Characteristics of Polyphenols of Black Hulless Barley Bran and Its Anti-Diabetic Activity
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Preparation of Polyphenols of Black Hulless Barley Bran (HBP)
2.3. Phytochemical Composition Analyses of HBP
2.4. Animals and Experiments
2.4.1. Animal
2.4.2. Measurement of Fasting Blood Glucose (FBG), and Oral Glucose Tolerance Test (OGTT)
2.4.3. FINS, HPMA-IS, HPMA-IR
2.4.4. Organ Index of Liver, Pancreas and Epididymal Fat
2.4.5. Lipemia, Antioxidant and Anti-Inflammatory Assay
2.4.6. Histopathological Analysis
2.4.7. Determination of SCFAs
2.4.8. High-Throughput 16S rDNA Sequencing of Gut Microbiota
2.4.9. Transcriptome Sequencing of the Hepatic
2.4.10. Quantitative Real-Time PCR (RT-qPCR) Validation
2.5. Statistical Analysis
3. Results
3.1. Analysis of the HBP Composition
Peak No. | Rt (min) | [M − H]− (m/z) | [M + H]+ (m/z) | Fragment Ions | Formular | Identified Compounds |
---|---|---|---|---|---|---|
1 | 2.783 | 153.0177 | 109 | C7H6O4 | Protocatechuic acid | |
2 | 2.884 | 593.1298 | 425,407,289,243,177,000 | C30H26O13 | (Epi)gallocatechin-(epi)catechin | |
3 | 5.176 | 577.1251 | 407,289,125 | C30H26O12 | (Epi)catechin-(epi)catechin | |
4 | 5.76 | 289.0689 | 245,109 | C15H14O6 | Catechin | |
5 | 9.571 | 447.0848 | 357,327,297,285 | C21H20O11 | Orientin or Isoorientin | |
6 | 10.688 | 609.1411 | 301,300,271,255,243 | C27H30O16 | Quercetin 3-O-rutinoside | |
7 | 10.733 | 431.0968 | 341,311,283 | C21H20O10 | Isovitexin or vitexin | |
8 | 10.916 | 463.0864 | 301,300,271,255 | C21H20O12 | Quercetin-3-O-glucoside | |
9 | 11.02 | 461.0702 | 285,133 | C21H18O12 | Luteolin 7-O-glucuronide | |
10 | 11.06 | 447.0892 | 285,284 | C21H20O11 | Luteolin-7-O-glucoside | |
11 | 11.659 | 607.1614 | 299,284,255,227 | C27H28O16 | Chrysoeriol 7-O-rutinoside | |
12 | 11.984 | 475.088 | 299,284,256 | C22H20O12 | Chrysoeriol 7-O-glucuronide | |
13 | 12.052 | 461.1054 | 299,255 | C21H18O12 | Chrysoeriol 7-O-glucoside | |
14 | 12.956 | 489.1028 | 285 | C24H26O11 | Luteolin 7-O-(6″-O-acetyl)-glucoside | |
15 | 13.134 | 285.0407 | 133 | C15H10O6 | Luteolin | |
16 | 13.182 | 489.0982 | 474,298,283,255 | C24H26O11 | Chrysoeriol 7-O-methylglucuronide | |
17 | 13.757 | 503.1145 | 488,312,283,255 | C24H24O12 | Chrysoeriol 7-O-(6″-O-acetyl)-glucoside | |
18 | 14.21 | 299.0557 | 284,256,227 | C16H12O6 | Chrysoeriol | |
19 | 5.954 | 611.25156 | 287 | C27H31O16 | Cyanidin 3-O-diglucoside | |
20 | 6.409 | 449.1387 | 287 | C21H21O11 | Cyanidin 3-O-glucoside | |
21 | 7.375 | 433.1442 | 271 | C21H21O10 | Pelargonidin 3-O-glucoside | |
22 | 8.152 | 535.1491 | 287 | C24H23O14 | Cyanidin 3-O-(6″-O-malonyl)-galactoside | |
23 | 9.173 | 535.1491 | 287 | C24H23O14 | Cyanidin 3-O-(6″-O-malonyl)-glucoside | |
24 | 10.432 | 621.1627 | 287 | C27H25O17 | Cyanidin3-O-(3″,6″-O-dimalonyl)-glucoside | |
25 | 10.885 | 563.1796 | 287 | C25H23O15 | Cyanidin 3-O-(6″-O-succinyl)-glucuronide | |
26 | 11.287 | 563.1893 | 287 | C25H23O15 | Cyanidin 3-O-(3″-O-succinyl)-glucuronide | |
27 | 11.687 | 649.2008 | 287 | C29H29O17 | Cyanidin 3-O-(3″,6″-O-disuccinyl)-glucoside |
Compounds | Equation | R2 | Linear Range (µg/mL) | Content (Mean ± SD, mg/g) |
