Evaluation of Plant-Based Egg Substitutes in Vegan Muffins: Functional, Structural, and Nutritional Characterization
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
- •
- Chia seeds (Salvia hispanica L., Yayla, Ankara, Türkiye, origin: Argentina) and psyllium powder (Wefood, İstanbul, Türkiye) were hydrated in distilled water at a 1:5 (w/v) ratio for 10 min at room temperature (25 ± 2 °C) following previously reported approaches, with slight modifications [11,12,14].
- •
- Flaxseeds (Plantago ovata Forssk., Yayla, Ankara, Türkiye, origin:China) were first ground using a spice grinder (Fakir Aromatic, Germany) for 20 s. The ground flaxseeds were then sieved through a stainless steel sieve with a pore size of 500 µm, dispersed in distilled water at a 1:5 (w/v) ratio, and hydrated for 10 min at room temperature (25 ± 2 °C) to form a mucilage-based gel, intended for use as a plant-derived binding agent.
- •
- Soapwort extract (Saponaria officinalis L., original concentration: 1:10 w/v) was diluted 1:5 (v/v) in distilled water before use. This dilution ratio was selected based on preliminary trials and the recommendations of Çelik et al. [23], aiming to mimic the foaming capacity of aquafaba while maintaining flavor neutrality.
2.2. Chemicals and Reagents
2.3. Methods
2.3.1. Muffin Preparation
2.3.2. Muffin Properties
2.3.3. Chemical Composition
2.3.4. Phenolic Extraction, In Vitro Digestion Model, Total Antioxidant Capacity (TAC), and Total Phenolic Content (TPC) Determination
2.3.5. Amino Acid (AA) Composition
2.3.6. Shelf-Life Analysis
2.3.7. Sensory Evaluation of Muffins
2.3.8. Statistical Analysis
3. Results and Discussion
3.1. Rheological Properties of Muffin Batters
3.2. Physical Properties of Muffin Samples
3.3. Morphology
3.4. Chemical Composition of Muffin Samples
3.5. Total Phenolic Content and Antioxidant Capacity and In-Vitro Bioaccessibility
3.6. Total Amino Acid (AA) Composition
3.7. Shelf-Life Evaluation of Muffin Samples
3.8. Sensorial Characteristics
3.9. Chemometric Analysis
3.9.1. Correlation Coefficient
3.9.2. Principal Component Analysis
3.9.3. Hierarchical Cluster Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shim, Y.Y.; He, Y.; Kim, J.H.; Cho, J.Y.; Meda, V.; Hong, W.S.; Shin, W.-S.; Kang, S.J.; Reaney, M.J.T. Aquafaba from Korean soybean I: A functional vegan food additive. Foods 2021, 10, 2433. [Google Scholar] [CrossRef] [PubMed]
- Aiking, H.; de Boer, J. The next protein transition. Trends Food Sci. Technol. 2020, 105, 515–522. [Google Scholar] [CrossRef]
- Hedayati, S.; Jafari, S.M.; Babajafari, S.; Niakousari, M.; Mazloomi, S.M. Different food hydrocolloids and biopolymers as egg replacers: A review of their influences on the batter and cake quality. Food Hydrocoll. 2022, 128, 107611. [Google Scholar] [CrossRef]
- Lin, M.; Tay, S.H.; Yang, H.; Yang, B.; Li, H. Development of eggless cakes suitable for lacto-vegetarians using isolated pea proteins. Food Hydrocoll. 2017, 69, 440–449. [Google Scholar] [CrossRef]
- Hedayati, S.; Mazaheri Tehrani, M. Effect of total replacement of egg by soymilk and lecithin on physical properties of batter and cake. Food. Sci. Nutr. 2018, 6, 1154–1161. [Google Scholar] [CrossRef]
- Buhl, T.F.; Christensen, C.H.; Hammershøj, M. Aquafaba as an egg white substitute in food foams and emulsions: Protein composition and functional behavior. Food Hydrocoll. 2019, 96, 354–364. [Google Scholar] [CrossRef]
- Yazici, G.N.; Taspinar, T.; Binokay, H.; Dagsuyu, C.; Kokangul, A.; Ozer, M.S. Investigating the potential of using aquafaba in eggless gluten-free cake production by multicriteria decision-making approach. J. Food Meas. Charact. 2023, 17, 5759–5776. [Google Scholar] [CrossRef]
- Ureta, M.M.; Goñi, S.M.; Salvadori, V.O.; Olivera, D.F. Energy requirements during sponge cake baking: Experimental and simulated approach. Appl. Therm. Eng. 2017, 115, 637–643. [Google Scholar] [CrossRef]
- Mustafa, R.; He, Y.; Shim, Y.Y.; Reaney, M.J.T. Aquafaba, wastewater from chickpea canning, functions as an egg replacer in sponge cake. Int. J. Food Sci. Technol. 2018, 53, 2247–2255. [Google Scholar] [CrossRef]
- Rani, R.; Badwaik, L.S. Functional properties of oilseed cakes and defatted meals of mustard, soybean and flaxseed. Waste Biomass Valorization 2021, 12, 5639–5647. [Google Scholar] [CrossRef]
- Gallo, L.R.D.R.; Assunção Botelho, R.B.; Ginani, V.C.; de Lacerda de Oliveira, L.; Riquette, R.F.R.; Leandro Edos, S. Chia (Salvia hispanica L.) gel as egg replacer in chocolate cakes: Applicability and microbial and sensory qualities after storage. J. Culin. Sci. Technol. 2020, 18, 29–39. [Google Scholar] [CrossRef]
- Guedes de Melo, B.; Santos Fernandes, S.; Domínguez Razo, A.; Us Medina, U.; Segura Campos, M.R. Chia seeds as functional ingredient of healthy muffins. J. Food Meas. Charact. 2022, 16, 4251–4261. [Google Scholar] [CrossRef]
- Wojciechowicz-Budzisz, A.; Pejcz, E.; Spychaj, R.; Harasym, J. Mixed psyllium fiber improves the quality, nutritional value, polyphenols and antioxidant activity of rye bread. Foods 2023, 12, 3534. [Google Scholar] [CrossRef]
- Yeganeh, P.; Emamifar, A.; Karami, M.; Salehi, F. Investigation on replacing egg with soy flour and psyllium seed gum in gluten-free rice cake. J. Food Sci. Technol. (Iran) 2024, 20, 62–77. [Google Scholar]
- Gonzalez, P.J.; Sörensen, P.M. Characterization of saponin foam from Saponaria officinalis for food applications. Food Hydrocoll. 2020, 101, 105541. [Google Scholar] [CrossRef]
- Konal, G.; Dundar, A.N.; Sahin, O.I.; Parlak, M.E.; Saricaoglu, F.T. Characterization of cakes produced with different legume aquafaba. Int. J. Gastron. Food Sci. 2025, 39, 101076. [Google Scholar] [CrossRef]
- Agrahar-Murugkar, D.; Zaidi, A.; Dwivedi, S. Development of gluten free eggless cake using gluten free composite flours made from sprouted and malted ingredients and its physical, nutritional, textural, rheological and sensory properties evaluation. J. Food Sci. Technol. 2018, 55, 2621–2630. [Google Scholar] [CrossRef]
