Adulteration Identification of Angelica Sinensis Radix Based on Molecular Matrix Characteristics
Abstract
1. Introduction
2. Materials and Methods
2.1. Herbal Materials
2.2. Experimental Consumables
2.3. Mass Spectrometry Conditions
2.4. Chromatographic Conditions
2.5. Sample Pretreatment
2.6. Digital Identification Preparation
3. Results
3.1. Results of UHPLC-QTOF-MSE Analysis
3.2. Results of Identification of AS, AA, AG, and LO
3.3. Results of Adulterant Analysis
3.3.1. Results of Mixed Sample Identification
3.3.2. Adulterant Identification of Market Blind Samples
3.4. Chemometric Analysis of Adulterant Identification
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AA | Angelica acutiloba (Sieb. et Zucc.) Kitagawa |
AG | Angelica gigas Nakai |
AS | Angelica sinensis radix |
DM | digital matrix |
LO | Levisticum officinale W. D. J. Koch |
MC | matching credibility |
MS | mass spectrometry |
m/z | mass-to-charge ratio |
OPLS-DA | orthogonal partial least squares discriminant analysis |
PCA | principal component analysis |
TCM | traditional Chinese medicine |
References
- Chen, Z.; Cheng, L.; Zhang, J.; Cui, X. Exploring the mechanism by which Angelica sinensis improves haematopoietic function in aplastic anaemia. Aging 2024, 16, 11535–11552. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.P.; Guo, Z.B.; Jin, L.; Li, Y.D. Phytochemical progress made in investigations of Angelica sinensis (Oliv.) Diels. Chin. J. Nat. Medicines 2015, 13, 241–249. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.L.; Zeng, R.; Gu, C.M.; Qu, Y.; Huang, L.F. Angelica sinensis in China-A review of botanical profile, ethnopharmacology, phytochemistry and chemical analysis. J. Ethnopharmacol. 2016, 190, 116–141. [Google Scholar] [CrossRef] [PubMed]
- Minami, M.; Tanaka, R.; Mori, T.; Fujii, T.; Tsuchida, T. Identification of Angelica acutiloba, A. sinensis, and other Chinese medicinal Apiaceae plants by DNA barcoding. J. Nat. Med. 2024, 78, 792–798. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.S.; Xu, J.; Tsang, C.K.; Yip, K.M.; Yeung, W.P.; Zhao, Z.Z.; Zhu, S.; Fushimi, H.; Chang, H.Y.; Chen, H.B. Comprehensive quality evaluation and comparison of Angelica sinensis radix and Angelica acutiloba radix by integrated metabolomics and glycomics. J. Food Drug Anal. 2018, 26, 1122–1137. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.R.; Zhang, J.T.; He, F.; Fu, R.; Jing, W.G.; Guo, X.; Li, M.; Cheng, X.L.; Wei, F. Identification Analysis of Angelicae sinensis radix and Angelicae pubescentis radix Based on Quantized “Digital Identity” and UHPLC-QTOF-MSE Analysis. J. Am. Soc. Mass Spectrom. 2024, 35, 2222–2229. [Google Scholar] [CrossRef] [PubMed]
- Fu, H. Comparative Study on Identification of Angelica sinensis, Angelica acutiloba and Levisticum officinale. Tianjin Pharm. 2019, 31, 15–19. [Google Scholar]
- Wang, Y.D.; Chen, M.H.; Yan, J.G.; Ma, X.; Yao, L.W.; Dai, Z.; Ma, S.C. Comparison of chemical constituents between Angelica sinensis and Levisticum officinale by UPLC fingerprints combined with chemometrics methods. Chin. Tradit. Herb. Drugs 2022, 53, 7214–7220. [Google Scholar]
- Ahn, S.J.; Kim, H.J.; Lee, A.; Min, S.S.; Kim, S. Classification of Angelica species found in various foods using an LC-QTOF/MS-based metabolomics approach. Food Addit. Contam. A 2023, 40, 787–796. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, J.; Jing, W.; Li, M.; Guo, X.; Cheng, X.; Wei, F. Digital identification and adulteration analysis of Pulsatilla Radix and Pulsatilla Cernua based on “digital identity” and UHPLC-QTOF-MSE. J. Chromatogr. B 2024, 1244, 124257. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; Yao, C.; Li, Y.; Yang, L.; Chen, X.; Nie, M.; Qu, H.; Ji, S.; Guo, D.A. A MS-feature-based medicinal plant database-driven strategy for ingredient identification of Chinese medicine prescriptions. J. Pharm. Biomed. Anal. 2023, 234, 115482. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Shi, X.; Li, L.; Efferth, T.; Shang, D. The Impact of Artificial Intelligence on Traditional Chinese Medicine. Am. J. Chinese Med. 2021, 49, 1297–1314. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, J.; Jing, W.; Li, M.; Guo, X.; Cheng, X.; Wei, F. Digital identification and adulteration analysis of bupleurum chinense and bupleurum marginatum based on “digital identity” and UHPLC-QTOF-MSE. Talanta Open 2024, 10, 100361. [Google Scholar] [CrossRef]
