption patterns. Future Foods 2025, 12, 100699. [Google Scholar] [CrossRef]
- Sousa, P.; Borges, S.; Pintado, M. Enzymatic hydrolysis of insect Alphitobius diaperinus towards the development of bioactive peptide hydrolysates. Food Funct. 2020, 11, 3539–3548. [Google Scholar] [CrossRef]
- Sharif, M.; Zafar, M.H.; Aqib, A.I.; Saeed, M.; Farag, M.R.; Alagawany, M. Single cell protein: Sources, mechanism of production, nutritional value and its uses in aquaculture nutrition. Aquaculture 2021, 531, 735885. [Google Scholar] [CrossRef]
- Hilgendorf, K.; Wang, Y.; Miller, M.J.; Jin, Y.-S. Precision fermentation for improving the quality, flavor, safety, and sustainability of foods. Curr. Opin. Biotechnol. 2024, 86, 103084. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Shahrajabian, M.H.; Lin, M. Research Progress of Fermented Functional Foods and Protein Factory-Microbial Fermentation Technology. Fermentation 2022, 8, 688. [Google Scholar] [CrossRef]
- Li, X.-L.; Qi, X.-N.; Deng, J.-C.; Jiang, P.; Wang, S.-Y.; Xue, X.-L.; Wang, Q.-H.; Ren, X. Characterization of Fusarium venenatum Mycoprotein-Based Harbin Red Sausages. Foods 2025, 14, 556. [Google Scholar] [CrossRef] [PubMed]
- Gamarra-Castillo, O.; Echeverry-Montaña, N.; Marbello-Santrich, A.; Hernández-Carrión, M.; Restrepo, S. Meat Substitute Development from Fungal Protein (Aspergillus oryzae). Foods 2022, 11, 2940. [Google Scholar] [CrossRef]
- Molfetta, M.; Morais, E.G.; Barreira, L.; Bruno, G.L.; Porcelli, F.; Dugat-Bony, E.; Bonnarme, P.; Minervini, F. Protein Sources Alternative to Meat: State of the Art and Involvement of Fermentation. Foods 2022, 11, 2065. [Google Scholar] [CrossRef] [PubMed]
- Pereira, A.A.; Yaverino-Gutierrez, M.A.; Monteiro, M.C.; Souza, B.A.; Bachheti, R.K.; Chandel, A.K. Precision fermentation in the realm of microbial protein production: State-of-the-art and future insights. Food Res. Int. 2025, 200, 115527. [Google Scholar] [CrossRef]
- Yang, R.; Chen, Z.; Hu, P.; Zhang, S.; Luo, G. Two-stage fermentation enhanced single-cell protein production by Yarrowia lipolytica from food waste. Bioresour. Technol. 2022, 361, 127677. [Google Scholar] [CrossRef]
- Salazar-López, N.J.; Barco-Mendoza, G.A.; Zuñiga-Martínez, B.S.; Domínguez-Avila, J.A.; Robles-Sánchez, R.M.; Ochoa, M.A.V.; González-Aguilar, G.A. Single-Cell Protein Production as a Strategy to Reincorporate Food Waste and Agro By-Products Back into the Processing Chain. Bioengineering 2022, 9, 623. [Google Scholar] [CrossRef]
- Ellies-Oury, M.-P.; Chriki, S.; Hocquette, J.-F. Chapter Six—Should and will “cultured meat” become a reality in our plates? In Advances in Food and Nutrition Research; Wu, J., Ed.; Academic Press: Cambridge, MA, USA, 2022; Volume 101, pp. 181–212. [Google Scholar]
- Lee, S.Y.; Kang, H.J.; Lee, D.Y.; Kang, J.H.; Ramani, S.; Park, S.; Hur, S.J. Principal protocols for the processing of cultured meat. J. Anim. Sci. Technol. 2021, 63, 673–680. [Google Scholar] [CrossRef]
- Siddiqui, S.A.; Alvi, T.; Sameen, A.; Khan, S.; Blinov, A.V.; Nagdalian, A.A.; Mehdizadeh, M.; Adli, D.N.; Onwezen, M. Consumer Acceptance of Alternative Proteins: A Systematic Review of Current Alternative Protein Sources and Interventions Adapted to Increase Their Acceptability. Sustainability 2022, 14, 15370. [Google Scholar] [CrossRef]
- Ramezani, P.; Motamedzadegan, A. Exploring the Potential of Cultured Meat: Technological Advancements, Sustainability Prospects, and Challenges. Iran. Food Sci. Technol. Res. J. 2024, 20, 81–103. [Google Scholar] [CrossRef]
- Gu, X.; Wang, L.; Liu, S.; Valencak, T.G.; Tan, L.P.; Zhu, Y.; Zhou, M.; Shan, T. The future of cultured meat: Focusing on multidisciplinary, digitization, and nutritional customization. Food Res. Int. 2025, 219, 117005. [Google Scholar] [CrossRef]
- Borusiak, B.; Bogueva, D.; Marinova, D. Consumer Perception of Cultivated Meat. In Consumer Perceptions and Food; Springer: Berlin/Heidelberg, Germany, 2024; pp. 277–295. [Google Scholar] [CrossRef]
- Hocquette, J.-F.; Chriki, S.; Fournier, D.; Ellies-Oury, M.-P. Will “cultured meat” transform our food system towards more sustainability? Animal 2025, 19, 101145. [Google Scholar] [CrossRef] [PubMed]
- Jahir, N.R.; Ramakrishna, S.; Abdullah, A.A.A.; Vigneswari, S. Cultured meat in cellular agriculture: Advantages, applications and challenges. Food Biosci. 2023, 53, 102614. [Google Scholar] [CrossRef]
- Zheng, Y.-Y.; Hu, Z.-N.; Zhou, G.-H. A review: Analysis of technical challenges in cultured meat production and its commercialization. Crit. Rev. Food Sci. Nutr. 2025, 65, 1911–1928. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, E.; Yuan, J. Research review of consumer acceptance of cultured meat. Food Ferment. Ind. 2025, 51, 398–404. [Google Scholar] [CrossRef]