- Segundo, C.; Román, L.; Lobo, M.; Martinez, M.M.; Gómez, M. Ripe banana flour as a source of antioxidants in layer and sponge cakes. Plant Foods Hum. Nutr. 2017, 72, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Mueed, A.; Shibli, S.; Korma, S.A.; Madjirebaye, P.; Esatbeyoglu, T.; Deng, Z. Flaxseed bioactive compounds: Chemical composition, functional properties, food applications and health benefits-related gut microbes. Foods 2022, 11, 3307. [Google Scholar] [CrossRef] [PubMed]
- Aljobair, M.O. Effect of chia seed as egg replacer on quality, nutritional value, and sensory acceptability of sponge cake. J. Food Qual. 2022, 2022, 9673074. [Google Scholar] [CrossRef]
- Aslan, M.; Ertaş, N. Possibility of using’chickpea aquafaba’as egg replacer in traditional cake formulation. Harran Tarım Ve Gıda Bilim. Derg. 2020, 24, 1–8. [Google Scholar] [CrossRef]
- de Barros Miranda, B.; Holanda, G.S.; Raposo, A.; da Costa Maynard, D.; Botelho, R.B.A.; Romão, B.; de Oliveira, V.R.; Zandonadi, R.P. Chickpea aquafaba: A systematic review of the different processes for obtaining and their nutritional and technological characteristics. J. Food Sci. Technol. 2024, 61, 1439–1456. [Google Scholar] [CrossRef]
- Çelik, İ.; Yılmaz, Y.; Işık, F.; Üstün, Ö. Effect of soapwort extract on physical and sensory properties of sponge cakes and rheological properties of sponge cake batters. Food Chem. 2007, 101, 907–911. [Google Scholar] [CrossRef]
- Topkaya, C.; Isik, F. Effects of pomegranate peel supplementation on chemical, physical, and nutritional properties of muffin cakes. J. Food Process. Preserv. 2019, 43, e13868. [Google Scholar] [CrossRef]
- Yazici, G.N.; Ozer, M.S. A review of egg replacement in cake production: Effects on batter and cake properties. Trends Food Sci. Technol. 2021, 111, 346–359. [Google Scholar] [CrossRef]
- AACC. Approved methods of the American Association of Cereal Chemists. Minneapolis, USA. In Approved Methods of the American Association of Cereal Chemists; American Association of Cereal Chemists: Eagan, MN, USA, 1983; pp. 70–86. [Google Scholar]
- Bozdogan, N.; Kumcuoglu, S.; Tavman, S. Investigation of the effects of using quinoa flour on gluten-free cake batters and cake properties. J. Food Sci. Technol. 2019, 56, 683–694. [Google Scholar] [CrossRef] [PubMed]
- Chiş, M.S.; Păucean, A.; Man, S.M.; Mureşan, V.; Socaci, S.A.; Pop, A.; Stan, L.; Rusu, B.; Muste, S. Textural and sensory features changes of gluten free muffins based on rice sourdough fermented with Lactobacillus spicheri DSM 15429. Foods 2020, 9, 363. [Google Scholar] [CrossRef] [PubMed]
- Guiné, R.P.F. Textural properties of bakery products: A review of instrumental and sensory evaluation studies. Appl. Sci. 2022, 12, 8628. [Google Scholar] [CrossRef]
- Dündar, A.N.; Şahin, O.I.; Sarıcaoğlu, F.T. Low-fat cookies with Chlorella vulgaris: Effects on dough rheology, physical, textural and sensory properties of cookies. Gıda 2023, 48, 526–544. [Google Scholar] [CrossRef]
- Özkan-Karabacak, A.; Acoğlu-Çelik, B.; Özdal, T.; Yolci-Ömeroğlu, P.; Çopur, Ö.U.; Baştuğ-Koç, A.; Pandiselvam, R. Microwave-assisted hot air drying of Orange snacks: Drying kinetics, thin layer modeling, quality attributes, and phenolic profiles. J. Food Biochem. 2023, 2023, 6531838. [Google Scholar] [CrossRef]
- AOAC (Association of Official Analytical Chemists). AOAC 930.15—Moisture in animal feed. In Official Method of Analysis, 20th ed.; Association of Official Analytical Chemists: Rockville, MD, USA, 2016. [Google Scholar]
- NMKL (Nordic Committee on Food Analysis). NMKL No:173 Ash determination in foods. In NMKL Publications; NMKL: Bergen, Norway, 2005. [Google Scholar]
- AOAC (Association of Official Analytical Chemists). AOAC 992.15—Crude Protein in Meat and Meat Products Including Pet Foods. In Official Method of Analysis, 20th ed.; Association of Official Analytical Chemists: Rockville, MD, USA, 2016. [Google Scholar]
- AOAC (Association of Official Analytical Chemists). AOAC 991.43—Total, soluble and insoluble dietary fibre in foods. In Official Method of Analysis, 20th ed.; Association of Official Analytical Chemists: Rockville, MD, USA, 2016. [Google Scholar]
- NMKL (Nordic Committee on Food Analysis). NMKL No:160 Fat determination in foods. In NMKL Publications; NMKL: Bergen, Norway, 1998. [Google Scholar]
- FAO (Food and Agriculture Organization). Food energy: Methods of analysis and conversion factors. In FAO Food and Nutrition; Food and Agriculture Organization: Rome, Italy, 2003. [Google Scholar]
- NMKL (Nordic Committee on Food Analysis). NMKL No:186 Determination of trace elements by ICP-MS after pressure digestion. In NMKL Publications; NMKL: Bergen, Norway, 2007. [Google Scholar]
- Koç, E.; Ömeroğlu, P.Y. Geleneksel anjelika (melek otu) reçelinin fizikokimyasal ve duyusal özellikleri. Akad. Gıda 2019, 17, 485–496. [Google Scholar] [CrossRef]
- Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.; Bourlieu, C.; Carrière, F.; Boutrou, R.; Corredig, M.; Dupontet, D.; et al. A standardised static in vitro digestion method suitable for food–an international consensus. Food Funct. 2014, 5, 1113–1124. [Google Scholar] [CrossRef]
- Kumaran, A. Antioxidant and free radical scavenging activity of an aqueous extract of Coleus aromaticus. Food Chem. 2006, 97, 109–114. [Google Scholar] [CrossRef]
- Sedat Velioglu, Y.; Ekici, L.; Poyrazoglu, E.S. Phenolic composition of European cranberrybush (Viburnum opulus L.) berries and astringency removal of its commercial juice. Int. J. Food Sci. Technol. 2006, 41, 1011–1015. [Google Scholar] [CrossRef]
- Apak, R.; Güçlü, K.; Özyürek, M.; Karademir, S.E. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J. Agric. Food Chem. 2004, 52, 7970–7981. [Google Scholar] [CrossRef]
- Agilent Technologies. Agilent Biocolumns Application Compendium—AMINO Acid Analysis [Internet]. Agilent Technologies: Santa Clara, CA, USA, 2021. Available online: https://www.agilent.com/cs/library/applications/compendium-aminoacid-advancebio-5994-0033EN-us-agilent.pdf (accessed on 17 October 2024).
