Daily Mango Intake Improves Glycemic and Body Composition Outcomes in Adults with Prediabetes: A Randomized Controlled Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Screening, Enrollment, and Randomization
2.2. Baseline Visit
2.3. Anthropometric Measurements
2.4. Body Composition Analysis
2.5. Finger Stick Blood Testing
2.6. Blood Collection and Biochemical Assessments
2.7. Calculating HOMA-IR
2.8. Assessment of Insulin Sensitivity Using QUICKI
2.9. Statistical Analyses
3. Results
3.1. Changes in Fasting Blood Glucose and HbA1c
3.2. HOMA-IR and QUICKI
3.3. Body Composition, BMI, and Waist-to-Hip Ratio
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- CDC Prediabetes: Could It Be You? Infographic. Available online: https://www.cdc.gov/diabetes/communication-resources/prediabetes-statistics.html (accessed on 25 June 2025).
- Rowley, W.R.; Bezold, C.; Arikan, Y.; Byrne, E.; Krohe, S. Diabetes 2030: Insights from Yesterday, Today, and Future Trends. Popul. Health Manag. 2017, 20, 6–12. [Google Scholar] [CrossRef]
- Harris, M.I.; Eastman, R.C. Early Detection of Undiagnosed Diabetes Mellitus: A US Perspective. Diabetes Metab. Res. Rev. 2000, 16, 230–236. [Google Scholar] [CrossRef]
- Basiri, R.; Cheskin, L.J. Personalized Nutrition Therapy without Weight Loss Counseling Produces Weight Loss in Individuals with Prediabetes Who Are Overweight/Obese: A Randomized Controlled Trial. Nutrients 2024, 16, 2218. [Google Scholar] [CrossRef]
- Basiri, R.; Cheskin, L.J. Enhancing the Impact of Individualized Nutrition Therapy with Real-Time Continuous Glucose Monitoring Feedback in Overweight and Obese Individuals with Prediabetes. Nutrients 2024, 16, 4005. [Google Scholar] [CrossRef]
- Basiri, R.; Rajanala, Y. Effects of Individualized Nutrition Therapy and Continuous Glucose Monitoring on Dietary and Sleep Quality in Individuals with Prediabetes and Overweight or Obesity. Nutrients 2025, 17, 1507. [Google Scholar] [CrossRef]
- Knowler, W.C.; Barrett-Connor, E.; Fowler, S.E.; Hamman, R.F.; Lachin, J.M.; Walker, E.A.; Nathan, D.M. Diabetes Prevention Program Research Group Reduction in the Incidence of Type 2 Diabetes with Lifestyle Intervention or Metformin. N. Engl. J. Med. 2002, 346, 393–403. [Google Scholar] [CrossRef] [PubMed]
- Basiri, R.; Spicer, M.T.; Ledermann, T.; Arjmandi, B.H. Effects of Nutrition Intervention on Blood Glucose, Body Composition, and Phase Angle in Obese and Overweight Patients with Diabetic Foot Ulcers. Nutrients 2022, 14, 3564. [Google Scholar] [CrossRef] [PubMed]
- Basiri, R.; Spicer, M.; Levenson, C.; Ledermann, T.; Akhavan, N.; Arjmandi, B. Improving Dietary Intake of Essential Nutrients Can Ameliorate Inflammation in Patients with Diabetic Foot Ulcers. Nutrients 2022, 14, 2393. [Google Scholar] [CrossRef]
- Basiri, R.; Seidu, B.; Cheskin, L.J. Key Nutrients for Optimal Blood Glucose Control and Mental Health in Individuals with Diabetes: A Review of the Evidence. Nutrients 2023, 15, 3929. [Google Scholar] [CrossRef]
- Basiri, R.; Spicer, M.; Munoz, J.; Arjmandi, B. Nutritional Intervention Improves the Dietary Intake of Essential Micronutrients in Patients with Diabetic Foot Ulcers. Curr. Dev. Nutr. 2020, 4, 8. [Google Scholar] [CrossRef]
- Basiri, R.; Rajanala, Y.; Kassem, M.; Cheskin, L.J.; Frankenfeld, C.L.; Farvid, M.S. Diabetes Control Status and Severity of Depression: Insights from NHANES 2005–2020. Biomedicines 2024, 12, 2276. [Google Scholar] [CrossRef]
- Adiels, M.; Olofsson, S.-O.; Taskinen, M.-R.; Borén, J. Overproduction of Very Low-Density Lipoproteins Is the Hallmark of the Dyslipidemia in the Metabolic Syndrome. Arterioscler. Thromb. Vasc. Biol. 2008, 28, 1225–1236. [Google Scholar] [CrossRef]
- Nachar, A.; Eid, H.M.; Vinqvist-Tymchuk, M.; Vuong, T.; Kalt, W.; Matar, C.; Haddad, P.S. Phenolic Compounds Isolated from Fermented Blueberry Juice Decrease Hepatocellular Glucose Output and Enhance Muscle Glucose Uptake in Cultured Murine and Human Cells. BMC Complement. Med. Ther. 2017, 17, 138. [Google Scholar] [CrossRef]