- Hansen, T.T.; Astrup, A.; Sjödin, A. Are dietary proteins the key to successful body weight management? A systematic review and meta-analysis of studies assessing body weight outcomes after interventions with increased dietary protein. Nutrients 2021, 13, 3193. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wu, J.L.; Xu, P.; Guo, S.; Zhou, T.; Li, N. Soy protein degradation drives diversity of amino-containing compounds via Bacillus subtilis natto fermentation. Food Chem. 2022, 388, 133034. [Google Scholar] [CrossRef]
- Singh, B.P. Harnessing probiotic fermentation for the generation of food-derived bioactive peptides: Current status and prospects. Eur. Food Res. Technol. 2025, 251, 2061–2076. [Google Scholar] [CrossRef]
- Meng, T.; Zhu, X.; He, S.; Liu, X.; Mitra, P.; Liu, H. Advances in extraction, structural design, functional activity and application of yeast protein peptides. Food Biosci. 2024, 62, 105026. [Google Scholar] [CrossRef]
- Tak, Y.; Kaur, M.; Amarowicz, R.; Bhatia, S.; Gautam, C. Pulse Derived Bioactive Peptides as Novel Nutraceuticals: A Review. Int. J. Pept. Res. Ther. 2021, 27, 2057–2068. [Google Scholar] [CrossRef]
- Benítez, T.T.; Jiménez-Martínez, C.; Concepción Pérez Pérez, N.; Porras Saavedra, J. Modulation of Angiotensin-I-Converting Enzyme by Bioactive Peptides from Vegetable Origin. In Angiotensin-Converting Enzyme: Functions and Role in Disease; Academic Press: Cambridge, MA, USA, 2020; pp. 265–286. [Google Scholar]
- Velarde-Salcedo, A.J.; Vázquez-Rodríguez, G.; De León-Rodríguez, A.; Barba de la Rosa, A.P. Novel technologies in bioactive peptides production and stability. In Biologically Active Peptides: From Basic Science to Applications for Human Health; Academic Press: Cambridge, MA, USA, 2021; pp. 47–74. [Google Scholar] [CrossRef]
- Yue, Q.; Shi, W.; Zhang, C.; Li, X.; Liu, X.; Lü, M.; Zhang, H.; Yuan, Y.; Yang, Z.; Li, Y. Research Progress on the Stabilization and Targeted Delivery Carriers for Food Bioactive Compounds. Shipin Kexue Food Sci. 2024, 45, 272–286. [Google Scholar] [CrossRef]
- Campos, M.R.S. Improving Health and Nutrition Through Bioactive Compounds: Benefits and Applications; Elsevier: Amsterdam, The Netherlands, 2024; pp. 1–350. [Google Scholar] [CrossRef]
- Saubenova, M.; Oleinikova, Y.; Rapoport, A.; Maksimovich, S.; Yermekbay, Z.; Khamedova, E. Bioactive Peptides Derived from Whey Proteins for Health and Functional Beverages. Fermentation 2024, 10, 359. [Google Scholar] [CrossRef]
- Tawalbeh, D.; Al-U’datt, M.H.; Wan Ahmad, W.A.N.; Ahmad, F.; Sarbon, N.M. Recent Advances in In Vitro and In Vivo Studies of Antioxidant, ACE-Inhibitory and Anti-Inflammatory Peptides from Legume Protein Hydrolysates. Molecules 2023, 28, 2423. [Google Scholar]
- Liao, W.; Sun, G.; Xu, D.; Wang, Y.; Lu, Y.; Sun, J.; Xia, H.; Wang, S. The Blood-Pressure-Lowering Effect of Food-Protein-Derived Peptides: A Meta-Analysis of Recent Clinical Trials. Foods 2021, 10, 2316. [Google Scholar] [CrossRef]
- Zhang, M.; Zhu, L.; Wu, G.; Liu, T.; Qi, X.; Zhang, H. Food-derived dipeptidyl peptidase IV inhibitory peptides: Production, identification, structure-activity relationship, and their potential role in glycemic regulation. Crit. Rev. Food Sci. Nutr. 2024, 64, 2053–2075. [Google Scholar] [CrossRef] [PubMed]
- Subramaniyan, V.; Hanim, Y.U. Role of pancreatic lipase inhibition in obesity treatment: Mechanisms and challenges towards current insights and future directions. Int. J. Obes. 2025, 49, 492–506. [Google Scholar] [CrossRef] [PubMed]
- Suryaningtyas, I.T.; Je, J.-Y. Bioactive peptides from food proteins as potential anti-obesity agents: Mechanisms of action and future perspectives. Trends Food Sci. Technol. 2023, 138, 141–152. [Google Scholar] [CrossRef]
- Karimzadeh, K.; Unniappan, S.; Zahmatkesh, A. Spirulina platensis Peptide-Loaded Nanoliposomes Alleviate Hepatic Lipid Accumulation in Male Wistar Rats by Influencing Redox Homeostasis and Lipid Metabolism via the AMPK Signaling Pathway. Appl. Biochem. Biotechnol. 2025, 197, 1696–1725. [Google Scholar] [CrossRef]
- Chen, K.; Ma, D.; Yang, X.; Liu, P.; Wang, J.; Liao, W. Clinical insights into the immunomodulatory effects of food-derived peptides. Food Front. 2024, 5, 2483–2497. [Google Scholar] [CrossRef]
- Zhang, Z.M.; Ni, C.; Ou, X.H.; Cao, T.H.; Cheng, Y.H.; Wen, L. Research progress on immune function of food-derived bioactive peptides. Food Mach. 2023, 39, 193–202. [Google Scholar] [CrossRef]
- Xie, Y.; Li, M.; Zhang, S. Identification of peptides from protease-fermented milk protein and immunomodulatory effect in vivo against lipopolysaccharide-induced inflammation. Int. J. Food Sci. Technol. 2022, 57, 6503–6511. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, L.; Yu, J.; Shao, S. Advances in the application and mechanism of bioactive peptides in the treatment of inflammation. Front. Immunol. 2024, 15, 1413179. [Google Scholar] [CrossRef]
- Xu, B.; Dong, Q.; Yu, C.; Chen, H.; Zhao, Y.; Zhang, B.; Yu, P.; Chen, M. Advances in Research on the Activity Evaluation, Mechanism and Structure-Activity Relationships of Natural Antioxidant Peptides. Antioxidants 2024, 13, 479. [Google Scholar] [CrossRef]