- Drabińska, N. The evaluation of amino acid profiles in gluten-free mini sponge cakes fortified with broccoli by-product. Separations 2022, 9, 81. [Google Scholar] [CrossRef]
- ISO 3972:2011; Sensory Analysis — Methodology — Method of Investigating Sensitivity of Taste. International Organization for Standardization: Geneva, Switzerland, 2011.
- ISO 8586:2023; Sensory Analysis—Selection and Training of Sensory Assessors. International Organization for Standardization: Geneva, Switzerland, 2023.
- ISO 11132:2021; Sensory Analysis—Methodology—Guidelines for the Measurement of the Performance of a Quantitative Descriptive Sensory Panel. International Organization for Standardization: Geneva, Switzerland, 2021.
- Ozgolet, M.; Karasu, S.; Kasapoglu, M.Z. Development of Gluten-Free Cakes Using Protein Concentrate Obtained from Cold-Pressed Terebinth (Pistacia terebinthus L.) Oil By-Products. Foods 2025, 14, 1049. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.; Premi, M.; Bansal, V.; Bhardwaj, A.; Tripathi, N.; Kumar, N. Effect of Flaxseed gel as an egg substitute on the functional properties of cake: A comparative analysis. J. Food Chem. Nanotechnol. 2024, 10, S1–S6. [Google Scholar]
- Akbin, A.C.; Turabi Yolacaner, E.; Sumnu, G. Effects of legume-based aquafaba on batter rheology and quality characteristics of microwave-infrared baked cakes. Phys. Fluids 2025, 37, 013111. [Google Scholar] [CrossRef]
- Erkoç, S.; Özcan, İ.; Özyiğit, E.; Kumcuoğlu, S.; Tavman, Ş. Yumurta ikamesi olarak kullanılan çiya ve keten tohumu jelinin pankek hamuru reolojisi ve ürün özellikleri üzerine etkisinin incelenmesi. Gıda 2021, 46, 1397–1414. [Google Scholar]
- Tabilo-Munizaga, G.; Barbosa-Cánovas, G.V. Rheology for the food industry. J. Food Eng. 2005, 67, 147–156. [Google Scholar] [CrossRef]
- Agrahar-Murugkar, D.; Zaidi, A.; Kotwaliwale, N.; Gupta, C. Effect of egg-replacer and composite flour on physical properties, color, texture and rheology, nutritional and sensory profile of cakes. J. Food Qual. 2016, 39, 425–435. [Google Scholar] [CrossRef]
- Matos, M.E.; Sanz, T.; Rosell, C.M. Establishing the function of proteins on the rheological and quality properties of rice based gluten free muffins. Food Hydrocoll. 2014, 35, 150–158. [Google Scholar] [CrossRef]
- Kırbaş, Z.; Kumcuoglu, S.; Tavman, S. Effects of apple, orange and carrot pomace powders on gluten-free batter rheology and cake properties. J. Food Sci. Technol. 2019, 56, 914–926. [Google Scholar] [CrossRef]
- Rahmati, N.F.; Mazaheri Tehrani, M. Replacement of egg in cake: Effect of soy milk on quality and sensory characteristics. J. Food Process. Preserv. 2015, 39, 574–582. [Google Scholar] [CrossRef]
- Bath, D.E.; Shelke, K.; Hoseney, R.C. Fat replacers in high-ratio layer cakes. Cereal Foods World 1992, 37, 495–500. [Google Scholar]
- Gómez, M.; Oliete, B.; Rosell, C.M.; Pando, V.; Fernández, E. Studies on cake quality made of wheat–chickpea flour blends. LWT-Food Sci. Technol. 2008, 41, 1701–1709. [Google Scholar] [CrossRef]
- Dadalı, C.; Elmacı, Y. Reduction of sucrose by inhomogeneous distribution in cake formulation. J. Food Meas. Charact. 2019, 13, 2563–2570. [Google Scholar] [CrossRef]
- Srivastava, Y.; Semwal, A.D. Effect of virgin coconut meal (VCM) on the rheological, micro-structure and baking properties of cake and batter. J. Food Sci. Technol. 2015, 52, 8122–8130. [Google Scholar] [CrossRef]
- Li, X.; Wang, L.; Tan, B.; Li, R. Effect of structural characteristics on the physicochemical properties and functional activities of dietary fiber: A review of structure-activity relationship. Int. J. Biol. Macromol. 2024, 269, 132214. [Google Scholar] [CrossRef]
- Ansorena, D.; Cartagena, L.; Astiasaran, I. A cake made with No Animal Origin ingredients: Physical properties and nutritional and sensory quality. Foods 2022, 12, 54. [Google Scholar] [CrossRef]
- Risk, A.E.; Mohamed, Z.E.O.M.; Othman, D.B.; El-kholany, E.A. Influence of psyllium, mustard, and flax seeds water extracts as fat replacers on cake quality and hyperlipidemic rats. Food Technol. Res. J. 2023, 2, 37–54. [Google Scholar] [CrossRef]