- Maldonado-Celis, M.E.; Yahia, E.M.; Bedoya, R.; Landázuri, P.; Loango, N.; Aguillón, J.; Restrepo, B.; Guerrero Ospina, J.C. Chemical Composition of Mango (Mangifera indica L.) Fruit: Nutritional and Phytochemical Compounds. Front. Plant Sci. 2019, 10, 1073. [Google Scholar] [CrossRef]
- Lucas, E.A.; Li, W.; Peterson, S.K.; Brown, A.; Kuvibidila, S.; Perkins-Veazie, P.; Clarke, S.L.; Smith, B.J. Mango Modulates Body Fat and Plasma Glucose and Lipids in Mice Fed a High-Fat Diet. Br. J. Nutr. 2011, 106, 1495–1505. Available online: https://pubmed.ncbi.nlm.nih.gov/21733317/ (accessed on 7 July 2020). [CrossRef] [PubMed]
- Pinneo, S.; O’Mealy, C.; Rosas, M.; Tsang, M.; Liu, C.; Kern, M.; Hooshmand, S.; Hong, M.Y. Fresh Mango Consumption Promotes Greater Satiety and Improves Postprandial Glucose and Insulin Responses in Healthy Overweight and Obese Adults. J. Med. Food 2022, 25, 381–388. [Google Scholar] [CrossRef] [PubMed]
- Stamper, C.; Safadi, S.; Gehr, A.; Asuncion, P.; Hong, M.Y. Effects of Fresh vs Dried Mango Consumption on Satiety and Postprandial Glucose in Healthy Adults. Metab. Open 2023, 19, 100253. [Google Scholar] [CrossRef] [PubMed]
- Rosas, M.; Pinneo, S.; O’Mealy, C.; Tsang, M.; Liu, C.; Kern, M.; Hooshmand, S.; Hong, M.Y. Effects of Fresh Mango Consumption on Cardiometabolic Risk Factors in Overweight and Obese Adults. Nutr. Metab. Cardiovasc. Dis. 2022, 32, 494–503. [Google Scholar] [CrossRef] [PubMed]
- Keathley, J.; Kearney, M.; Garneau, V.; Toro-Martín, J.d.; Varin, T.V.; Pilon, G.; Couture, P.; Marette, A.; Vohl, M.-C.; Couillard, C. Changes in Systolic Blood Pressure, Postprandial Glucose, and Gut Microbial Composition Following Mango Consumption in Individuals with Overweight and Obesity. Appl. Physiol. Nutr. Metab. 2022, 47, 565–574. [Google Scholar] [CrossRef]
- Evans, S.F.; Meister, M.; Mahmood, M.; Eldoumi, H.; Peterson, S.; Perkins-Veazie, P.; Clarke, S.L.; Payton, M.; Smith, B.J.; Lucas, E.A. Mango Supplementation Improves Blood Glucose in Obese Individuals. Nutr. Metab. Insights 2014, 7, 77–84. [Google Scholar] [CrossRef]
- Muraki, I.; Imamura, F.; Manson, J.E.; Hu, F.B.; Willett, W.C.; van Dam, R.M.; Sun, Q. Fruit Consumption and Risk of Type 2 Diabetes: Results from Three Prospective Longitudinal Cohort Studies. BMJ 2013, 347, f5001. [Google Scholar] [CrossRef] [PubMed]
- Cooper, A.J.; Sharp, S.J.; Lentjes, M.A.H.; Luben, R.N.; Khaw, K.-T.; Wareham, N.J.; Forouhi, N.G. A Prospective Study of the Association Between Quantity and Variety of Fruit and Vegetable Intake and Incident Type 2 Diabetes. Diabetes Care 2012, 35, 1293–1300. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zhang, D.; Jiang, X.; Jiang, W. Fruit and Vegetable Consumption and Risk of Type 2 Diabetes Mellitus: A Dose-Response Meta-Analysis of Prospective Cohort Studies. Nutr. Metab. Cardiovasc. Dis. 2015, 25, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.-S.; Sharp, S.J.; Imamura, F.; Chowdhury, R.; Gundersen, T.E.; Steur, M.; Sluijs, I.; Van Der Schouw, Y.T.; Agudo, A.; Aune, D.; et al. Association of Plasma Biomarkers of Fruit and Vegetable Intake with Incident Type 2 Diabetes: EPIC-InterAct Case-Cohort Study in Eight European Countries. BMJ 2020, 370, m2194. [Google Scholar] [CrossRef]
- Jiang, Z.; Sun, T.; He, Y.; Gou, W.; Zuo, L.; Fu, Y.; Miao, Z.; Shuai, M.; Xu, F.; Xiao, C.; et al. Dietary Fruit and Vegetable Intake, Gut Microbiota, and Type 2 Diabetes: Results from Two Large Human Cohort Studies. BMC Med. 2020, 18, 371. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Gou, W.; Su, C.; Du, W.; Zhang, J.; Miao, Z.; Xiao, C.; Jiang, Z.; Wang, Z.; Fu, Y.; et al. Association of Gut Microbiota with Glycaemic Traits and Incident Type 2 Diabetes, and Modulation by Habitual Diet: A Population-Based Longitudinal Cohort Study in Chinese Adults. Diabetologia 2022, 65, 1145–1156. [Google Scholar] [CrossRef]
- Cohen, J. A Power Primer. Psychol. Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef]
- Oats and Honey Granola Bars|Oat Bars. Available online: https://www.naturevalley.com/products/oats-n-honey-crunchy-granola-bars (accessed on 25 July 2025).