- Xiao, J.L.; Liu, H.Y.; Sun, C.C.; Tang, C.F. Regulation of Keap1-Nrf2 signaling in health and diseases. Mol. Biol. Rep. 2024, 51, 809. [Google Scholar] [CrossRef]
- Li, X.; Zuo, S.; Wang, B.; Zhang, K.; Wang, Y. Antimicrobial Mechanisms and Clinical Application Prospects of Antimicrobial Peptides. Molecules 2022, 27, 2675. [Google Scholar] [CrossRef]
- Montesano, D.; Gallo, M.; Blasi, F.; Cossignani, L. Biopeptides from vegetable proteins: New scientific evidences. Curr. Opin. Food Sci. 2020, 31, 31–37. [Google Scholar] [CrossRef]
- Wijesekara, T.; Abeyrathne, E.D.N.S.; Ahn, D.U. Effect of Bioactive Peptides on Gut Microbiota and Their Relations to Human Health. Foods 2024, 13, 1853. [Google Scholar] [CrossRef]
- Verma, A.K.; Umaraw, P.; Kumar, P.; Mehta, N.; Sharma, N.; Kumar, D.; Sazili, A.Q.; Lee, S.J. Peptides From Animal and Fishery Byproducts: Uplifting the Functionality of Fifth Quarter. Food Sci. Nutr. 2025, 13, e70140. [Google Scholar] [CrossRef]
- Amigo, L.; Hernández-Ledesma, B. Current Evidence on the Bioavailability of Food Bioactive Peptides. Molecules 2020, 25, 4479. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Liu, J.; He, Z.; Du, R. Plant-Derived as Alternatives to Animal-Derived Bioactive Peptides: A Review of the Preparation, Bioactivities, Structure–Activity Relationships, and Applications in Chronic Diseases. Nutrients 2024, 16, 3277. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.R.; Zhi, W.X.; Han, S.Y.; Zhao, H.F.; Liu, Y.X.; Xu, S.Y.; Zhang, Y.H.; Mu, Z.S. Adaptability to the environment of protease by secondary structure changes and application to enzyme-selective hydrolysis. Int. J. Biol. Macromol. 2024, 278 Pt 3, 134969. [Google Scholar] [CrossRef] [PubMed]
- Du, C.; Gong, H.; Zhao, H.; Wang, P. Recent progress in the preparation of bioactive peptides using simulated gastrointestinal digestion processes. Food Chem. 2024, 453, 139587. [Google Scholar] [CrossRef]
- Duarte Villas Mishima, M.; Stampini Duarte Martino, H.; Silva Meneguelli, T.; Tako, E. Effect of food derived bioactive peptides on gut health and inflammatory mediators in vivo: A systematic review. Crit. Rev. Food Sci. Nutr. 2024, 64, 11974–11984. [Google Scholar] [CrossRef]
- Chen, C.; Yu, W.; Kou, X.; Niu, Y.; Ji, J.; Shao, Y.; Wu, S.; Liu, M.; Xue, Z. Recent advances in the effect of simulated gastrointestinal digestion and encapsulation on peptide bioactivity and stability. Food Funct. 2025, 16, 1634–1655. [Google Scholar] [CrossRef]
- Hu, M.; Du, Y.; Li, W.; Zong, X.; Du, W.; Sun, H.; Liu, H.; Zhao, K.; Li, J.; Farooq, M.Z.; et al. Interplay of Food-Derived Bioactive Peptides with Gut Microbiota: Implications for Health and Disease Management. Mol. Nutr. Food Res. 2024, 68, e2400521. [Google Scholar] [CrossRef]
- Tandel, H.; Florence, K. Oral delivery of proteins and peptides: Concepts and applications. In Challenges in Delivery of Therapeutic Genomics and Proteomics; Elsevier: Amsterdam, The Netherlands, 2025; pp. 287–343. [Google Scholar] [CrossRef]
- Xu, C.; Liu, Y.; Li, K.; Zhang, J.; Wei, B.; Wang, H. Absorption of food-derived peptides: Mechanisms, influencing factors, and enhancement strategies. Food Res. Int. 2024, 197 Pt 1, 115190. [Google Scholar] [CrossRef]
- Jardón-Valadez, E.; Chen, C.H.; García-Garibay, M.; Jiménez-Guzmán, J.; Ulmschneider, M.B. Passive Internalization of Bioactive β-Casein Peptides into Phospholipid (POPC) Bilayers. Free Energy Landscapes from Unbiased Equilibrium MD Simulations at μs-Time Scale. Food Biophys. 2021, 16, 70–83. [Google Scholar] [CrossRef]
- Spanier, B.; Rohm, F. Proton coupled oligopeptide transporter 1 (PepT1) function, regulation, and influence on the intestinal homeostasis. Compr. Physiol. 2018, 8, 843–869. [Google Scholar] [CrossRef]
- Tian, Z.; Wang, T.; Tunlid, A.; Persson, P. Proteolysis of Iron Oxide-Associated Bovine Serum Albumin. Environ. Sci. Technol. 2020, 54, 5121–5130. [Google Scholar] [CrossRef]
- Besharati, M.; Palangi, V.; Azhir, D.; Lackner, M. Encapsulation of fatty acids in ruminant nutrition for improved meat and milk quality: A review. Eurobiotech J. 2024, 8, 134–148. [Google Scholar] [CrossRef]
- Ajito, S.; Hirai, M.; Iwase, H.; Shimizu, N.; Igarashi, N.; Ohta, N. Protective action of trehalose and glucose on protein hydration shell clarified by using X-ray and neutron scattering. Phys. B Condens. Matter 2018, 551, 249–255. [Google Scholar] [CrossRef]
- Melzig, M.F. Plant polyphenols as regulators of digestion with therapeutic effects. Z. Phytother. 2024, 45, 157–162. [Google Scholar] [CrossRef]
- Wen, Q.; Zhang, L.; Zhao, F.; Chen, Y.; Su, Y.; Zhang, X.; Chen, P.; Zheng, T. Production technology and functionality of bioactive peptides. Curr. Pharm. Des. 2023, 29, 652–674. [Google Scholar] [CrossRef] [PubMed]
- Chai, K.F.; Voo, A.Y.H.; Chen, W.N. Bioactive peptides from food fermentation: A comprehensive review of their sources, bioactivities, applications, and future development. Compr. Rev. Food Sci. Food Saf. 2020, 19, 3825–3885. [Google Scholar] [CrossRef] [PubMed]