---|---|---|---|---|
protocatechuic acid | y = 19.293x − 34.878 | 0.9997 | 1.95–250.00 | 3.58 ± 0.31 |
Luteolin 7-O-glucuronide | y = 20.132x + 20.737 | 0.9995 | 1.95–250.00 | 3.82 ± 0.10 |
Luteolin-7-O-glucoside | y = 17.430x − 4.143 | 0.9999 | 1.95–250.00 | 2.21 ± 0.03 |
Chrysoeriol 7-O-glucuronide | y = 17.294x − 68.524 | 0.9996 | 1.95–250.00 | 42.09 ± 0.11 |
Luteolin | y = 20.496x − 23.782 | 0.9996 | 1.95–250.00 | 1.15 ± 0.04 |
Chrysoeriol | y = 31.792x − 4.805 | 0.9999 | 1.95–250.00 | 5.30 ± 0.10 |
Cyanidin 3-O-glucoside | y = 3.678x − 18.015 | 0.9989 | 1.95–250.00 | 21.02 ± 0.15 |
Cyanidin 3-O-(6″-O-malonyl)-glucoside | y = 3.861x − 33.663 | 0.9953 | 1.95–250.00 | 24.45 ± 0.47 |
TAC (mg Cyanidin 3-O-glucoside/g DW) | y = 3.6783x − 18.015 | 0.9989 | 3.91–250 | 55.39 ± 1.53 |
TPC (mg Galic acids/g DW) | y = 0.009x + 0.0402 | 0.9975 | 3.19–102 | 242.26 ± 1.86 |
TFC (mg Rutin/g DW) | y = 0.0004x + 0.019 | 0.9999 | 130–1820 | 138.80 ± 1.65 |
3.2. Glucose Homeostasis
3.3. Detection of Organ Index
3.4. Serum Biochemical Parameters
3.5. Antioxidant Assay
3.6. Inflammatory Factors
3.7. Histopathology
3.8. Gut Microbiota and SCFAs
3.8.1. Community Diversity Analysis
3.8.2. Gut Microbiota Composition
3.8.3. SCFAs
3.9. Hepatic Transcriptome
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abel, E.D.; Gloyn, A.L.; Evans-Molina, C.; Joseph, J.J.; Misra, S.; Pajvani, U.B.; Simcox, J.; Susztak, K.; Drucker, D.J. Diabetes mellitus—Progress and opportunities in the evolving epidemic. Cell 2024, 187, 3789–3820. [Google Scholar] [CrossRef]
- Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.N.; Mbanya, J.C. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract. 2022, 183, 109119. [Google Scholar] [CrossRef]
- Heald, A.H.; Stedman, M.; Davies, M.; Livingston, M.; Alshames, R.; Lunt, M.; Rayman, G.; Gadsby, R. Estimating life years lost to diabetes: Outcomes from analysis of National Diabetes Audit and Office of National Statistics data. Cardiovasc. Endocrinol. Metab. 2020, 9, 183–185. [Google Scholar] [CrossRef]
- Cross, L.V.; Thomas, J.R. Safety and Efficacy of Dietary Supplements for Diabetes. Diabetes Spectr. 2021, 34, 67–72. [Google Scholar] [CrossRef]
- Madariaga-Mazón, A.; Naveja, J.J.; Medina-Franco, J.L.; Noriega-Colima, K.O.; Martinez-Mayorga, K. DiaNat-DB: A molecular database of antidiabetic compounds from medicinal plants. RSC Adv. 2021, 11, 5172–5178. [Google Scholar] [CrossRef]
- Patel, D.K.; Prasad, S.K.; Kumar, R.; Hemalatha, S. An overview on antidiabetic medicinal plants having insulin mimetic property. Asian Pac. J. Trop. Biomed. 2012, 2, 320–330. [Google Scholar] [CrossRef]
- Wang, L.M.; Gao, P.; Zhang, M.; Huang, D.D.; Deng, Q.; Li, Y.C.; Zhao, Z.P.; Qin, X.Y.; Jin, D.Y.; Zhou, M.G.; et al. Prevalence and Ethnic Pattern of Diabetes and Prediabetes in China in 2013. JAMA J. Am. Med. Assoc. 2017, 317, 2515–2523. [Google Scholar] [CrossRef] [PubMed]
- Guo, T.; Horvath, C.; Chen, L.; Chen, J.; Zheng, B. Understanding the nutrient composition and nutritional functions of highland barley (Qingke): A review. Trends Food Sci. Technol. 2020, 103, 109–117. [Google Scholar] [CrossRef]
