In Vitro and In Vivo Anti-Inflammatory Activities of Tupistra chinensis Baker Total Saponins
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Cells and Animals
2.3. Samples and Processing
2.4. TCS Extraction Process Optimization
2.4.1. Single-Factor Experiments Design
2.4.2. RSM Experimental Design
2.5. TCS Enrichment Process Investigation
2.5.1. Static Adsorption and Desorption Design
2.5.2. Enrichment of TCS on Macroporous Resins
2.6. Total Saponin Content Determination
2.7. Chemical Constituent Analysis of TCS
2.7.1. Sample Preparation
2.7.2. HPLC Conditions and Parameters
2.8. In Vitro Evaluation of Anti-Inflammatory Activity
2.9. In Vivo Evaluation of Anti-Inflammatory Activity
2.9.1. Acute Pharyngitis Model Establishment and Pharmacological Intervention
2.9.2. Behavioral Study and Pharyngeal Tissue Pathological Evaluation
2.9.3. HE Staining of Pharyngeal Tissue
2.9.4. Immunohistochemistry Staining of Pharyngeal Tissue
2.10. Statistical Analysis
3. Results and Discussions
3.1. Single-Factor Experiments
3.2. RSM Optimization
3.2.1. Model Fitting and Statistical Analysis
3.2.2. Response Surface Analysis
3.2.3. Validation of Optimal Conditions
3.3. Enrichment Process
3.3.1. Results of Static Adsorption and Desorption Tests
3.3.2. Enrichment of TCS
3.4. Chemical Constituent of TCS
3.5. In Vitro Anti-Inflammatory Effects of TCS
3.6. In Vivo Anti-Inflammatory Effects of TCS
3.6.1. TCS Alleviated the Pathological Symptoms of Acute Pharyngitis in Rats
3.6.2. TCS Relieved the Pathological Damage in Acute Pharyngitis Rats
3.6.3. TCS Reduced the Expression of NF-κB in Acute Pharyngitis Rats
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Pan, W.B.; Chang, F.R.; Wu, Y.C. Spirostanol sapogenins from the underground parts of Tupistra chinensis. Chem. Pharm. Bull. 2000, 48, 1350–1353. [Google Scholar] [CrossRef]
- Wu, G.X.; Wei, X.Y.; Chen, W.X. Spirostane steroidal saponins from the undergroud parts of Tupistra chinensis. Chin. Chem. Lett. 2005, 16, 911–914. [Google Scholar]
- Yao, S.F.; Zhang, H.B.; Cai, Z.S.; Gao, H.; Wang, D.; Shang, S.B. Two new steroidal sapogenins from Rohdea chinensis (synonym Tupistra chinensis) rhizomes and their antifungal activity. J. Asian Nat. Prod. Res. 2022, 24, 153–162. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, J.W.; Wang, Y.H.; Xiang, L.M.; He, X.J. Total saponins from Tupistra chinensis baker inhibits growth of human gastric cancer cells in vitro and in vivo. J. Ethnopharmacol. 2021, 278, 114323. [Google Scholar] [CrossRef]
- Zou, K.; Wang, J.Z.; Wu, J.; Zhou, Y.; Liu, C.; Dan, F.J.; Zhang, Y.X.; Yang, J. Furostanol saponins with inhibitory action against COX-2 production from Tupistra chinensis rhizomes. Chin. Chem. Lett. 2007, 18, 1239–1242. [Google Scholar] [CrossRef]