- Afzaal, M.; Saeed, F.; Islam, F.; Ateeq, H.; Asghar, A.; Shah, Y.A.; Ofoedu, C.E.; Chacha, J.S. Nutritional health perspective of natto: A critical review. Biochem. Res. Int. 2022, 2022, 5863887. [Google Scholar] [CrossRef]
- Pihlanto-Leppälä, A. Bioactive peptides derived from bovine whey proteins: Opioid and ace-inhibitory peptides. Trends Food Sci. Technol. 2000, 11, 347–356. [Google Scholar] [CrossRef]
- Zhang, Y.; Dong, L.; Zhang, J.; Shi, J.; Wang, Y.; Wang, S. Adverse effects of thermal food processing on the structural, nutritional, and biological properties of proteins. Annu. Rev. Food Sci. Technol. 2021, 12, 259–286. [Google Scholar] [CrossRef]
- Wijayanti, H.B.; Bansal, N.; Deeth, H.C. Stability of whey proteins during thermal processing: A review. Compr. Rev. Food Sci. Food Saf. 2014, 13, 1235–1251. [Google Scholar] [CrossRef]
- Czelej, M.; Garbacz, K.; Czernecki, T.; Rachwał, K.; Wawrzykowski, J.; Waśko, A. Whey Protein Enzymatic Breakdown: Synthesis, Analysis, and Discovery of New Biologically Active Peptides in Papain-Derived Hydrolysates. Molecules 2025, 30, 1451. [Google Scholar] [CrossRef]
- Varghese, C.; Harsha, V.; Claudia, K.L.; Steaphen, A.N. High-pressure processing of foods and food products: An overview. In Advanced Research Methods in Food Processing Technologies: Technology for Sustainable Food Production; Apple Academic Press: Boca Raton, FL, USA, 2024; pp. 271–285. [Google Scholar]
- Chen, M.; Li, M.; Sun, Z.; Hu, K.; Wu, W.; Shi, L.; Ma, A.; Wang, L. Unveiling the impact of high hydrostatic pressure on bighead carp proteins: Insights from protein structure, peptidomics, and bioinformatics. Innov. Food Sci. Emerg. Technol. 2025, 103, 104056. [Google Scholar] [CrossRef]
- Subramani, D.; Kumaraguruparaswami, M.; Sudhakar, V.; Meganaharshini, M. Application of pulsed electric fields for oil extraction and its quality. In Emerging Methods for Oil Extraction from Food Processing Waste; CRC Press: Boca Raton, FL, USA, 2024; pp. 88–106. [Google Scholar] [CrossRef]
- Custodio-Mendoza, J.A.; Pokorski, P.; Aktaş, H.; Kurek, M.A. Rapid and efficient high-performance liquid chromatography-ultraviolet determination of total amino acids in protein isolates by ultrasound-assisted acid hydrolysis. Ultrason. Sonochem. 2024, 111, 107082. [Google Scholar] [CrossRef]
- Gong, W.; Yang, T.Q.; Chen, T.; Hu, J.N. Effect of cold plasma treatment on the structure and emulsifying activities of phycocyanin. J. Food Eng. 2025, 388, 112355. [Google Scholar] [CrossRef]
- Deng, Y.; Lu, Y.; Jiang, Y.; Yuan, G.; Yang, T.; Gao, B.; Yang, J.; Guo, L.; Fan, F. Effect of cold plasma treatment time on walnut protein isolate: Revealing structural changes and improving functional properties. Int. J. Biol. Macromol. 2025, 311 Pt 2, 143693. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.; Huang, Y.; Jain, P.; Fan, B.; Tong, L.; Wang, F. Enzymatic hydrolysis of soy protein to high moisture textured meat analogue with emphasis on antioxidant effects: As a tool to improve techno-functional property. Biocatal. Agric. Biotechnol. 2023, 50, 102700. [Google Scholar] [CrossRef]
- Tachie, C.Y.E.; Onuh, J.O.; Aryee, A.N.A. Nutritional and potential health benefits of fermented food proteins. J. Sci. Food Agric. 2024, 104, 1223–1233. [Google Scholar] [CrossRef]
- Wang, S.; Wang, Y.; Wang, J.; Zhang, Y.; Dong, L. Latest Research on Glycation of Plant-Based Protein During Heat Processing. J. Food Sci. Technol. 2020, 38, 1–9. [Google Scholar] [CrossRef]
- López-Pedrouso, M.; Lorenzo, J.M.; Zapata, C.; Franco, D. Proteins and amino acids. In Innovative Thermal and Non-Thermal Processing, Bioaccessibility and Bioavailability of Nutrients and Bioactive Compounds; Woodhead Publishing: Cambridge, UK, 2019; pp. 139–169. [Google Scholar] [CrossRef]
- Wang, M.; Ettelaie, R.; Sarkar, A. Enzymatic hydrolysis of legume proteins: Lessons on surface property outcomes. Curr. Opin. Food Sci. 2025, 62, 101259. [Google Scholar] [CrossRef]
- Mishra, A.; Sancho, A.I.; Bøgh, K.L. Hydrolysis in food processing and its impact on allergenicity of food. In Encyclopedia of Food Allergy; Springer: Berlin/Heidelberg, Germany, 2024; pp. V1:225–V221:249. [Google Scholar] [CrossRef]
- Hall, A.E.; Moraru, C.I. Structure and function of pea, lentil and faba bean proteins treated by high pressure processing and heat treatment. LWT Food Sci. Technol. 2021, 152, 112349. [Google Scholar] [CrossRef]
- Enchangan, M.M.G.; Seman, M.S.; Al-Obaidi, J.R.; Zakaria, A.F.; Razis, A.F.A.; Saari, N.; Harith, H.H.; Jambari, N.N. High-pressure processing (HPP) impacts on indian mackerel meat: Insights into quality attributes, β-parvalbumin antigenicity, and proteomic changes. Appl. Food Res. 2025, 5, 100888. [Google Scholar] [CrossRef]
- Rahman, M.M.; Lamsal, B.P. Ultrasound-assisted extraction and modification of plant-based proteins: Impact on physicochemical, functional, and nutritional properties. Compr. Rev. Food Sci. Food Saf. 2021, 20, 1457–1480. [Google Scholar] [CrossRef]