- Ge, X.; Jing, L.; Zhao, K.; Su, C.; Zhang, B.; Zhang, Q.; Han, L.; Yu, X.; Li, W. The phenolic compounds profile, quantitative analysis and antioxidant activity of four naked barley grains with different color. Food Chem. 2021, 335, 127655. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Fan, B.; Mu, Y.; Li, Y.; Tong, L.; Wang, L.; Liu, L.; Li, M.; Sun, P.; Sun, J. A comparative metabolomics study of polyphenols in highland barley (Hordeum vulgare L.) grains with different colors. Food Res. Int. 2023, 174, 113672. [Google Scholar] [CrossRef]
- Zhang, K.; Yang, J.; Qiao, Z.; Cao, X.; Zhang, W. Assessment of β-glucans, phenols, flavor and volatile profiles of hulless barley wine originating from highland areas of China. Food Chem. 2019, 293, 32–40. [Google Scholar] [CrossRef]
- Šimić, G.; Horvat, D.; Lali, A.; Komleni, D.K.; Zduni, Z. Distribution of β-Glucan, Phenolic Acids, and Proteins as Functional Phytonutrients of Hull-Less Barley Grain. Foods 2019, 8, 680. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Z.; Deng, J.; Yang, K.; Zhu, Y.; Xia, C.; Chen, J.; Liu, T.T. Effect of processing on the release of phenolic compounds and antioxidant activity during in vitro digestion of hulless barley. Arab. J. Chem. 2021, 14, 103447. [Google Scholar] [CrossRef]
- Deng, J.; Yu, M.; Yang, Y.; Liu, T.; Xiang, Z.; Chen, J.; Yang, K.; Zhan, R.; Zhu, B.; Zhu, Y. Studies of phytochemical constituents by UPLC-QTOF-MS/MS of black hulless barley bran and its antioxidation and α-glucosidase inhibition effect. Arab. J. Chem. 2024, 17, 105644. [Google Scholar] [CrossRef]
- Zhang, W.; Lan, Y.; Dang, B.; Zhang, J.; Zheng, W.; Du, Y.; Yang, X.; Li, Z. Polyphenol profile and in vitro antioxidant and enzyme inhibitory activities of different solvent extracts of highland barley bran. Molecules 2023, 28, 1665. [Google Scholar] [CrossRef]
- Gujral, H.S.; Sharma, B.; Khatri, M. Influence of replacing wheat bran with barley bran on dough rheology, digestibility and retrogradation behavior of chapatti. Food Chem. 2018, 240, 1154–1160. [Google Scholar] [CrossRef]
- Feng, Q.; Zhang, S.; Lin, J.; Yang, J.; Zhang, Y.; Shen, Q.; Zhong, F.; Hou, D.; Zhou, S. Valorization of barley (Hordeum vulgare L.) brans from the sustainable perspective: A comprehensive review of bioactive compounds and health benefits with emphasis on their potential applications. Food Chem. 2024, 460, 140772. [Google Scholar] [CrossRef]
- Furman, B.L. Streptozotocin-Induced Diabetic Models in Mice and Rats. Curr. Protoc. 2021, 1, e78. [Google Scholar] [CrossRef]
- Han, Y.; Zhang, Z.; Song, Q.; Sun, S.; Li, W.; Yang, F.; Tong, L. Modulation of glycolipid metabolism in T2DM rats by Rubus irritans Focke extract: Insights from metabolic profiling and ERK/IRS-1 signaling pathway. J. Ethnopharmacol. 2024, 332, 15. [Google Scholar] [CrossRef]
- Yin, Y.; Nie, W.; Tang, Z.-Q.; Zhu, S.-J. Flavonoid-Rich Extracts from Chuju (Asteraceae Chrysanthemum L.) Alleviate the Disturbance of Glycolipid Metabolism on Type 2 Diabetic Mice via Modulating the Gut Microbiota. Foods 2025, 14, 765. [Google Scholar] [CrossRef]
- Kim, K.S.; Lee, Y.; Chae, W. An Improved Method to Quantify Short-Chain Fatty Acids in Biological Samples Using Gas Chromatography-Mass Spectrometry. Metabolites 2022, 12, 525. [Google Scholar] [CrossRef]