- Halm, J.; Sahin, A.W.; Nyhan, L.; Zannini, E.; Arendt, E.K. Commercial egg replacers in pound cake systems: A comprehensive analysis of market trends and application. Foods 2024, 13, 292. [Google Scholar] [CrossRef] [PubMed]
- Anwar, D.A.; Shehita, H.A.; Soliman, H. Development of eggless cake physical, nutritional and sensory attributes for vegetarians by using wholemeal chia (Salvia hispanica L) flour. Middle East J. Appl. Sci. 2020, 10, 313–329. [Google Scholar]
- Belorio, M.; Gómez, M. Psyllium: A useful functional ingredient in food systems. Crit. Rev. Food Sci. Nutr. 2021, 62, 527–538. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.A.H. Overview of the vital roles of macro minerals in the human body. J. Trace Elem. Miner. 2023, 4, 100076. [Google Scholar] [CrossRef]
- Pająk, P.; Socha, R.; Broniek, J.; Królikowska, K.; Fortuna, T. Antioxidant properties, phenolic and mineral composition of germinated chia, golden flax, evening primrose, phacelia and fenugreek. Food Chem. 2019, 275, 69–76. [Google Scholar] [CrossRef]
- Ranjha, M.M.A.N.; Irfan, S.; Nadeem, M.; Mahmood, S. A comprehensive review on nutritional value, medicinal uses, and processing of banana. Food Rev. Int. 2022, 38, 199–225. [Google Scholar] [CrossRef]
- Sulaiman, S.F.; Yusoff, N.A.M.; Eldeen, I.M.; Seow, E.M.; Sajak, A.A.B.; Ooi, K.L. Correlation between total phenolic and mineral contents with antioxidant activity of eight Malaysian bananas (Musa sp.). J. Food Compos. Anal. 2011, 24, 1–10. [Google Scholar] [CrossRef]
- Hedayati, A.; Naseri, F.; Nourozi, E.; Hosseini, B.; Honari, H.; Hemmaty, S. Response of Saponaria officinalis L. hairy roots to the application of TiO2 nanoparticles in terms of production of valuable polyphenolic compounds and SO6 protein. Plant Physiol. Biochem. 2022, 178, 80–92. [Google Scholar] [CrossRef]
- Koç Alibaşoğlu, E.; Acoğlu Çelik, B.; Ceylan, F.D.; Özoğlu, Ö.; Bekar, E.; Çapanoğlu, E.; Tamer, C.E.; Korukluoğlu, M.; Çopur, Ö.U.; Yolci Ömeroğlu, P. Processing of Angelica (Angelica sylvestris L.) into a functional jam with addition of carob and cinnamon extracts: Evaluation of sensorial, physicochemical, and nutritional characteristics and in vitro bioaccessibility of phenolics. Food Sci. Nutr. 2024, 12, 9353–9370. [Google Scholar] [CrossRef]
- Capanoglu, E.; Kamiloglu, S.; Cekic, S.D.; Baskan, K.S.; Avan, A.N.; Uzunboy, S.; Apak, R. Antioxidant activity and capacity measurement. In Plant Antioxidants and Health; Springer: Berlin/Heidelberg, Germany, 2022; pp. 709–773. [Google Scholar]
- Jakobek, L. Interactions of polyphenols with carbohydrates, lipids and proteins. Food Chem. 2015, 175, 556–567. [Google Scholar] [CrossRef]
- Alminger, M.; Aura, A.; Bohn, T.; Dufour, C.; El, S.N.; Gomes, A.; Karakaya, S.; Martínez-Cuesta, M.C.; McDougall, G.J.; Requena, T.; et al. In vitro models for studying secondary plant metabolite digestion and bioaccessibility. Compr. Rev. Food Sci. Food Saf. 2014, 13, 413–436. [Google Scholar] [CrossRef] [PubMed]
- Munteanu, I.G.; Apetrei, C. Analytical methods used in determining antioxidant activity: A review. Int. J. Mol. Sci. 2021, 22, 3380. [Google Scholar] [CrossRef]
- Bashmil, Y.M.; Dunshea, F.R.; Appels, R.; Suleria, H.A.R. Bioaccessibility of Phenolic Compounds, Resistant Starch, and Dietary Fibers from Australian Green Banana during In Vitro Digestion and Colonic Fermentation. Molecules 2024, 29, 1535. [Google Scholar] [CrossRef]
- Labanca, R.A.; Svelander, C.; Alminger, M. Effect of particle size of chia seeds on bioaccessibility of phenolic compounds during in vitro digestion. Cogent Food Agric. 2019, 5, 1694775. [Google Scholar] [CrossRef]
- Wojtunik-Kulesza, K.; Oniszczuk, A.; Oniszczuk, T.; Combrzyński, M.; Nowakowska, D.; Matwijczuk, A. Influence of in vitro digestion on composition, bioaccessibility and antioxidant activity of food polyphenols—A non-systematic review. Nutrients 2020, 12, 1401. [Google Scholar] [CrossRef] [PubMed]