- Lin, Q.S.; Wang, M.; Li, J.H.; Shi, W.P.; Wang, H.; Zhao, C.J. Analysis of Fatty Acids, Aliphatic Esters, and In Vitro Studies of Antioxidant and Antimicrobial Activities for Recineckea carnea and Tupistra chinensis from the Guizhou Province. J. Med. Food 2014, 17, 236–243. [Google Scholar] [CrossRef]
- Wang, T.; Wu, Z.; Li, M.; Cao, B.; Li, J.; Jiang, J.; Liu, H.; Zhang, Q.; Zhang, S. TCP80-1, a new levan-neoseries fructan from Tupistra chinensis Baker rhizomes alleviates ulcerative colitis induced by dextran sulfate sodium in Drosophila melanogaster model. Food Res. Int. 2025, 203, 115860. [Google Scholar]
- Zou, K.; Wang, J.Z.; Guo, Z.Y.; Du, M.; Wu, J.; Zhou, Y.; Dan, F.J.; Liu, C. Structural elucidation of four new furostanol saponins from Tupistra Chinensis by 1D and 2D NMR spectroscopy. Magn. Reson. Chem. 2009, 47, 87–91. [Google Scholar] [CrossRef]
- Pan, W.B.; Chang, F.R.; Wei, L.M.; Wu, Y.C. New flavans, spirostanol sapogenins, and a pregnane genin from Tupistra chinensis and their cytotoxicity. J. Nat. Prod. 2003, 66, 161–168. [Google Scholar] [CrossRef]
- Wang, Y.H.; Xiang, L.M.; Wang, Z.; Li, J.M.; Xu, J.W.; He, X.J. New anti-neuroinflammatory steroids against LPS induced NO production in BV2 microglia cells by microbial transformation of isorhodeasapogenin. Bioorg. Chem. 2020, 101, 103870. [Google Scholar] [CrossRef]
- Xu, L.L.; Kun, Z.; Wang, J.Z.; Wu, J.; Zhou, Y.; Dan, F.J.; Yang, J. New polyhydroxylated furostanol Saponins with inhibitory action against NO production from Tupistra Chinensis rhizomes. Molecules 2007, 12, 2029–2037. [Google Scholar] [CrossRef] [PubMed]
- Xiang, L.M.; Wang, Y.H.; Yi, X.M.; Zheng, G.J.; He, X.J. Bioactive spirostanol saponins from the rhizome of Tupistra chinensis. Steroids 2016, 108, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Xiang, L.M.; Wang, Y.H.; Yi, X.M.; He, X.J. Antiproliferative and anti-inflammatory furostanol saponins from the rhizomes of Tupistra chinensis. Steroids 2016, 116, 28–37. [Google Scholar] [CrossRef]
- Xiang, L.M.; Wang, Y.H.; Yi, X.M.; He, X.J. Antiproliferative and anti-inflammatory polyhydroxylated spirostanol saponins from Tupistra chinensis. Sci. Rep. 2016, 6, 31633. [Google Scholar] [CrossRef]
- Xiang, L.M.; Wang, Y.H.; Yi, X.M.; Feng, J.Y.; He, X.J. Furospirostanol and spirostanol saponins from the rhizome of Tupistra chinensis and their cytotoxic and anti-inflammatory activities. Tetrahedron 2016, 72, 134–141. [Google Scholar] [CrossRef]
- Huang, Y.Y.; Wang, Y.H.; Xu, J.W.; Feng, J.Y.; He, X.J. Propacin, a coumarinolignoid isolated from durian, inhibits the lipopolysaccharide-induced inflammatory response in macrophages through the MAPK and NF-κB pathways. Food Funct. 2020, 11, 596–605. [Google Scholar] [CrossRef]