- He, C.; Liu, X.; Zhang, H.; Mu, T.; Zhang, Y.; Ren, X.; Han, L.; Wang, M. Enhancement of the release of phenolic compounds from white and black Qingke bran by autoclaving and fermentation treatments. Food Biosci. 2023, 53, 102696. [Google Scholar] [CrossRef]
- Zeng, X.; Yuan, H.; Dong, X.; Peng, M.; Jing, X.; Xu, Q.; Tang, T.; Wang, Y.; Zha, S.; Gao, M. Genome-wide dissection of co-selected UV-B responsive pathways in the UV-B adaptation of qingke. Cell Press 2020, 13, 112–127. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Xiang, Z.; Lin, C.; Zhu, Y.; Yang, K.; Liu, T.; Xia, C.; Chen, J.; Zhang, W.; Zhang, Y.; et al. Identification and quantification of free, esterified, and insoluble-bound phenolics in grains of hulless barley varieties and their antioxidant activities. LWT 2021, 151, 112001. [Google Scholar] [CrossRef]
- Nie, T.; Cooper, G.J.S. Mechanisms Underlying the Antidiabetic Activities of Polyphenolic Compounds: A Review. Front. Pharmacol. 2021, 12, 798329. [Google Scholar] [CrossRef] [PubMed]
- Oumeddour, D.Z.; Al-Dalali, S.; Zhao, L.; Zhao, L.; Wang, C. Recent advances on cyanidin-3-O-glucoside in preventing obesity-related metabolic disorders: A comprehensive review. Biochem. Biophys. Res. Commun. 2024, 729, 150344. [Google Scholar] [CrossRef]
- Halim, M.; Halim, A. The effects of inflammation, aging and oxidative stress on the pathogenesis of diabetes mellitus (type 2 diabetes). Diabetes Metab. Syndr. Clin. Res. Rev. 2019, 13, 1165–1172. [Google Scholar] [CrossRef]
- Eitah, H.E.; Maklad, Y.A.; Abdelkader, N.F.; Din, A.A.G.E.; Badawi, M.A.; Kenawy, S.A. Modulating impacts of quercetin/sitagliptin combination on streptozotocin-induced diabetes mellitus in rats. Toxicol. Appl. Pharmacol. 2019, 365, 30–40. [Google Scholar] [CrossRef]
- Thota, R.N.; Rosato, J.I.; Dias, C.B.; Burrows, T.L.; Martins, R.N.; Garg, M.L. Dietary Supplementation with Curcumin Reduce Circulating Levels of Glycogen Synthase Kinase-3β and Islet Amyloid Polypeptide in Adults with High Risk of Type 2 Diabetes and Alzheimer’s Disease. Nutrients 2020, 12, 1032. [Google Scholar] [CrossRef]
- Chehade, J.M.; Gladysz, M.; Mooradian, A.D. Dyslipidemia in Type 2 Diabetes: Prevalence, Pathophysiology, and Management. Drugs 2013, 73, 327–339. [Google Scholar] [CrossRef]
- Al-Zuaidy, M.H.; Mumtaz, M.W.; Hamid, A.A.; Ismail, A.; Mohamed, S.; Razis, A.F.A. Biochemical characterization and 1H NMR based metabolomics revealed Melicope lunu-ankenda leaf extract a potent anti-diabetic agent in rats. BMC Complement. Altern. Med. 2017, 17, 359. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.L.; Liu, H.; Xiang, H.; Qin, X.M.; Du, G.H.; Tian, J.S. Combining biochemical with 1 H NMR-based metabolomics approach unravels the antidiabetic activity of genipin and its possible mechanism. J. Pharm. Biomed. Anal. 2016, 129, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Saha, A.; Mazumder, S. An aqueous extract of Murraya koenigii leaves induces paraoxonase 1 activity in streptozotocin induced diabetic mice. Food Funct. 2013, 4, 420–425. [Google Scholar] [CrossRef] [PubMed]