- Yazici, G.N.; Taspinar, T.; Binokay, H.; Agcam, E.; Agirman, B.; Ozer, M.S. Assessment of physicochemical properties and staling characteristics of eggless gluten-free cakes with aquafaba. J. Food Meas. Charact. 2025, 19, 2557–2573. [Google Scholar] [CrossRef]
- Ling, Z.N.; Jiang, Y.F.; Ru, J.N.; Lu, J.H.; Ding, B.; Wu, J. Amino acid metabolism in health and disease. Signal Transduct. Target. Ther. 2023, 8, 345. [Google Scholar] [CrossRef]
- Puglisi, M.J.; Fernandez, M.L. The health benefits of egg protein. Nutrients 2022, 14, 2904. [Google Scholar] [CrossRef]
- Wu, G.; Meininger, C.J.; McNeal, C.J.; Bazer, F.W.; Rhoads, J.M. Role of L-arginine in nitric oxide synthesis and health in humans. In Amino Acids in Nutrition and Health; Springer: Berlin/Heidelberg, Germany, 2021; pp. 167–187. [Google Scholar]
- Dalangin, R.; Kim, A.; Campbell, R.E. The Role of Amino Acids in Neurotransmission and Fluorescent Tools for Their Detection. Int. J. Mol. Sci. 2020, 21, 6197. [Google Scholar] [CrossRef]
- Brosnan, J.T.; Brosnan, M.E. The sulfur-containing amino acids: An overview. J. Nutr. 2006, 136, 1636S–1640S. [Google Scholar] [CrossRef]
- Kivirikko, K.I.; Myllylä, R.; Pihlajaniemi, T. Hydroxylation of proline and lysine residues in collagens and other animal and plant proteins. In Post-Translational Modifications of Proteins; CRC Press: Boca Raton, FL, USA, 2024; pp. 1–51. [Google Scholar]
- Yazici, G.N.; Taspinar, T.; Ozer, M.S. Aquafaba: A multifunctional ingredient in food production. In Biology and Life Sciences Forum. Biol. Life Sci. Forum 2022, 18, 24. [Google Scholar]
- Grossi Bovi Karatay, G.; Rebellato, A.P.; Joy Steel, C.; Dupas Hubinger, M. Chickpea aquafaba-based emulsions as a fat replacer in pound cake: Impact on cake properties and sensory analysis. Foods 2022, 11, 2484. [Google Scholar] [CrossRef]
- Kutlu, G.; Yılmaz, S.; Karabulut, A.E. Development of a new vegan muffin formulation: Assessing its quality and sensory characteristics. Eur. Food Sci. Eng. 2024, 5, 26–34. [Google Scholar] [CrossRef]
- Teeta, S.; Sarobol, M.; Pharanat, W.; Muangtha, N.; Poratoso, Y. Effects of using green banana flour as a substitute for wheat flour on the production of chiffon cakes. Food Agric. Sci. Technol. 2023, 9, 66–78. [Google Scholar]
- Sharma, M.; Saini, C.S. Amino acid composition, nutritional profiling, mineral content and physicochemical properties of protein isolate from flaxseeds (Linum usitatissimum). J. Food Meas. Charact. 2022, 16, 829–839. [Google Scholar] [CrossRef]
- Ates, E.G.; Karsli, G.T.; Ozcan, O.D.; Ozvural, E.B.; Oztop, M.H. Foaming and emulsifying properties of aquafaba powders as affected by saponin and amino acid content. LWT 2025, 226, 117975. [Google Scholar] [CrossRef]
- Yiasmin, M.N.; Al Azad, S.; Easdani, M.; Islam, M.S.; Hussain, M.; Cao, W.; Chen, N.; Uriho, A.; Asaduzzaman, M.; Liu, C.; et al. The state-of-the-art on exploring polysaccharide-protein interactions and its mechanisms, stability, and their role in food systems. Food Rev. Int. 2025, 1–36. [Google Scholar] [CrossRef]
- Dyachenko, E.I.; Bel’skaya, L.V. The role of amino acids in non-enzymatic antioxidant mechanisms in cancer: A review. Metabolites 2023, 14, 28. [Google Scholar] [CrossRef]
- Tsuji, A.; Koyanagi, T. Significant contribution of amino acids to antioxidant capacity of Japanese rice wine (sake). J. Sci. Food Agric. 2025, 105, 227–234. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, F.; Simonato, B. Pulses Protein Concentrates and Isolates as Stand-Alone Plant-Based Egg Replacers: An Explorative Study of Their Functional Properties and Technological Effect in Pancakes. Food Bioproc. Tech. 2025, 1–16. [Google Scholar] [CrossRef]
- Kilicli, M.; Erol, K.F.; Akdeniz, E.; Toker, Ö.S.; Törnük, F.; Bayram, M. Production of sorbet with persimmon using green pea aquafaba: Physicochemical characterization and bioaccessibility of bioactive compounds. J. Food Sci. Technol. 2025, 1–9. [Google Scholar] [CrossRef]
Ingredients 1 (g) | CC | AC | BC | FC | PC | SWC | CHC |
---|---|---|---|---|---|---|---|
Wheat flour | 200 g | 200 g | 200 g | 200 g | 200 g | 200 g | 200 g |