- Sun, X.; Abioye, R.O.; Acquah, C.; Udenigwe, C.C. Application of Ultrasound Technology in Plant-Based Proteins: Improving Extraction, Physicochemical, Functional, and Nutritional Properties. In Green Protein Processing Technologies from Plants: Novel Extraction and Purification Methods for Product Development; Academic Press: Cambridge, MA, USA, 2023; pp. 265–289. [Google Scholar] [CrossRef]
- Marín-Sánchez, J.; Berzosa, A.; Álvarez, I.; Sánchez-Gimeno, C.; Raso, J. Pulsed Electric Fields Effects on Proteins: Extraction, Structural Modification, and Enhancing Enzymatic Activity. Bioelectricity 2024, 6, 154–166. [Google Scholar] [CrossRef]
- Guo, P.; Zeng, J.; Qian, R.; Nie, J.; Zeng, X.; Wang, R. Effect of Combination of Pulsed Electric Field and pH Shifting on Structure and Functional Properties of Soybean Protein Isolates. Sci. Technol. Food Ind. 2025, 46, 112–122. [Google Scholar] [CrossRef]
- Chian, F.M.; Kaur, L.; Oey, I.; Astruc, T.; Hodgkinson, S.; Boland, M. Effect of Pulsed Electric Fields (PEF) on the ultrastructure and in vitro protein digestibility of bovine longissimus thoracis. LWT Food Sci. Technol. 2019, 103, 253–259. [Google Scholar] [CrossRef]
- Lisboa, H.M.; Nascimento, A.; Arruda, A.; Sarinho, A.; Lima, J.; Batista, L.; Dantas, M.F.; Andrade, R. Unlocking the Potential of Insect-Based Proteins: Sustainable Solutions for Global Food Security and Nutrition. Foods 2024, 13, 1846. [Google Scholar] [CrossRef]
- Samtiya, M.; Aluko, R.E.; Dhewa, T.; Moreno-Rojas, J.M. Potential Health Benefits of Plant Food-Derived Bioactive Components: An Overview. Foods 2021, 10, 839. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, V.; Kanwar, S.S. Chapter 4—Bioactive peptides: Synthesis, functions and biotechnological applications. In Biotechnological Production of Bioactive Compounds; Verma, M.L., Chandel, A.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 107–137. [Google Scholar] [CrossRef]
- Sarker, A. A review on the application of bioactive peptides as preservatives and functional ingredients in food model systems. J. Food Process. Preserv. 2022, 46, e16800. [Google Scholar] [CrossRef]
- Guo, J.; Huang, Y.; Gu, X.; Meng, Z. Spirulina platensis protein-based emulsion gel as fat substitute in meat analogs: Evaluation performance across post-processing. Food Chem. 2025, 463, 141414. [Google Scholar] [CrossRef]
- Xue, L.; Yin, R.; Howell, K.; Zhang, P. Activity and bioavailability of food protein-derived angiotensin-I-converting enzyme–inhibitory peptides. Compr. Rev. Food Sci. Food Saf. 2021, 20, 1150–1187. [Google Scholar] [CrossRef]
- Jiang, Q.; Chen, Q.; Zhang, T.; Liu, M.; Duan, S.; Sun, X. The antihypertensive effects and potential molecular mechanism of microalgal angiotensin I-converting enzyme inhibitor-like peptides: A mini review. Int. J. Mol. Sci. 2021, 22, 4068. [Google Scholar] [CrossRef]
- Olalere, O.A.; Yap, P.-G.; Gan, C.-Y. Comprehensive review on some food-derived bioactive peptides with anti-hypertension therapeutic potential for angiotensin-converting enzyme (ACE) inhibition. J. Proteins Proteom. 2023, 14, 129–161. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, K.; Jia, X.; Fu, C.; Yu, H.; Wang, Y. Antioxidant peptides, the guardian of life from oxidative stress. Med. Res. Rev. 2024, 44, 275–364. [Google Scholar] [CrossRef]
- Mardani, M.; Badakné, K.; Farmani, J.; Aluko, R.E. Antioxidant peptides: Overview of production, properties, and applications in food systems. Compr. Rev. Food Sci. Food Saf. 2023, 22, 46–106. [Google Scholar] [CrossRef]
- Ignot-Gutiérrez, A.; Serena-Romero, G.; Guajardo-Flores, D.; Alvarado-Olivarez, M.; Martínez, A.J.; Cruz-Huerta, E. Proteins and peptides from food sources with effect on satiety and their role as anti-obesity agents: A narrative review. Nutrients 2024, 16, 3560. [Google Scholar] [CrossRef]
- Luhovyy, B.L.; Akbari, M. Food Proteins in Controlling Satiety. In Food Proteins and Peptides: Emerging Biofunctions, Food and Biomaterial Applications; Academic Press: Cambridge, MA, USA, 2021. [Google Scholar]
- Miguéns Gómez, A. Food Intake Modulation by Insect Protein Through the Interaction with the Enteroendocrine System; Elsevier: Amsterdam, The Netherlands, 2022. [Google Scholar]
- Choi, A. Effects of Pea Protein on Satiety, Postprandial Glucose Response and Appetite Hormones: A Literature Review. Undergrad. Res. Nat. Clin. Sci. Technol. J. 2022, 6, 1–13. [Google Scholar] [CrossRef]
- Shavronskaya, D.O.; Noskova, A.O.; Skvortsova, N.N.; Adadi, P.; Nazarova, E.A. Encapsulation of hydrophobic bioactive substances for food applications: Carriers, techniques, and biosafety. J. Food Process. Preserv. 2023, 2023, 5578382. [Google Scholar] [CrossRef]
- Rani, R.; Karmakar, P.; Singh, N.; Mandal, R. Encapsulation methods in the food industry: Mechanisms and applications. In Advances in Food Process Engineering; Apple Academic Press: Boca Raton, FL, USA, 2023; pp. 93–139. [Google Scholar]
- Puri, V.; Nagpal, M.; Singh, I.; Singh, M.; Dhingra, G.A.; Huanbutta, K.; Dheer, D.; Sharma, A.; Sangnim, T. A comprehensive review on nutraceuticals: Therapy support and formulation challenges. Nutrients 2022, 14, 4637. [Google Scholar] [CrossRef]