- Iftikhar, A.; Aslam, B.; Iftikhar, M.; Majeed, W.; Batool, M.; Zahoor, B.; Amna, N.; Gohar, H.; Latif, I. Effect of Caesalpinia bonduc Polyphenol Extract on Alloxan-Induced Diabetic Rats in Attenuating Hyperglycemia by Upregulating Insulin Secretion and Inhibiting JNK Signaling Pathway. Oxidative Med. Cell. Longev. 2020, 2020, 9020219. [Google Scholar] [CrossRef]
- Amrani, A.; Verdaguer, J.; Thiessen, S.; Bou, S.; Santamaria, P. IL-1alpha, IL-1beta, and IFN-gamma mark beta cells for Fas-dependent destruction by diabetogenic CD4(+) T lymphocytes. J. Clin. Investig. 2000, 105, 459–468. [Google Scholar] [CrossRef]
- Li, Y.B.; Zhang, W.; Liu, H.; Liu, Z.; Ma, S. Protective effects of Huanglian Wendan Decoction aganist cognitive deficits and neuronal damages in rats with diabetic encephalopathy by inhibiting the release of inflammatory cytokines and repairing insulin signaling pathway in hippocampus. Chin. J. Nat. Med. 2016, 14, 813–822. [Google Scholar] [CrossRef]
- Roden, M.; Bernroider, E. Hepatic glucose metabolism in humans—Its role in health and disease. Best Pract. Res. Clin. Endocrinol. Metab. 2003, 17, 365–383. [Google Scholar] [CrossRef]
- Daryabor, G.; Atashzar, M.R.; Kabelitz, D.; Meri, S.; Kalantar, K. The Effects of Type 2 Diabetes Mellitus on Organ Metabolism and the Immune System. Front. Immunol. 2020, 11, 1582. [Google Scholar] [CrossRef]
- Hassan, A.; Tajuddin, N.; Shaikh, A. Retrospective Case Series of Patients with Diabetes or Prediabetes Who Were Switched from Omega-3-Acid Ethyl Esters to Icosapent Ethyl. Cardiol. Ther. 2014, 4, 83–93. [Google Scholar] [CrossRef]
- Motshakeri, M.; Ebrahimi, M.; Othman, H.; Goh, Y.M.; Hair-Bejo, M.; Mohamed, S. Effects of Brown Seaweed (Sargassum polycystum) Extracts on Kidney, Liver, and Pancreas of Type 2 Diabetic Rat Model. Evid.-Based Complement. Altern. Med. 2014, 2014, 379407. [Google Scholar]
- Daisley, B.A.; Koenig, D.; Engelbrecht, K.; Doney, L.; Hards, K.; Al, K.; Reid, G.; Burton, J. Emerging connections between gut microbiome bioenergetics and chronic metabolic diseases. Cell Rep. 2021, 37, 110087. [Google Scholar] [CrossRef]
- Fan, Y.; Pedersen, O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 2021, 19, 55–71. [Google Scholar] [CrossRef]
- Koh, A.; Bckhed, F. From Association to Causality: The Role of the Gut Microbiota and Its Functional Products on Host Metabolism. Mol. Cell 2020, 78, 584–596. [Google Scholar] [CrossRef] [PubMed]
- Lazar, V.; Ditu, L.M.; Pircalabioru, G.G.; Picu, A.; Chifiriuc, M.C. Gut Microbiota, Host Organism, and Diet Trialogue in Diabetes and Obesity. Front. Nutr. 2019, 6, 21. [Google Scholar] [CrossRef] [PubMed]
- Gaike, A.H.; Paul, D.; Bhute, S.; Dhotre, D.P.; Pande, P.; Upadhyaya, S.; Reddy, Y.; Sampath, R.; Ghosh, D.; Chandraprabha, D.; et al. The Gut Microbial Diversity of Newly Diagnosed Diabetics but Not of Prediabetics Is Significantly Different from That of Healthy Nondiabetics. mSystems 2020, 5, 10.1128. [Google Scholar] [CrossRef] [PubMed]
- Alipour, M.; Zaidi, D.; Valcheva, R.; Jovel, J.; Martínez, I.; Sergi, C.; Walter, J.; Mason, A.L.; Wong, G.K.-S.; Dieleman, L.A.; et al. Mucosal Barrier Depletion and Loss of Bacterial Diversity are Primary Abnormalities in Paediatric Ulcerative Colitis. J. Crohns Colitis 2016, 10, 462–471. [Google Scholar] [CrossRef]