Sunflower oil | 100 g | 100 g | 100 g | 100 g | 100 g | 100 g | 100 g |
Whole egg | 90 g | 0 | 0 | 0 | 0 | 0 | 0 |
Aquafaba (chickpea) | 0 | 90 g | 0 | 0 | 0 | 0 | 0 |
Banana | 0 | 0 | 90 g | 0 | 0 | 0 | 0 |
Flaxseed gel (FG) | 0 | 0 | 0 | 90 g | 0 | 0 | 0 |
Psyllium gel (PG) | 0 | 0 | 0 | 0 | 90 g | 0 | 0 |
Soapwort extract mixture (SM) | 0 | 0 | 0 | 0 | 0 | 90 g | 0 |
Chia gel (CG) | 0 | 0 | 0 | 0 | 0 | 0 | 90 g |
Sugar | 150 g | 150 g | 150 g | 150 g | 150 g | 150 g | 150 g |
Almond milk | 0 | 32 g | 32 g | 32 g | 32 g | 32 g | 32 g |
Cow milk | 32 g | 0 | 0 | 0 | 0 | 0 | 0 |
Baking powder | 5 g | 5 g | 5 g | 5 g | 5 g | 5 g | 5 g |
Vanillin | 3 g | 3 g | 3 g | 3 g | 3 g | 3 g | 3 g |
tan δ | |||||||
---|---|---|---|---|---|---|---|
Samples | K’ (Pa.sn) | n’ | R2 | K” (Pa.sn) | n” | R2 | |
CC | 598.32 ± 17.49 c | 0.458 ± 0.07 a | 0.942 | 532.25 ± 23.31 d | 0.533 ± 0.12 a | 0.937 | 0.845 ± 0.02 a |
AC | 1235.10 ± 29.01 b | 0.295 ± 0.05 d | 0.989 | 970.55 ± 15.82 c | 0.420 ± 0.14 b | 0.959 | 0.706 ± 0.01 c |
BC | 3090.70 ± 38.97 a | 0.365 ± 0.04 bc | 0.978 | 2268.70 ± 21.68 a | 0.405 ± 0.18 b | 0.961 | 0.707 ± 0.00 c |
FC | 3065.00 ± 24.64 a | 0.307 ± 0.08 c | 0.950 | 1751.30 ± 19.70 b | 0.386 ± 0.16 c | 0.931 | 0.551 ± 0.01 e |
PC | 3107.00 ± 13.12 a | 0.336 ± 0.02 c | 0.946 | 1906.60 ± 27.22 a | 0.375 ± 0.13 c | 0.919 | 0.598 ± 0.00 d |
SWC | 818.10 ± 13.12 b | 0.383 ± 0.02 b | 0.879 | 604.89 ± 12.55 d | 0.436 ± 0.09 b | 0.872 | 0.748 ± 0.01 b |
CHC | 3117.50 ± 41.16 a | 0.396 ± 0.01 b | 0.908 | 1782.50 ± 20.47 b | 0.379 ± 0.11 c | 0.940 | 0.621 ± 0.01 d |
CC | AC | BC | FC | PC | SWC | CHC | ||
---|---|---|---|---|---|---|---|---|
Volumetric properties | ||||||||
Baking Loss (%) | 6.41 ± 0.39 bc | 5.63 ± 1.03 c | 4.83 ± 0.63 c | 8.91 ± 0.16 a | 8.16 ± 0.64 ab | 9.23 ± 1.00 a | 8.67 ± 1.61 ab | |
VI (mm) | 119.00 ± 3.61 a | 100.67 ± 5.13 bc | 88.33 ± 4.93 d | 93.00 ± 1.00 cd | 98.33 ± 2.08 c | 108.00 ± 1.00 b | 84.00 ± 2.65 d | |
SI (mm) | 9.00 ± 1.00 ab | 10.33 ± 1.53 a | 4.67 ± 0.58 b | 10.00 ± 1.00 a | 6.67 ± 2.08 ab | 10.00 ± 2.65 a | 7.00 ± 1.00 ab | |
UI (mm) | 1.00 ± 1.00 a | 1.00 ± 1.73 a | 0.00 ± 1.00 a | 0.00 ± 1.73 a | 0.67 ± 1.53 a | 0.00 ± 1.00 a | 0.33 ± 0.58 a | |
Texture | ||||||||
Hardness (gf) | 1284.74 ± 104.18 d | 1584.69 ± 141.60 d | 2220.74 ± 110.34 b | 1435.25 ± 77.01 d | 1747.63 ± 199.09 c | 1266.15 ± 62.22 d | 2735.73 ± 76.35 a | |
Springiness | 0.91 ± 0.01 a | 0.88 ± 0.02 a | 0.72 ± 0.03 c | 0.74 ± 0.03 c | 0.76 ± 0.02 c | 0.81 ± 0.02 b | 0.73 ± 0.01 c | |
Cohesiveness | 0.71 ± 0.02 a | 0.60 ± 0.03 b | 0.50 ± 0.01 c | 0.51 ± 0.06 c | 0.55 ± 0.01 bc | 0.52 ± 0.01 c | 0.51 ± 0.02 c | |
Chewiness | 828.54 ± 70.46 bc | 832.87 ± 116.75 bc | 799.28 ± 75.46 bc | 543.42 ± 35.63 d | 733.84 ± 73.53 c | 529.96 ± 35.35 d | 1012.27 ± 21.87 a | |
Resilience | 0.33 ± 0.04 a | 0.26 ± 0.020 ab | 0.19 ± 0.05 b | 0.21 ± 0.06 b | 0.22 ± 0.01 b | 0.22 ± 0.01 b | 0.20 ± 0.01 b | |
Color | ||||||||
Crust | L* | 58.98 ± 3.05 c | 69.12 ± 1.96 ab | 56.17 ± 3.52 c | 63.45 ± 4.34 b | 58.18 ± 2.81 c | 73.17 ± 1.31 a | 68.15 ± 2.00 ab |
a* | 12.47 ± 1.88 a | 3.21 ± 1.83 c | 8.80 ± 2.31 b | 2.82 ± 0.78 d | 4.48 ± 0.36 c | 1.64 ± 0.85 e | 0.38 ± 0.87 f | |
b* | 30.99 ± 2.86 a | 25.92 ± 2.26 b | 24.16 ± 1.03 b | 16.58 ± 1.80 d | 12.15 ± 1.16 e | 21.29 ± 1.24 c | 17.01 ± 2.03 d | |
ΔE | - | 18.14 ± 0.75 a | 9.44 ± 0.80 b | 23.42 ± 0.35 a | 22.71 ± 0.92 a | 19.97 ± 1.02 a | 23.55 ± 0.20 a | |
C* | 33.87 ± 2.95 a | 26.20 ± 2.38 b | 26.47 ± 0.82 b | 17.30 ± 0.47 c | 13.21 ± 0.88 d | 17.90 ± 0.70 c | 21.17 ± 0.12 c | |
h° | 68.41 ± 4.16 c | 83.05 ± 0.42 ab | 70.86 ± 3.32 c | 88.76 ± 0.04 a | 70.54 ± 1.37 c | 81.17 ± 0.83 b | 85.57 ± 0.04 ab | |
Crumb | L* | 75.03 ± 0.84 a | 71.43 ± 1.24 b | 66.43 ± 0.91 c | 61.26 ± 1.27 d | 59.45 ± 0.66 d | 69.67 ± 1.76 b | 64.39 ± 1.59 c |
a* | −2.27 ± 0.29 f | −0.99 ± 0.16 e | 0.44 ± 0.43 c | 1.97 ± 0.29 b | 3.68 ± 0.14 a | −0.45 ± 0.30 d | −0.03 ± 0.42 cd | |
b* | 24.32 ± 0.80 a | 16.48 ± 1.10 b | 16.85 ± 0.39 b | 13.82 ± 0.37 c | 10.56 ± 0.18 d | 17.26 ± 0.18 b | 14.67 ± 1.36 c | |