- Sharma, S.; Singh, A.; Sharma, S.; Kant, A.; Sevda, S.; Taherzadeh, M.J.; Garlapati, V.K. Functional foods as a formulation ingredients in beverages: Technological advancements and constraints. Bioengineered 2021, 12, 11055–11075. [Google Scholar] [CrossRef]
- Dima, C.; Assadpour, E.; Dima, S.; Jafari, S.M. Nutraceutical nanodelivery; an insight into the bioaccessibility/bioavailability of different bioactive compounds loaded within nanocarriers. Crit. Rev. Food Sci. Nutr. 2021, 61, 3031–3065. [Google Scholar] [CrossRef] [PubMed]
- Reque, P.M.; Brandelli, A. Encapsulation of probiotics and nutraceuticals: Applications in functional food industry. Trends Food Sci. Technol. 2021, 114, 1–10. [Google Scholar] [CrossRef]
- Carbonaro, M.; Nucara, A. Legume proteins and peptides as compounds in nutraceuticals: A structural basis for dietary health effects. Nutrients 2022, 14, 1188. [Google Scholar] [CrossRef]
- Liu, W.; Chen, X.; Li, H.; Zhang, J.; An, J.; Liu, X. Anti-inflammatory function of plant-derived bioactive peptides: A review. Foods 2022, 11, 2361. [Google Scholar] [CrossRef]
- Rivera-Jiménez, J.; Berraquero-García, C.; Pérez-Gálvez, R.; García-Moreno, P.J.; Espejo-Carpio, F.J.; Guadix, A.; Guadix, E.M. Peptides and protein hydrolysates exhibiting anti-inflammatory activity: Sources, structural features and modulation mechanisms. Food Funct. 2022, 13, 12510–12540. [Google Scholar] [CrossRef]
- Jia, L.; Wang, L.; Liu, C.; Liang, Y.; Lin, Q. Bioactive peptides from foods: Production, function, and application. Food Funct. 2021, 12, 7108–7125. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Zhang, X.; Liu, D. Collagen peptides and the related synthetic peptides: A review on improving skin health. J. Funct. Foods 2021, 86, 104680. [Google Scholar] [CrossRef]
- Kaspy, M.S.; Hannaian, S.J.; Bell, Z.W.; Churchward-Venne, T.A. The effects of branched-chain amino acids on muscle protein synthesis, muscle protein breakdown and associated molecular signalling responses in humans: An update. Nutr. Res. Rev. 2023, 37, 273–286. [Google Scholar] [CrossRef]
- Naclerio, F.; Seijo, M.; Earnest, C.P.; Puente-Fernández, J.; Larumbe-Zabala, E. Ingesting a post-workout vegan-protein multi-ingredient expedites recovery after resistance training in trained young males. J. Diet. Suppl. 2021, 18, 698–713. [Google Scholar] [CrossRef]
- Wang, L.; Meng, Q.; Su, C.-H. From food supplements to functional foods: Emerging perspectives on post-exercise recovery nutrition. Nutrients 2024, 16, 4081. [Google Scholar] [CrossRef]
- Zhang, X.; Li, X.; Zhao, Y.; Zheng, Q.; Wu, Q.; Yu, Y. Nanocarrier system: An emerging strategy for bioactive peptide delivery. Front. Nutr. 2022, 9, 1050647. [Google Scholar] [CrossRef]
- Panda, J.; Mishra, A.K.; Mohanta, Y.K.; Patowary, K.; Rauta, P.R.; Mishra, B. Exploring biopolymer for food and pharmaceuticals application in the circular bioeconomy: An agro-food waste-to-wealth approach. Waste Biomass Valorization 2024, 15, 5607–5637. [Google Scholar] [CrossRef]
- Duttaroy, A.K. Evidence-Based Nutrition and Clinical Evidence of Bioactive Foods in Human Health and Disease; Academic Press: Cambridge, MA, USA, 2021. [Google Scholar]
- Tedeschi-Jockers, F.; Reinhold, S.; Hollinger, A.; Tuchscherer, D.; Kiss, C.; Gantner, L.; Ledergerber, K.; Zimmermann, S.; Scheuzger, J.; Huber, J. A new high protein-to-energy enteral formula with a whey protein hydrolysate to achieve protein targets in critically ill patients: A prospective observational tolerability study. Eur. J. Clin. Nutr. 2022, 76, 419–427. [Google Scholar] [CrossRef] [PubMed]
- Kopko, C.; Garthoff, J.; Zhou, K.; Meunier, L.; O’Sullivan, A.; Fattori, V. Are alternative proteins increasing food allergies? Trends, drivers and future perspectives. Trends Food Sci. Technol. 2022, 129, 126–133. [Google Scholar] [CrossRef]
- Gunal-Koroglu, D.; Karabulut, G.; Ozkan, G.; Yılmaz, H.; Gültekin-Subaşı, B.; Capanoglu, E. Allergenicity of alternative proteins: Reduction mechanisms and processing strategies. J. Agric. Food Chem. 2025, 73, 7522–7546. [Google Scholar] [CrossRef] [PubMed]
- Di, C.; Jia, W. Food-derived bioactive peptides as momentous food components: Can functional peptides passed through the PI3K/Akt/mTOR pathway and NF-κB pathway to repair and protect the skeletal muscle injury? Crit. Rev. Food Sci. Nutr. 2024, 64, 9210–9227. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, J.; Lu, Y.; Zhao, Y.; Zhang, N.; Wu, W.; Zhang, Y.; Fu, Y. Potential of food protein-derived bioactive peptides against sarcopenia: A comprehensive review. J. Agric. Food Chem. 2023, 71, 5419–5437. [Google Scholar] [CrossRef] [PubMed]
- Ashaolu, T.J.; Zarei, M.; Agrawal, H.; Kharazmi, M.S.; Jafari, S.M. A critical review on immunomodulatory peptides from plant sources; action mechanisms and recent advances. Crit. Rev. Food Sci. Nutr. 2024, 64, 7220–7236. [Google Scholar] [CrossRef]