- Bodkhe, R.; Balakrishnan, B.; Taneja, V. The role of microbiome in rheumatoid arthritis treatment. Ther. Adv. Musculoskelet. Dis. 2019, 11, 1759720X1984463. [Google Scholar] [CrossRef]
- Song, H.; Shen, X.; Zhou, Y.; Zheng, X. Black rice anthocyanins alleviate hyperlipidemia, liver steatosis and insulin resistance by regulating lipid metabolism and gut microbiota in obese mice. Food Funct. 2021, 12, 10160–10170. [Google Scholar] [CrossRef]
- Baeckhed, F.; Ley, R.E.; Sonnenburg, J.L.; Peterson, D.A.; Gordon, J.I. Host-Bacterial Mutualism in the Human Intestine. Science 2005, 307, 1915–1920. [Google Scholar] [CrossRef]
- Cai, T.T.; Ye, X.L.; Li, R.R.; Chen, H.; Ding, D.F. Resveratrol Modulates the Gut Microbiota and Inflammation to Protect Against Diabetic Nephropathy in Mice. Front. Pharmacol. 2020, 11, 1249. [Google Scholar] [CrossRef]
- Xia, T.; Zhang, Z.; Zhao, Y.; Kang, C.; Zhang, X.; Tian, Y.; Yu, J.; Cao, H.; Wang, M. The anti-diabetic activity of polyphenols-rich vinegar extract in mice via regulating gut microbiota and liver inflammation. Food Chem. 2022, 393, 133443. [Google Scholar] [CrossRef]
- Houtman, T.A.; Eckermann, H.A.; Smidt, H.; Weerth, C.D. Gut microbiota and BMI throughout childhood: The role of firmicutes, bacteroidetes, and short-chain fatty acid producers. Sci. Rep. 2022, 12, 3140. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Fang, Q.; Nie, Q.; Hu, J.; Yang, C.; Huang, T.; Li, H.; Nie, S. Hypoglycemic and Hypolipidemic Mechanism of Tea Polysaccharides on Type 2 Diabetic Rats via Gut Microbiota and Metabolism Alteration. J. Agric. Food Chem. 2020, 68, 10015–10028. [Google Scholar] [CrossRef] [PubMed]
- Hall, A.B.; Tolonen, A.C.; Xavier, R.J. Human genetic variation and the gut microbiome in disease. Nat. Rev. Genet. 2017, 18, 690–699. [Google Scholar] [CrossRef]
- Batterham, R.L.; Cowley, M.A.; Small, C.J.; Herzog, H.; Cohen, M.A.; Dakin, C.L.; Wren, A.M.; Brynes, A.E.; Low, M.J.; Ghatei, M.A. Gut hormone PYY(3-36) physiologically inhibits food intake. Nature 2002, 418, 650–654. [Google Scholar] [CrossRef]
- Holz, G.G.t.; Kühtreiber, W.M.; Habener, J.F. Pancreatic beta-cells are rendered glucose-competent by the insulinotropic hormone glucagon-like peptide-1(7-37). Nature 1993, 361, 362–365. [Google Scholar] [CrossRef]
- Xie, F.; Yang, W.; Xing, M.; Zhang, H.; Ai, L. Natural polyphenols-gut microbiota interactions and effects on glycolipid metabolism via polyphenols-gut-brain axis: A state-of-the-art review. Trends Food Sci. Technol. 2023, 140, 104171. [Google Scholar] [CrossRef]
- Morrison, D.J.; Preston, T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes 2016, 7, 189–200. [Google Scholar] [CrossRef]
- Macfarlane, S.; Macfarlane, G.T. Composition and Metabolic Activities of Bacterial Biofilms Colonizing Food Residues in the Human Gut. Appl. Environ. Microbiol. 2006, 72, 6204–6211. [Google Scholar] [CrossRef]
- Zhang, Y.; Peng, Y.; Zhao, L.; Zhou, G.; Li, X. Regulating the gut microbiota and SCFAs in the faeces of T2DM rats should be one of antidiabetic mechanisms of mogrosides in the fruits of Siraitia grosvenorii. J. Ethnopharmacol. 2021, 274, 114033. [Google Scholar] [CrossRef] [PubMed]