- Ma, Y.; Yao, J.; Zhou, L.; Zhao, M.; Wang, W.; Liu, J.; Marchioni, E. Comprehensive untargeted lipidomic analysis of sea buckthorn using UHPLC-HR-AM/MS/MS combined with principal component analysis. Food Chem. 2024, 430, 136964. [Google Scholar] [CrossRef] [PubMed]
- Kang, C.; Zhang, Y.; Zhang, M.; Qi, J.; Zhao, W.; Gu, J.; Guo, W.; Li, Y. Screening of specific quantitative peptides of beef by LC-MS/MS coupled with OPLS-DA. Food Chem. 2022, 387, 132932. [Google Scholar] [CrossRef] [PubMed]
- An, J.M.; Hur, S.H.; Kim, H.; Lee, J.H.; Kim, Y.K.; Sim, K.S.; Lee, S.E.; Kim, H.J. Determination of the geographical origin of chicken (breast and drumstick) using ICP-OES and ICP-MS: Chemometric analysis. Food Chem. 2024, 437 Pt 1, 137836. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Li, L.; Zheng, J.; Wu, J.; Wen, L.; Huang, M.; Ao, F.; Luo, W.; Li, M.; Wang, H.; et al. Quantitative analysis of key components in Qingke beer brewing process by multispectral analysis combined with chemometrics. Food Chem. 2024, 436, 137739. [Google Scholar] [CrossRef] [PubMed]
- Lyu, W.; Yuan, B.; Liu, S.; Simon, J.E.; Wu, Q. Assessment of lemon juice adulteration by targeted screening using LC-UV-MS and untargeted screening using UHPLC-QTOF/MS with machine learning. Food Chem. 2022, 373 Pt A, 131424. [Google Scholar] [CrossRef] [PubMed]
- Collins, T.S.; Zweigenbaum, J.; Ebeler, S.E. Profiling of nonvolatiles in whiskeys using ultra high pressure liquid chromatography quadrupole time-of-flight mass spectrometry (UHPLC-QTOF MS). Food Chem. 2014, 163, 186–196. [Google Scholar] [CrossRef] [PubMed]
- Uncu, A.O.; Uncu, A.T. A barcode-DNA analysis method for the identification of plant oil adulteration in milk and dairy products. Food Chem. 2020, 326, 126986. [Google Scholar] [CrossRef] [PubMed]
Identification Methods | Advantages | Disadvantages |
---|---|---|
Trait characterization | Simple, fast, and low cost; good intuitiveness; practical applications. | Highly subjective; difficulty distinguishing between closely related species; high professional requirements. |
Microscopic characterization | Objective and stable; detects subtle differences; small sample size. | High professional requirements; low efficiency; limited applicability. |
TLC/HPLC | Standardizability; reproducibility; widely applicable; provides complex and quantitative analysis. | Handles tedious tasks; limited information requirements; single or few ingredients; poor specificity. |
LC-MS | Multi-component; trace detection; highly specialized and sensitive; widely applicable; high accuracy. | Handles tedious tasks; high cost; technically challenging; database-dependent; standardization gap; unknown chemical composition not fully utilized. |
DNA | High accuracy; highly proprietary; highly objective and reproducible; high sensitivity; small sample size. | DNA degradation and damage; technically complex and relatively expensive; database-dependent. |
Name | Batch | MC (AS) | MC (AG) | MC (AA) | MC (LO) |
---|---|---|---|---|---|
AS | AS10 | 78% | 0% | 3% | 3% |
AG | AG06 | 2% | 98% | 5% | 0% |
AA | AA06 | 0% | 0% | 90% | 0% |
LO | LO10 | 4% | 0% | 1% | 99% |
Name | Batch | 50 Ions | 100 Ions | 150 Ions | 200 Ions |
---|---|---|---|---|---|
AS | AS10 | 72% | 78% | 79% | 79% |
AG | AG06 | 98% | 99% | 95% | 95% |
AA | AA06 | 94% | 98% | 97% | 97% |
LO | LO10 | 88% | 90% | 91% | 92% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Guo, X.; Wan, L.; Zhang, J.; Jing, W.; Li, M.; Cheng, X.; Wei, F. Adulteration Identification of Angelica Sinensis Radix Based on Molecular Matrix Characteristics. Foods 2025, 14, 3005. https://doi.org/10.3390/foods14173005
Zhang Y, Guo X, Wan L, Zhang J, Jing W, Li M, Cheng X, Wei F. Adulteration Identification of Angelica Sinensis Radix Based on Molecular Matrix Characteristics. Foods. 2025; 14(17):3005. https://doi.org/10.3390/foods14173005
Chicago/Turabian StyleZhang, Yu, Xiaohan Guo, Lizhi Wan, Jiating Zhang, Wenguang Jing, Minghua Li, Xianlong Cheng, and Feng Wei. 2025. "Adulteration Identification of Angelica Sinensis Radix Based on Molecular Matrix Characteristics" Foods 14, no. 17: 3005. https://doi.org/10.3390/foods14173005
APA StyleZhang, Y., Guo, X., Wan, L., Zhang, J., Jing, W., Li, M., Cheng, X., & Wei, F. (2025). Adulteration Identification of Angelica Sinensis Radix Based on Molecular Matrix Characteristics. Foods, 14(17), 3005. https://doi.org/10.3390/foods14173005