- Chen, H.; Sun, Y.; Zhao, H.; Qi, X.; Cui, H.; Li, Q.; Ma, Y. α-Lactalbumin peptide Asp-Gln-Trp alleviates hepatic insulin resistance and modulates gut microbiota dysbiosis in high-fat diet-induced NAFLD mice. Food Funct. 2022, 13, 9878–9892. [Google Scholar] [CrossRef] [PubMed]
- Tsafack, P.B.; Li, C.; Tsopmo, A. Food peptides, gut microbiota modulation, and antihypertensive effects. Molecules 2022, 27, 8806. [Google Scholar] [CrossRef]
- Panwar, S.; Sharma, S.; Tripathi, P. Role of barrier integrity and dysfunctions in maintaining the healthy gut and their health outcomes. Front. Physiol. 2021, 12, 715611. [Google Scholar] [CrossRef]
- Quintieri, L.; Nitride, C.; De Angelis, E.; Lamonaca, A.; Pilolli, R.; Russo, F.; Monaci, L. Alternative protein sources and novel foods: Benefits, food applications and safety issues. Nutrients 2023, 15, 1509. [Google Scholar] [CrossRef]
- Karabulut, G.; Purkiewicz, A.; Goksen, G. Recent developments and challenges in algal protein and peptide extraction strategies, functional and technological properties, bioaccessibility, and commercial applications. Compr. Rev. Food Sci. Food Saf. 2024, 23, e13372. [Google Scholar] [CrossRef] [PubMed]
- Gedif, H.; Tkaczewska, J. Sourcing, use of biopeptides, and active protein hydrolysates as a positive response to green politics in the world—Current state and challenges: A review. Food Bioprocess Technol. 2024, 17, 4450–4472. [Google Scholar] [CrossRef]
- Singh, B.P.; Aluko, R.E.; Hati, S.; Solanki, D. Bioactive peptides in the management of lifestyle-related diseases: Current trends and future perspectives. Crit. Rev. Food Sci. Nutr. 2022, 62, 4593–4606. [Google Scholar] [CrossRef]
- Jafarzadeh, S.; Qazanfarzadeh, Z.; Majzoobi, M.; Sheiband, S.; Oladzadabbasabad, N.; Esmaeili, Y.; Barrow, C.J.; Timms, W. Alternative proteins; A path to sustainable diets and environment. Curr. Res. Food Sci. 2024, 9, 100882. [Google Scholar] [CrossRef] [PubMed]
- Otero, D.M.; da Rocha Lemos Mendes, G.; da Silva Lucas, A.J.; Christ-Ribeiro, A.; Ribeiro, C.D.F. Exploring alternative protein sources: Evidence from patents and articles focusing on food markets. Food Chem. 2022, 394, 133486. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.Y.; Kim, J.S.; Park, J.; Han, D.; Choi, Y.; Park, J.W.; Lee, J.; Mariano, E.; Namkung, S.; Hur, S.J. An Investigation of the Status of Commercial Meat Analogs and Their Ingredients: Worldwide and South Korea. Food Sci. Anim. Resour. 2025, 45, 31–61. [Google Scholar] [CrossRef]
- Zhao, L.; Khang, H.M.; Du, J. Incorporation of microalgae (Nannochloropsis oceanica) into plant-based fishcake analogue: Physical property characterisation and in vitro digestion analysis. Food Hydrocoll. 2024, 146, 109212. [Google Scholar] [CrossRef]
- Chalamaiah, M.; Ulug, S.K.; Hong, H.; Wu, J. Regulatory requirements of bioactive peptides (protein hydrolysates) from food proteins. J. Funct. Foods 2019, 58, 123–129. [Google Scholar] [CrossRef]
- Patil, P.J.; Usman, M.; Zhang, C.; Mehmood, A.; Zhou, M.; Teng, C.; Li, X. An updated review on food-derived bioactive peptides: Focus on the regulatory requirements, safety, and bioavailability. Compr. Rev. Food Sci. Food Saf. 2022, 21, 1732–1776. [Google Scholar] [CrossRef]
- Veldkamp, T.; Meijer, N.; Alleweldt, F.; Deruytter, D.; Van Campenhout, L.; Gasco, L.; Roos, N.; Smetana, S.; Fernandes, A.; Van der Fels-Klerx, H. Overcoming technical and market barriers to enable sustainable large-scale production and consumption of insect proteins in Europe: A SUSINCHAIN perspective. Insects 2022, 13, 281. [Google Scholar] [CrossRef]
- Whittaker, J.A.; Johnson, R.I.; Finnigan, T.J.; Avery, S.V.; Dyer, P.S. The biotechnology of quorn mycoprotein: Past, present and future challenges. In Grand Challenges in Fungal Biotechnology; Springer: Berlin/Heidelberg, Germany, 2020; pp. 59–79. [Google Scholar]
- Williams, R.A. Opportunities and challenges for the introduction of new food proteins. Annu. Rev. Food Sci. Technol. 2021, 12, 75–91. [Google Scholar] [CrossRef]
- Eastham, J.L.; Leman, A.R. Precision fermentation for food proteins: Ingredient innovations, bioprocess considerations, and outlook—A mini-review. Curr. Opin. Food Sci. 2024, 58, 101194. [Google Scholar] [CrossRef]
- Hadi, J.; Brightwell, G. Safety of Alternative Proteins: Technological, Environmental and Regulatory Aspects of Cultured Meat, Plant-Based Meat, Insect Protein and Single-Cell Protein. Foods 2021, 10, 1226. [Google Scholar] [CrossRef]
- Mousavi Maleki, M.S.; Sardari, S.; Ghandehari Alavijeh, A.; Madanchi, H. Recent Patents and FDA-Approved Drugs Based on Antiviral Peptides and Other Peptide-Related Antivirals. Int. J. Pept. Res. Ther. 2023, 29, 5. [Google Scholar] [CrossRef]
- de Souza, K.M.S.; de Souza, A.T.V.; Bezerra, R.P.; Porto, A.L.F. Antihypertensive peptides from photosynthetic microorganisms: A systematic patent review (2010–2023). World Pat. Inf. 2024, 78, 102304. [Google Scholar] [CrossRef]