- Lin, Y.Y.; Zeng, H.H.; Wang, K.; Lin, H.; Li, P.F.; Fan, H.J. Microwave-assisted aqueous two-phase extraction of diverse polysaccharides from Lentinus edodes: Process optimization, structure characterization and antioxidant activity. Int. J. Biol. Macromol. 2019, 136, 305–315. [Google Scholar] [CrossRef]
- Ferreira, S.L.C.; Bruns, R.E.; Ferreira, H.S.; Matos, G.D.; David, J.M.; Brandao, G.C.; da Silva, E.G.P.; Portugal, L.A.; dos Reis, P.S.; Souza, A.S.; et al. Box-Behnken design: An alternative for the optimization of analytical methods. Anal. Chim. Acta 2007, 597, 179–186. [Google Scholar] [CrossRef]
- Guo, S.B.; Du, X.M.; Jian, L.Y. Studies on Purification Process of Total Saponins in Radix Astragali with Resin and Structural Identification of Compounds. Asian J. Chem. 2014, 26, 4610–4614. [Google Scholar] [CrossRef]
- Yang, P.J.; Zhou, M.D.; Zhou, C.Y.; Wang, Q.; Zhang, F.F.; Chen, J. Separation and purification of both tea seed polysaccharide and saponin from camellia cake extract using macroporous resin. J. Sep. Sci. 2015, 38, 656–662. [Google Scholar] [CrossRef]
- Baccou, J.C.; Lambert, F.; Sauvaire, Y. Spectrophotometric method for the determination of total steroidal sapogenin. Analyst 1977, 102, 458–465. [Google Scholar] [CrossRef]
- Liu, X.X.; Wang, L.; Yang, J.; Zhang, T.T.; Deng, X.D.; Wang, Q. Simultaneous analysis of eight bioactive steroidal saponins in Gongxuening capsules by HPLC-ELSD and HPLC-MSn. Acta Chromatogr. 2009, 21, 327–339. [Google Scholar] [CrossRef]
- Zhu, W.B.; Su, F.Z.; Sun, Y.P.; Yang, B.Y.; Wang, Q.H.; Kuang, H.X. Antipharyngitis Effects of Syringa oblata L. Ethanolic Extract in Acute Pharyngitis Rat Model and Anti-Inflammatory Effect of Ir Idoids in LPS-Induced RAW 264.7 Cells. J. Evid.-Based Complement. Altern. Med. 2021, 2021, 5111752. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Sun, H.J.; Liu, S.M.; Jiang, X.H.; Wang, Q.Y.; Zhang, S.; Yu, D.H. Anti-inflammation effects of the total saponin fraction from Dioscorea nipponica Makino on rats with gouty arthritis by influencing MAPK signalling pathway. BMC Complement. Med. Ther. 2020, 20, 261. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Zhu, X.-Z.; Feng, R.-B.; Liu, Z.; Wang, G.-Y.; Guan, X.-F.; Ou, G.-m.; Li, Y.-L.; Wang, Y.; Li, M.-M.; et al. Crude triterpenoid saponins from Anemone flaccida (Di Wu) exert anti-arthritic effects on type II collagen-induced arthritis in rats. Chin. Med. 2015, 10, 20. [Google Scholar] [CrossRef]
- Xu, M.; Hu, T.Y.; Ma, L.; Zhang, H. Yan-Hou-Qing formula attenuates ammonia-induced acute pharyngitis in rats via inhibition of NF-κB and COX-2. BMC Complement Med. Ther. 2020, 20, 280. [Google Scholar] [CrossRef]