ΔE | - | 8.38 ± 1.58 de | 10.65 ± 0.91 d | 13.36 ± 0.93 c | 20.70 ± 0.73 a | 17.49 ± 0.25 b | 7.88 ± 0.41 e | |
C* | 24.39 ± 0.86 a | 16.08 ± 0.73 b | 16.87 ± 0.37 b | 14.74 ± 0.33 c | 11.16 ± 0.03 d | 13.92 ± 0.08 c | 17.24 ± 0.04 b | |
h° | 275.15 ± 0.10 a | 273.27 ± 0.51 a | 88.55 ± 0.12 b | 270.13 ± 0.02 a | 71.05 ± 0.57 b | 81.94 ± 0.20 b | 271.51 ± 0.15 a |
Moisture | Ash | Protein | Fat | TDF | Total Carbohydrate | Energy (kcal/100 g) | |
---|---|---|---|---|---|---|---|
CC | 14.46 ± 0.09 d | 0.71 ± 0.04 g | 8.54 ± 0.04 a | 22.16 ± 0.351 a | 0.73 ± 0.15 c | 53.53 ± 0.35 d | 448.53 ± 10.86 a |
AC | 13.58 ± 0.08 e | 0.75 ± 0.06 f | 5.65 ± 0.08 c | 19.80 ± 0.457 bc | 0.93 ± 0.21 bc | 59.00 ± 0.30 a | 440.27 ± 12.11 ab |
BC | 14.90 ± 0.09 d | 1.03 ± 0.05 b | 5.37 ± 0.09 e | 19.37 ± 0.612 bc | 0.60 ± 0.30 c | 58.60 ± 0.30 a | 434.77 ± 12.43 ab |
FC | 15.89 ± 0.10 c | 1.02 ± 0.02 c | 5.89 ± 0.09 b | 20.32 ± 0.454 b | 1.50 ± 0.10 a | 55.40 ± 0.33 bc | 433.70 ± 10.31 ab |
PC | 16.40 ± 0.34 b | 0.84 ± 0.02 e | 5.52 ± 0.02 d | 19.34 ± 0.405 bc | 1.50 ± 0.26 a | 56.23 ± 0.35 b | 426.33 ± 9.58 ab |
SWC | 19.06 ± 0.17 a | 0.86 ± 0.05 d | 5.24 ± 0.06 f | 18.78 ± 0.353 c | 1.30 ± 0.20 ab | 54.70 ± 0.40 c | 414.87 ± 13.39 b |
CHC | 15.76 ± 0.06 c | 1.06 ± 0.06 a | 5.92 ± 0.03 b | 19.72 ± 0.401 bc | 1.47 ± 0.25 ab | 55.97 ± 0.35 b | 428.93 ± 9.87 ab |
P | Na | Mg | K | Ca | |||
CC | 2188.36 ± 103.85 a | 2001.69 ± 121.29 a | 98.99 ± 9.98 g | 747.14 ± 25.31 e | 219.02 ± 1.16 c | ||
AC | 1700.91 ± 31.98 c | 1838.19 ± 33.94 b | 158.80 ± 5.03 c | 1169.46 ± 15.75 b | 244.99 ± 0.66 b | ||
BC | 1757.49 ± 5.56 c | 1664.06 ± 10.56 d | 143.37 ± 2.45 d | 1352.42 ± 3.13 a | 178.61 ± 1.59 d | ||
FC | 1771.93 ± 1.83 c | 1668.81 ± 5.59 d | 188.12 ± 0.40 b | 775.48 ± 6.15 d | 234.96 ± 0.56 b | ||
PC | 1764.91 ± 9.46 c | 1804.63 ± 5.84 bc | 127.90 ± 1.15 e | 776.26 ± 4.77 d | 231.90 ± 9.01 b | ||
SWC | 1569.93 ± 6.29 d | 1606.52 ± 2.77 d | 110.62 ± 1.53 f | 600.01 ± 3.16 f | 185.86 ± 0.33 d | ||
CHC | 1944.11 ± 0.22 b | 1711.41 ± 1.44 cd | 208.73 ± 1.84 a | 872.31 ± 0.59 c | 372.00 ± 13.85 a |
Undigested | Simulated Gastric Digestion | Simulated Intestinal Digestion | Bioaccessibility (%) | |
---|---|---|---|---|
TPC (mg GAE/g) | ||||
CC | 0.083 ± 0.004 a,B | 0.083 ± 0.001 b,B | 0.140 ± 0.001 a,A | 168.675 |
AC | 0.094 ± 0.048 a,A | 0.093 ± 0.001 b,A | 0.087 ± 0.001 e,A | 92.553 |
BC | 0.066 ± 0.007 a,A | 0.076 ± 0.002 b,A | 0.073 ± 0.001 f,A | 111.606 |
FC | 0.049 ± 0.026 a,B | 0.154 ± 0.012 a,A | 0.097 ± 0.001 d,AB | 197.959 |
PC | 0.029 ± 0.022 a,A | 0.085 ± 0.003 b,B | 0.105 ± 0.001 c,B | 362.069 |
SWC | 0.059 ± 0.063 a,A | 0.079 ± 0.002 b,A | 0.062 ± 0.001 g,A | 105.084 |
CHC | 0.031 ± 0.017 a,B | 0.084 ± 0.015 b,AB | 0.125 ± 0.002 b,A | 403.226 |
CUPRAC (µmol TE/g) | ||||
CC | 0.020 ± 0.008 a,C | 0.884 ± 0.007 a,A | 0.633 ± 0.015 b,B | 3165 |
AC | 0.137 ± 0.011 a,C | 0.917 ± 0.011 a,B | 1.016 ± 0.009 a,A | 741.605 |
BC | 0.110 ± 0.014 a,C | 0.710 ± 0.012 c,A | 0.627 ± 0.017 b,B | 570 |
FC | 0.088 ± 0.009 a,C | 0.452 ± 0.012 e,A | 0.363 ± 0.023 d,B | 412.500 |
PC | 0.148 ± 0.094 a,B | 0.387 ± 0.013 f,A | 0.387 ± 0.012 d,A | 261.486 |
SWC | 0.071 ± 0.010 a,C | 0.757 ± 0.016 b,A | 0.601 ± 0.013 bc,B | 846.478 |
CHC | 0.076 ± 0.007 a,C | 0.604 ± 0.003 d,A | 0.557 ± 0.017 c,B | 732.894 |
DPPH (µmol TE/g) | ||||
CC | 48.223 ± 3.217 d,A | 35.048 ± 1.191 cd,B | 1.584 ± 0.005 c,C | 3.284 |
AC | 50.893 ± 1.641 d,A | 52.509 ± 1.203 ab,A | 1.190 ± 0.002 e,B | 2.338 |
BC | 85.599 ± 1.905 a,A | 58.560 ± 2.195 a,B | 1.134 ± 0.001 f,C | 1.324 |
FC | 72.292 ± 0.185 b,A | 39.065 ± 10.666 bcd,B | 1.416 ± 0.005 d,C | 1.958 |
PC | 65.263 ± 3.203 bc,A | 12.913 ± 0.521 e,B | 1.823 ± 0.012 a,C | 2.793 |
SWC | 61.362 ± 0.297 c,A | 41.398 ± 1.960 abc,B | 1.672 ± 0.012 b,C | 2.724 |
CHC | 47.510 ± 1.549 d,A | 23.306 ± 2.915 de,B | 1.828 ± 0.005 a,C | 3.847 |
Amino Acids | CC | AC | BC | CHC | PC | FC | SWC |
---|---|---|---|---|---|---|---|
Acidic amino acids | |||||||