- Colella, J.P.; Silvestri, L.; Súzan, G.; Weksler, M.; Cook, J.A.; Lessa, E.P. Engaging with the Nagoya Protocol on Access and Benefit-Sharing: Recommendations for noncommercial biodiversity researchers. J. Mammal. 2023, 104, 430–443. [Google Scholar] [CrossRef]
- Lin, J.W.X.; Maran, N.; Lim, A.J.; Ng, S.B.; Teo, P.S. Current challenges, and potential solutions to increase acceptance and long-term consumption of cultured meat and edible insects—A review. Future Foods 2025, 11, 100544. [Google Scholar] [CrossRef]
- Yuan, Y.; Nguyen, M.; Zhang, Y.; Cheah, I. The roles of Psychological distance and digital blockchain technology in mitigating consumer reluctance toward alternative proteins. Appetite 2025, 211, 108008. [Google Scholar] [CrossRef] [PubMed]
- Amato, M.; Riverso, R.; Palmieri, R.; Verneau, F.; La Barbera, F. Stakeholder Beliefs about Alternative Proteins: A Systematic Review. Nutrients 2023, 15, 837. [Google Scholar] [CrossRef] [PubMed]
- Onwezen, M.C.; Verain, M.C.D.; Dagevos, H. Social Norms Support the Protein Transition: The Relevance of Social Norms to Explain Increased Acceptance of Alternative Protein Burgers over 5 Years. Foods 2022, 11, 3413. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, C.; Fuentes, M. Making alternative proteins edible: Market devices and the qualification of plant-based substitutes. Consum. Soc. 2023, 2, 200–219. [Google Scholar] [CrossRef]
- Brooker, P.G.; Hendrie, G.A.; Anastasiou, K.; Woodhouse, R.; Pham, T.; Colgrave, M.L. Marketing strategies used for alternative protein products sold in Australian supermarkets in 2014, 2017, and 2021. Front. Nutr. 2022, 9, 1087194. [Google Scholar] [CrossRef]
Technique | Description | Effect | Examples | References |
---|---|---|---|---|
Thermal processing | Heat-based treatment | Denaturing, aggregation or Maillard reactions significant alter proteins and leads to enhanced or reduced bioactivity | Pasteurised milk proteins, cooked soy | [93,107,108] |
Enzymatic hydrolysis | Enzyme mediated cleavage | Protein breakdown into bioactive peptides enhances bioactivity and reduces allergenicity | Whey hydrolysates, fermented legumes | [109,110] |
Fermentation | Microbial conversion | Enhanced peptide content and diversity with diverse bioactivity profile and enhanced digestibility | Natto, kefir, fermented cereals | [106] |
High-Pressure Processing | >400 MPa pressure application | Increased peptide accessibility due to protein structural changes. Enhanced digestibility while maintain bioactivity | Meat analogues, dairy alternatives | [111,112] |
Ultrasound-assisted extraction | Acoustic cavitation | Cavitation effect disrupts cell walls and boosts peptide yield without deleterious effects for bioactivity | Pea and soy protein isolates | [113,114] |
Pulsed Electric Field | Electric pulses to disrupt cells | Induces protein unfolding and aggregation without deleterious effects, enhancing bioactive compounds release and digestibility | Fermented beverages, plant protein mixes | [115,116,117] |
Origin | Species | Food Application | Formulation | Relevant Results | Reference |
---|---|---|---|---|---|
Insect | Alphitobius diaperinus (Whole Buffalo Powder) | Soy-protein-based burgers | Burgers 5% (B5) and 10% (B10) insect protein |
| [29] |
Mealworm, Migratory locust, House cricket | Meat extenders in beef burgers | 5% (w/w) of each insect powder |
| [28] | |
Mycoprotein | Fusarium venenatum | Mycoprotein-Based Harbin Red Sausages | Lean pork meat with F. venenatum (0, 25, 50, 75, 100%) |
| [35] |
Aspergillus oryzae | Burger patties | Mycoprotein 55% |
| [36] | |
Microalgae | Nannochloropsis oceanica | Plant-based fishcake analogue | N. oceanica (0, 10, 20, and 30%) |
| [165] |
Spirulina platensis | Protein-based emulsion gel as a fat substitute | SPP: S. platensis protein nanoparticles (1%, w/v) and soybean oil (SO) (Ratio 50:50). SPP-XG: SPNPs-based pre-emulsions mixed with 2% xanthan gum (XG) solution in a ratio of 8:2 |
| [122] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Machado, M.; Bautista-Hérnandez, I.; Gómez-García, R.; Silva, S.; Costa, E.M. Bioactive Food Proteins: Bridging Nutritional and Functional Benefits with Sustainable Protein Sources. Foods 2025, 14, 3035. https://doi.org/10.3390/foods14173035
Machado M, Bautista-Hérnandez I, Gómez-García R, Silva S, Costa EM. Bioactive Food Proteins: Bridging Nutritional and Functional Benefits with Sustainable Protein Sources. Foods. 2025; 14(17):3035. https://doi.org/10.3390/foods14173035
Chicago/Turabian StyleMachado, Manuela, Israel Bautista-Hérnandez, Ricardo Gómez-García, Sara Silva, and Eduardo M. Costa. 2025. "Bioactive Food Proteins: Bridging Nutritional and Functional Benefits with Sustainable Protein Sources" Foods 14, no. 17: 3035. https://doi.org/10.3390/foods14173035
APA StyleMachado, M., Bautista-Hérnandez, I., Gómez-García, R., Silva, S., & Costa, E. M. (2025). Bioactive Food Proteins: Bridging Nutritional and Functional Benefits with Sustainable Protein Sources. Foods, 14(17), 3035. https://doi.org/10.3390/foods14173035