- Kootte, R.S.; Vrieze, A.; Holleman, F.; Dallinga-Thie, G.M.; Zoetendal, E.G.; Vos, W.M.D.; Groen, A.K.; Hoekstra, J.B.L.; Stroes, E.S.; Nieuwdorp, M. The therapeutic potential of manipulating gut microbiota in obesity and type 2 diabetes mellitus. Diabetes Obes. Metab. 2012, 14, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Delzenne, N.M.; Cani, P.D.; Everard, A.; Neyrinck, A.M.; Bindels, L.B. Gut microorganisms as promising targets for the management of type 2 diabetes. Diabetologia 2015, 58, 2206–2217. [Google Scholar] [CrossRef]
- Zampieri, M.; Karpach, K.; Salerno, G.; Raguzzini, A.; Barchetta, I.; Cimini, F.A.; Dule, S.; De Matteis, G.; Zardo, G.; Borro, M.; et al. PAR level mediates the link between ROS and inflammatory response in patients with type 2 diabetes mellitus. Redox Biol. 2024, 75, 103243. [Google Scholar] [CrossRef]
- Scott, D.A.; Ponir, C.; Shapiro, M.D.; Chevli, P.A. Associations between insulin resistance indices and subclinical atherosclerosis: A contemporary review. Am. J. Prev. Cardiol. 2024, 18, 100676. [Google Scholar] [CrossRef]
- Zheng, X.; Zhu, S.; Chang, S.; Cao, Y.; Dong, J.; Li, J.; Long, R.; Zhou, Y. Protective effects of chronic resveratrol treatment on vascular inflammatory injury in streptozotocin-induced type 2 diabetic rats: Role of NF-kappa B signaling. Eur. J. Pharmacol. 2013, 720, 147–157. [Google Scholar] [CrossRef]
- Liu, P.; Yan, X.; Pu, J.; Liao, Q.; Wang, K.; Lan, J.; Wang, R.; Wang, Z.; Ding, L.; Yang, L. A Plantaginis Semen-Coptidis Rhizoma compound alleviates type 2 diabetic mellitus in mice via modulating AGEs-RAGE pathway. J. Ethnopharmacol. 2023, 312, 116290. [Google Scholar] [CrossRef]
- Zhu, J.; Wu, M.; Zhou, H.; Cheng, L.; Wang, Y. Liubao brick tea activates the PI3K-Akt signaling pathway to lower blood glucose, metabolic disorders and insulin resistance via altering the intestinal flora. Food Res. Int. 2021, 148, 110594. [Google Scholar] [CrossRef]
- Chen, D.; Chen, X.; He, C.; Xiao, C.; Chen, Z.; Chen, Q.; Chen, J.; Bo, H. Sanhuang xiexin decoction synergizes insulin/PI3K-Akt/FoxO signaling pathway to inhibit hepatic glucose production and alleviate T2DM. J. Ethnopharmacol. 2023, 306, 116162. [Google Scholar] [CrossRef]
- Yu, R.; Shi, D.; Ru, Q.; Chen, Q.; Shen, J. Flavonoids from Camellia oleifera flower ameliorate type 2 diabetes mellitus by regulating the p53 pathway. Fitoterapia 2024, 179, 106267. [Google Scholar] [CrossRef]
- Yang, T.; Qiu, Z.; Shen, J.; He, Y.; Yin, L.; Chen, L.; Yuan, J.; Liu, J.; Wang, T.; Jiang, Z.; et al. 17β-Estradiol, through activating the G protein-coupled estrogen receptor, exacerbates the complication of benign prostatic hyperplasia in type 2 diabetes mellitus patients by inducing prostate proliferation. J. Pharm. Anal. 2024, 14, 100962. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zeng, X.; Qiu, X.; Liu, C.; Lu, P.; Shen, Z.; Zhou, X.; Yang, K. Exercise alleviates renal interstitial fibrosis by ameliorating the Sirt1-mediated TGF-β1/Smad3 pathway in T2DM mice. Endocr. Connect. 2024, 13, e230448. [Google Scholar] [CrossRef] [PubMed]