- Food Search|USDA FoodData Central. Available online: https://fdc.nal.usda.gov/food-search?query=tommy%20atkins%20mango (accessed on 25 July 2025).
- García-Magaña, M.d.L.; García, H.S.; Bello-Pérez, L.A.; Sáyago-Ayerdi, S.G.; de Oca, M.M.-M. Functional Properties and Dietary Fiber Characterization of Mango Processing By-Products (Mangifera indica L., cv Ataulfo and Tommy Atkins). Plant Foods Hum. Nutr. 2013, 68, 254–258. [Google Scholar] [CrossRef]
- World Health Organization. Waist Circumference and Waist-Hip Ratio: Report of a WHO Expert Consultation, Geneva, 8–11 December 2008; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Blood Plasma and Serum Preparation—US. Available online: https://www.thermofisher.com/us/en/home/references/protocols/cell-and-tissue-analysis/elisa-protocol/elisa-sample-preparation-protocols/blood-plasma-serum-preparation.html (accessed on 29 July 2025).
- Yokoyama, H.; Emoto, M.; Fujiwara, S.; Motoyama, K.; Morioka, T.; Komatsu, M.; Tahara, H.; Shoji, T.; Okuno, Y.; Nishizawa, Y. Quantitative Insulin Sensitivity Check Index and the Reciprocal Index of Homeostasis Model Assessment in Normal Range Weight and Moderately Obese Type 2 Diabetic Patients. Diabetes Care 2003, 26, 2426–2432. [Google Scholar] [CrossRef]
- Katz, A.; Nambi, S.S.; Mather, K.; Baron, A.D.; Follmann, D.A.; Sullivan, G.; Quon, M.J. Quantitative Insulin Sensitivity Check Index: A Simple, Accurate Method for Assessing Insulin Sensitivity in Humans. J. Clin. Endocrinol. Metab. 2000, 85, 2402–2410. [Google Scholar] [CrossRef]
- Pett, K.D.; Alex, P.G.; Weisfuss, C.; Sandhu, A.; Burton-Freeman, B.; Edirisinghe, I. Mango Consumption Is Associated with Increased Insulin Sensitivity in Participants with Overweight/Obesity and Chronic Low-Grade Inflammation. Nutrients 2025, 17, 490. [Google Scholar] [CrossRef] [PubMed]
- Keathley, J.; de Toro-Martín, J.; Kearney, M.; Garneau, V.; Pilon, G.; Couture, P.; Marette, A.; Vohl, M.-C.; Couillard, C. Gene Expression Signatures and Cardiometabolic Outcomes Following 8-Week Mango Consumption in Individuals with Overweight/Obesity. Front. Nutr. 2022, 9, 918844. [Google Scholar] [CrossRef]
- Haines, M.S.; Leong, A.; Porneala, B.C.; Meigs, J.B.; Miller, K.K. Association between Muscle Mass and Diabetes Prevalence Independent of Body Fat Distribution in Adults under 50 Years Old. Nutr. Diabetes 2022, 12, 29. [Google Scholar] [CrossRef]
- Kim, H.J.; Lee, H.-W.; Kang, M.-K.; Leem, G.H.; Kim, M.-H.; Song, T.-J. Association of Body Composition Changes with the Development of Diabetes Mellitus: A Nation-Wide Population Study. Diabetes Metab. J. 2024, 48, 1093–1104. [Google Scholar] [CrossRef]
- Srikanthan, P.; Karlamangla, A.S. Relative Muscle Mass Is Inversely Associated with Insulin Resistance and Prediabetes. Findings from The Third National Health and Nutrition Examination Survey. J. Clin. Endocrinol. Metab. 2011, 96, 2898–2903. [Google Scholar] [CrossRef]