- Miao, M.S.; Peng, M.F.; Liu, B.S.; Bai, M. Effects of compound lobelia oral liquid on acute pharyngitis rabbits model. Saudi J. Biol. Sci. 2019, 26, 816–820. [Google Scholar] [CrossRef]
- Tian, C.L.; Chang, Y.; Wang, R.X.; Kang, Z.R.; Wang, Q.; Tong, Z.F.; Zhou, A.H.; Cui, C.C.; Liu, M.C. Optimization of ultrasound extraction of Tribulus terrestris L. leaves saponins and their HPLC-DAD-ESI-MS(n) profiling, anti-inflammatory activity and mechanism in vitro and in vivo. J. Ethnopharmacol. 2021, 278, 114225. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.P.; Kou, X.H.; Wu, C.E.; Fan, G.J.; Li, T.T.; Dou, J.F.; Shen, D.B. Enhanced extraction of bioactive natural products using ultrasound-assisted aqueous two-phase system: Application to flavonoids extraction from jujube peels. Food Chem. 2022, 395, 133530. [Google Scholar] [CrossRef]
Factors | −1 | 0 | 1 |
X1: Ethanol concentration (%) | 55 | 65 | 75 |
X2: Liquid–solid ratio (mL/g) | 10 | 15 | 20 |
X3: Extraction time (min) | 30 | 60 | 90 |
Run | X1 | X2 | X3 | Total Saponin Yield (mg/g) |
---|---|---|---|---|
1 | 65 | 10 | 30 | 101.2 |
2 | 65 | 15 | 60 | 114.0 |
3 | 75 | 15 | 30 | 91.6 |
4 | 55 | 15 | 90 | 107.2 |
5 | 75 | 10 | 60 | 94.6 |
6 | 55 | 20 | 60 | 102.8 |
7 | 65 | 15 | 60 | 114.2 |
8 | 55 | 10 | 60 | 96.6 |
9 | 75 | 20 | 60 | 93.2 |
10 | 55 | 15 | 30 | 95.6 |
11 | 75 | 15 | 90 | 92.6 |
12 | 65 | 10 | 90 | 106.4 |
13 | 65 | 15 | 60 | 111.2 |
14 | 65 | 15 | 60 | 112.8 |
15 | 65 | 20 | 30 | 104.0 |
16 | 65 | 15 | 60 | 112.8 |
17 | 65 | 20 | 90 | 114.6 |
Score | Mouth Hair Loss | Activity | Salivary Secretion | Mouth Scratch | Pharynx Swelling |
---|---|---|---|---|---|
0 | Normal | Normal | Normal | Normal | Normal |
1 | Slight | Sligh | Sligh | Sligh | Sligh |
2 | Severe | Severe | Severe | Severe | Severe |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|
Model | 2.86 | 9 | 0.3178 | 49.52 | <0.0001 |
X1 | 0.2850 | 1 | 0.2850 | 44.41 | 0.0003 |
X2 | 0.0780 | 1 | 0.0780 | 12.16 | 0.0102 |
X3 | 0.2521 | 1 | 0.2521 | 39.27 | 0.0004 |
X1X2 | 0.0361 | 1 | 0.0361 | 5.62 | 0.0495 |
X1X3 | 0.0702 | 1 | 0.0702 | 10.94 | 0.0130 |
X2X3 | 0.0182 | 1 | 0.0182 | 2.84 | 0.1358 |
X12 | 1.78 | 1 | 1.78 | 277.19 | <0.0001 |
X22 | 0.1078 | 1 | 0.1078 | 16.80 | 0.0046 |
X32 | 0.1112 | 1 | 0.1112 | 17.32 | 0.0042 |
Residual | 0.0449 | 7 | 0.0064 | ||
Lack of Fit | 0.0305 | 3 | 0.0102 | 2.83 | 0.1706 |
Pure Error | 0.0144 | 4 | 0.0036 | ||
Cor Total | 2.91 | 16 | |||
R2 = 0.9845, R2Adj = 0.9647, C.V.% = 1.54 |
Resin Type | Polarity | Adsorption Capacity/mg/g | Adsorption Rate/% | Desorption Rate/% | Recovery/% |
---|---|---|---|---|---|
D-101 | Non | 57.86 ± 0.42 | 89.29 ± 0.13 | 92.04 ± 1.97 | 82.13 ± 1.65 |