- Hai, Y.; Ren, K.; Zhang, Y.; Yang, L.; Cao, H.; Yuan, X.; Su, L.; Li, H.; Feng, X.; Liu, D. HIF-1α serves as a co-linker between AD and T2DM. Biomed. Pharmacother. 2024, 171, 116158. [Google Scholar] [CrossRef] [PubMed]
- Xue, M.; Li, T.; Wang, Y.; Chang, Y.; Cheng, Y.; Lu, Y.; Liu, X.; Xu, L.; Li, X.; Yu, X.; et al. Empagliflozin prevents cardiomyopathy via sGC-cGMP-PKG pathway in type 2 diabetes mice. Clin. Sci. 2019, 133, 1705–1720. [Google Scholar] [CrossRef]
- Holness, C.L.; Simmons, D.L. Molecular cloning of CD68, a human macrophage marker related to lysosomal glycoproteins. Blood 1993, 81, 1607. [Google Scholar] [CrossRef]
- Yang, L.; Wang, C.; Huang, Y.; Xu, B.; Liu, Y.; Yu, J.; Xiong, L.; Xiao, T.; Liu, Q. Identification of the C1qDC gene family in grass carp (Ctenopharyngodon idellus) and the response of C1qA, C1qB, and C1qC to GCRV infection in vivo and in vitro. Fish Shellfish. Immunol. 2024, 148, 109477. [Google Scholar] [CrossRef]
- McClive, P.J.; Morahan, G. Assignment of the Mouse Homologues of 6 Loci from HSA1p to Chromosomes 3 and 4. Genomics 1994, 23, 243–246. [Google Scholar] [CrossRef]
- Ji, L.; Guo, W. Single-cell RNA sequencing highlights the roles of C1QB and NKG7 in the pancreatic islet immune microenvironment in type 1 diabetes mellitus. Pharmacol. Res. 2023, 187, 106588. [Google Scholar] [CrossRef]
- Polyak, K.; Lee, M.-H.; Erdjument-Bromage, H.; Koff, A.; Roberts, J.M.; Tempst, P.; Massagué, J. Cloning of p27Kip1, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cell 1994, 78, 59–66. [Google Scholar] [CrossRef]
- Wu, W.; Wang, H.D.; Guo, W.; Yang, K. Up-regulation of fas reverses cisplatin resistance of human small cell lung cancer cells. J. Exp. Clin. Cancer Res. 2010, 29, 49. [Google Scholar] [CrossRef]
- Muhamma, S.A.; Naqvi, S.T.Q.; Nguyen, T.; Wu, X.; Munir, F.; Jamshed, M.B.; Zhang, Q.Y. Cisplatin’s Potential for Type 2 Diabetes Repositioning by Inhibiting CDKN1A, FAS, and SESN1. Comput. Biol. Med. 2021, 135, 104640. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, J.; Liu, T.; Xia, C.; Tong, L.; Gu, C.; Shi, Z.; Yang, Y.; Zhan, R.; Xiang, Z.; Chen, J.; et al. Characteristics of Polyphenols of Black Hulless Barley Bran and Its Anti-Diabetic Activity. Foods 2025, 14, 2994. https://doi.org/10.3390/foods14172994
Deng J, Liu T, Xia C, Tong L, Gu C, Shi Z, Yang Y, Zhan R, Xiang Z, Chen J, et al. Characteristics of Polyphenols of Black Hulless Barley Bran and Its Anti-Diabetic Activity. Foods. 2025; 14(17):2994. https://doi.org/10.3390/foods14172994
Chicago/Turabian StyleDeng, Junlin, Tinghui Liu, Chen Xia, Litao Tong, Chunmei Gu, Zhiqiang Shi, Yuehang Yang, Ruiling Zhan, Zhuoya Xiang, Jian Chen, and et al. 2025. "Characteristics of Polyphenols of Black Hulless Barley Bran and Its Anti-Diabetic Activity" Foods 14, no. 17: 2994. https://doi.org/10.3390/foods14172994
APA StyleDeng, J., Liu, T., Xia, C., Tong, L., Gu, C., Shi, Z., Yang, Y., Zhan, R., Xiang, Z., Chen, J., Wan, Y., & Yu, M. (2025). Characteristics of Polyphenols of Black Hulless Barley Bran and Its Anti-Diabetic Activity. Foods, 14(17), 2994. https://doi.org/10.3390/foods14172994