- Chen, Y.; He, D.; Yang, T.; Zhou, H.; Xiang, S.; Shen, L.; Wen, J.; Chen, S.; Peng, S.; Gan, Y. Relationship between Body Composition Indicators and Risk of Type 2 Diabetes Mellitus in Chinese Adults. BMC Public Health 2020, 20, 452. [Google Scholar] [CrossRef] [PubMed]
- Poolsup, N.; Suksomboon, N.; Paw, N.J. Effect of Dragon Fruit on Glycemic Control in Prediabetes and Type 2 Diabetes: A Systematic Review and Meta-Analysis. PLoS ONE 2017, 12, e0184577. [Google Scholar] [CrossRef]
- Della Corte, K.A.; Della Corte, D.; Camacho, D.; Horgan, G.; Palmeira, A.L.; Stubbs, J.; Heitmann, B.L. Association and Substitution Analyses of Dietary Sugars, Starch and Fiber for Indices of Body Fat and Cardiometabolic Risk—A NoHoW Sub-Study. Eur. J. Nutr. 2025, 64, 68. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Sun, S.; Su, Y.; Ying, C.; Luo, H. Effect of Fruit on Glucose Control in Diabetes Mellitus: A Meta-Analysis of Nineteen Randomized Controlled Trials. Front. Endocrinol. 2023, 14, 1174545. [Google Scholar] [CrossRef]
Nutrient | Tommy Atkins Mango (~300 g Edible) | Granola Bar (2 bar, 22 g) |
---|---|---|
Calories (kcal) | 195 | 190 |
Total Fat (g) | 1.7 | 7 |
Saturated Fat (g) | 0.0 | 1 |
Sodium (mg) | <7.5 | 140 |
Total Carbohydrate (g) | 45.9 | 29 |
Dietary Fiber (g) | 5.4 | 2 |
Total Sugars (g) | 32.1 2 | 11 1 |
Protein (g) | 1.7 | 3 |
Iron (mg) | <0.75 | 1 |
Vitamin C (mg) | 30.6 | 0.0 |
Variable | Treatment (Mean ± SD) | Control (Mean ± SD) | p-Value |
---|---|---|---|
Age (years) | 66.18 ± 3.25 | 65.17 ± 4.93 | 0.60 |
Sex (Female/male) | 10/1 | 7/5 | <0.01 |
BMI 1 (kg/m2) | 24.46 ± 3.26 | 28.46 ± 5.04 | 0.09 |
Waist-to-Hip Ratio | 0.85 ± 0.12 | 0.83 ± 0.13 | 0.40 |
Fasting Blood Glucose (mg/dL) | 113.27 ± 7.16 | 116.5 ± 10.13 | 0.40 |
Race (White/black) | 10/1 | 10/2 | <0.01 |
Ethnicity (Hispanic/non-Hispanic) | 1/10 | 0/12 | <0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Basiri, R.; Dawkins, K.; Singar, S.; Ormsbee, L.T.; Akhavan, N.S.; Hickner, R.C.; Arjmandi, B.H. Daily Mango Intake Improves Glycemic and Body Composition Outcomes in Adults with Prediabetes: A Randomized Controlled Study. Foods 2025, 14, 2971. https://doi.org/10.3390/foods14172971
Basiri R, Dawkins K, Singar S, Ormsbee LT, Akhavan NS, Hickner RC, Arjmandi BH. Daily Mango Intake Improves Glycemic and Body Composition Outcomes in Adults with Prediabetes: A Randomized Controlled Study. Foods. 2025; 14(17):2971. https://doi.org/10.3390/foods14172971
Chicago/Turabian StyleBasiri, Raedeh, Kallie Dawkins, Saiful Singar, Lauren T. Ormsbee, Neda S. Akhavan, Robert C. Hickner, and Bahram H. Arjmandi. 2025. "Daily Mango Intake Improves Glycemic and Body Composition Outcomes in Adults with Prediabetes: A Randomized Controlled Study" Foods 14, no. 17: 2971. https://doi.org/10.3390/foods14172971
APA StyleBasiri, R., Dawkins, K., Singar, S., Ormsbee, L. T., Akhavan, N. S., Hickner, R. C., & Arjmandi, B. H. (2025). Daily Mango Intake Improves Glycemic and Body Composition Outcomes in Adults with Prediabetes: A Randomized Controlled Study. Foods, 14(17), 2971. https://doi.org/10.3390/foods14172971