Aspartic Acid | 0.065 ± 0.003 c | 0.067 ± 0.003 c | 0.056 ± 0.002 d | 0.030 ± 0.001 e | 0.038 ± 0.001 e | 0.094 ± 0.004 a | 0.083 ± 0.003 b |
Glutamic Acid | 0.476 ± 0.020 d | 0.873 ± 0.025 b | 0.474 ± 0.022 d | 0.623 ± 0.018 c | 0.845 ± 0.020 b | 0.926 ± 0.022 a | 0.924 ± 0.021 a |
Basic amino acids | |||||||
Arginine | 1.007 ± 0.030 e | 1.035 ± 0.035 d | 0.832 ± 0.030 g | 0.970 ± 0.035 f | 1.193 ± 0.045 c | 1.455 ± 0.050 a | 1.314 ± 0.040 b |
Histidine | 0.321 ± 0.015 b | 0.277 ± 0.020 d | 0.236 ± 0.018 f | 0.248 ± 0.020 e | 0.276 ± 0.015 d | 0.328 ± 0.018 a | 0.295 ± 0.016 c |
Lysine | 0.114 ± 0.004 b | 0.094 ± 0.003 d | 0.082 ± 0.003 e | 0.008 ± 0.001 f | 0.105 ± 0.004 c | 0.125 ± 0.005 a | 0.118 ± 0.004 b |
Neutral amino acids | |||||||
Alanine | 0.136 ± 0.005 c | 0.131 ± 0.004 c | 0.104 ± 0.004 e | 0.110 ± 0.005 d | 0.135 ± 0.006 c | 0.159 ± 0.007 a | 0.144 ± 0.006 b |
Serine | <LOD | 0.004 ± 0.001 a | <LOD | <LOD | <LOD | <LOD | <LOD |
Asparagine | 0.072 ± 0.004 b | 0.071 ± 0.003 b | 0.049 ± 0.003 e | 0.054 ± 0.002 d | 0.067 ± 0.003 c | 0.079 ± 0.004 a | 0.070 ± 0.003 b |
Glutamine | 0.007 ± 0.001 e | 0.011 ± 0.002 b | 0.008 ± 0.001 d | 0.009 ± 0.002 c | 0.012 ± 0.002 a | 0.013 ± 0.002 a | 0.011 ± 0.002 b |
Glycine | 0.039 ± 0.002 d | 0.054 ± 0.003 c | 0.030 ± 0.002 e | 0.037 ± 0.003 d | 0.062 ± 0.004 b | 0.071 ± 0.005 a | 0.064 ± 0.004 b |
Threonine | 0.050 ± 0.003 c | 0.069 ± 0.004 b | 0.039 ± 0.002 d | 0.057 ± 0.003 c | 0.084 ± 0.005 a | 0.087 ± 0.005 a | 0.088 ± 0.005 a |
Tyrosine | 0.048 ± 0.003 c | 0.048 ± 0.003 c | 0.037 ± 0.003 d | 0.050 ± 0.003 c | 0.062 ± 0.004 b | 0.068 ± 0.004 a | 0.069 ± 0.004 a |
Cystine | 0.061 ± 0.004 a | 0.017 ± 0.002 d | 0.045 ± 0.003 b | 0.042 ± 0.003 c | 0.041 ± 0.002 c | 0.046 ± 0.003 b | 0.046 ± 0.003 b |
Valine | 0.124 ± 0.006 d | 0.138 ± 0.007 c | 0.109 ± 0.005 e | 0.124 ± 0.006 d | 0.151 ± 0.008 b | 0.177 ± 0.009 a | 0.171 ± 0.008 a |
Methionine | 0.088 ± 0.004 a | 0.053 ± 0.003 d | 0.062 ± 0.004 c | <LOD | 0.061 ± 0.003 c | 0.067 ± 0.003 b | 0.065 ± 0.003 b |
Norvaline | 0.004 ± 0.001 c | <LOD | 0.001 ± 0.000 d | 0.018 ± 0.001 a | 0.007 ± 0.001 b | <LOD | <LOD |
Tryptophan | 0.007 ± 0.001 e | 0.019 ± 0.002 b | 0.011 ± 0.002 d | 0.037 ± 0.003 a | 0.018 ± 0.002 b | 0.019 ± 0.002 b | 0.016 ± 0.002 c |
Phenylalanine | 0.105 ± 0.004 d | 0.124 ± 0.005 c | 0.014 ± 0.002 e | 0.098 ± 0.005 d | 0.144 ± 0.007 b | 0.155 ± 0.007 a | 0.159 ± 0.007 a |
Isoleucine | 0.087 ± 0.003 e | 0.107 ± 0.004 d | <LOD | 0.134 ± 0.006 a | 0.119 ± 0.005 c | 0.127 ± 0.005 b | 0.131 ± 0.005 a |
Leucine | 0.330 ± 0.010 e | 0.339 ± 0.011 d | 0.270 ± 0.008 f | 0.143 ± 0.005 g | 0.357 ± 0.012 c | 0.408 ± 0.013 a | 0.398 ± 0.012 b |
Hydroxyproline | <LOD | 0.065 ± 0.005 b | 0.020 ± 0.002 e | 0.035 ± 0.003 c | 0.083 ± 0.005 a | 0.032 ± 0.003 d | 0.036 ± 0.003 c |
Sarcosine | 0.052 ± 0.003 c | 0.052 ± 0.003 c | 0.051 ± 0.003 c | 0.037 ± 0.002 d | 0.054 ± 0.004 b | 0.057 ± 0.004 a | 0.055 ± 0.004 b |
Proline | 0.037 ± 0.002 c | 0.071 ± 0.004 b | 0.034 ± 0.003 c | 0.217 ± 0.008 a | 0.028 ± 0.002 d | 0.025 ± 0.002 e | 0.027 ± 0.002 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Topaloğlu Günan, K.; Yolci Ömeroğlu, P. Evaluation of Plant-Based Egg Substitutes in Vegan Muffins: Functional, Structural, and Nutritional Characterization. Foods 2025, 14, 3012. https://doi.org/10.3390/foods14173012
Topaloğlu Günan K, Yolci Ömeroğlu P. Evaluation of Plant-Based Egg Substitutes in Vegan Muffins: Functional, Structural, and Nutritional Characterization. Foods. 2025; 14(17):3012. https://doi.org/10.3390/foods14173012
Chicago/Turabian StyleTopaloğlu Günan, Kübra, and Perihan Yolci Ömeroğlu. 2025. "Evaluation of Plant-Based Egg Substitutes in Vegan Muffins: Functional, Structural, and Nutritional Characterization" Foods 14, no. 17: 3012. https://doi.org/10.3390/foods14173012
APA StyleTopaloğlu Günan, K., & Yolci Ömeroğlu, P. (2025). Evaluation of Plant-Based Egg Substitutes in Vegan Muffins: Functional, Structural, and Nutritional Characterization. Foods, 14(17), 3012. https://doi.org/10.3390/foods14173012