AB-8 | Weak | 55.54 ± 0.20 | 88.79 ± 0.06 | 76.83 ± 3.81 | 68.36 ± 3.24 |
LX-68M | Medium | 58.82 ± 1.24 | 90.77 ± 0.38 | 77.68 ± 3.46 | 70.51 ± 2.77 |
DM-130 | Medium | 55.42 ± 0.18 | 85.51 ± 0.57 | 79.76 ± 2.51 | 68.21 ± 3.30 |
HPD-500 | Strong | 57.00 ± 0.36 | 87.95 ± 0.11 | 72.44 ± 3.85 | 72.44 ± 3.47 |
Compd. | Name | tR (min) | Equation | Content (%) | RSD (%) |
---|---|---|---|---|---|
1 | 26-O-β-D-glucopyranosyl-furost-25(27)-en-1β,3β,5β,22α,26-pentaol-3-O-β-D-glucopyranoside | 23.557 | (R2 = 0.9994) | 4.82 ± 0.14 | 2.90 |
2 | (25S)-26-O-β-D-glucopyranosyl-furost-1β,3β,5β,22α,26-pentaol-3-O-β-D-glucopyranoside | 24.740 | (R2 = 0.9994) | 16.08 ± 0.66 | 4.10 |
3 | (25R)-26-O-β-D-glucopyranosyl-furost-1β,3β,5β,22α,26-pentaol-3-O-β-D-glucopyranoside | 25.823 | (R2 = 0.9992) | 2.87 ± 0.12 | 4.18 |
4 | (5β,25S)-26-O-β-D-glucopyranosyl-furost-1β,3β,22α,26-tetraol-3-O-β-D-glucopyranosyl-(1→4)-β-D-glucopyranoside | 32.207 | (R2 = 0.9991) | 3.78 ± 0.08 | 2.07 |
5 | (5β,25R)-26-O-β-D-glucopyranosyl-furost-1β,3β,22α,26-tetraol-3-O-β-D-glucopyranosyl-(1→4)-β-D-glucopyranoside | 33.490 | (R2 = 0.9991) | 5.88 ± 0.02 | 0.34 |
6 | (5β,25S)-26-O-β-D-glucopyranosyl-furost-1β,3β,22α,26-tetraol-3-O-β-D-glucopyranoside | 34.557 | (R2 = 0.9991) | 16.22 ± 0.48 | 2.96 |
7 | (5β,25R)-26-O-β-D-glucopyranosyl-furost-1β,3β,22α,26-tetraol-3-O-β-D-glucopyranoside | 35.867 | (R2 = 0.9997) | 8.54 ± 0.27 | 3.16 |
8 | (25R)-26-O-β-D-glucopyranosyl-22α-methoxyl-furost-5(6)-en-3β,26-diol-3-O-α-L-rhamnopyranosyl-(1→2)-β-D-glucopyranosyl-(1→4)-β-D-galactopyranoside | 45.323 | (R2 = 0.9989) | 2.34 ± 0.05 | 2.14 |
9 | (25S)-26-O-β-D-glucopyranosyl-furost-3β,5β,22α,26-tetraol-5-O-β-D-glucopyranoside | 46.223 | (R2 = 0.9997) | 2.40 ± 0.04 | 1.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pu, Y.; Li, L.; Wang, R.; Qin, Q.; Xu, J.; Xiang, L.; He, X.; Wang, Y. In Vitro and In Vivo Anti-Inflammatory Activities of Tupistra chinensis Baker Total Saponins. Foods 2025, 14, 2964. https://doi.org/10.3390/foods14172964
Pu Y, Li L, Wang R, Qin Q, Xu J, Xiang L, He X, Wang Y. In Vitro and In Vivo Anti-Inflammatory Activities of Tupistra chinensis Baker Total Saponins. Foods. 2025; 14(17):2964. https://doi.org/10.3390/foods14172964
Chicago/Turabian StylePu, Yajing, Lin Li, Ru Wang, Qiuyi Qin, Jingwen Xu, Limin Xiang, Xiangjiu He, and Yihai Wang. 2025. "In Vitro and In Vivo Anti-Inflammatory Activities of Tupistra chinensis Baker Total Saponins" Foods 14, no. 17: 2964. https://doi.org/10.3390/foods14172964
APA StylePu, Y., Li, L., Wang, R., Qin, Q., Xu, J., Xiang, L., He, X., & Wang, Y. (2025). In Vitro and In Vivo Anti-Inflammatory Activities of Tupistra chinensis Baker Total Saponins. Foods, 14(17), 2964. https://doi.org/10.3390/foods14172964