Exploring Consumer Perception of Food Insecurity Using Big Data
Abstract
1. Introduction
2. Related Studies
3. Research Methodology
3.1. Data and Summary Statistics
3.2. Methodology
4. Results
4.1. Content Analysis
4.2. Text Mining Analysis
4.3. Sentimental Network Analysis
4.4. Time Series Analysis
4.5. Sentiment Analysis
5. Discussion
6. Limitation and Future Studies
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Odoms-Young, A.; Brown, A.G.M.; Agurs-Collins, T.; Glanz, K. Food insecurity, neighborhood food environment, and health disparities: State of the science, research gaps and opportunities. Am. J. Clin. Nutr. 2024, 119, 850–861. [Google Scholar] [CrossRef]
- Berry, E.M. Food insecurity, social inequity, and sustainability. World Rev. Nutr. Diet. 2020, 121, 95–104. [Google Scholar]
- Meller, F.O.; Quadra, M.R.; Santos, L.P.D.; Dumith, S.C.; Eugenio, F.D.; Silva, T.J.D. Association between job lost and mental health outcomes during the COVID-19 pandemic and the role of food insecurity as mediator of this relationship. Cad. Saude Publica 2024, 20, e00110523. [Google Scholar] [CrossRef]
- Datta, B.K.; Phillips, S. Long COVID and the higher risk of food insecurity among participants and nonparticipants of food assistance programs in the United States. J. Acad. Nutr. Diet. 2025, 125, 555–566. [Google Scholar] [CrossRef]
- Otekunrin, O.A. A critical assessment of the interplay of conflict, hunger, poverty, and food insecurity in Africa. Food Humanit. 2025, 4, 100544. [Google Scholar] [CrossRef]
- Choi, J.H. Food insecurity is associated with dietary consumption during the COVID-19 pandemic: Data from the Korea national health and nutrition examination survey 2019–2020. Nutrients 2023, 15, 772. [Google Scholar] [CrossRef]
- Baek, S.U.; Yoon, J.H. The mediating role of food insecurity in the relationship between income poverty and depressive symptoms and suicidal ideation: A nationwide study of Korean adults. Soc. Sci. Med. 2025, 373, 117972. [Google Scholar] [CrossRef]
- Cai, J.; Parker, M.; Tekwe, C.; Bidulescu, A. Food insecurity and mental health among US adults during the COVID-19 pandemic: Results from National Health Interview Survey, 2020–2021. J. Affect. Disord. 2024, 356, 707–714. [Google Scholar] [CrossRef]
- Aljahdali, A.A.; Na, M.; Leung, C.W. Food insecurity and health-related quality of life among a nationally representative sample of older adults: Cross-sectional analysis. BMC Geriatr. 2024, 24, 126. [Google Scholar] [CrossRef]
- Wang, L.; Chen, L.; Li, C. Research on strategies for improving green product consumption sentiment from the perspective of big data. J. Retail. Consum. Serv. 2024, 79, 103802. [Google Scholar] [CrossRef]
- Ianni, M.; Masciari, E.; Sperli, G. A survey of big data dimensions vs social networks analysis. J. Intell. Inf. Syst. 2021, 57, 73–100. [Google Scholar] [CrossRef]
- Azzaoui, A.E.L.; Singh, S.K.; Park, J.H. SNS big data analysis framework for COVID-19 outbreak prediction in smart healthy city. Sustain. Cities Soc. 2021, 71, 102993. [Google Scholar] [CrossRef]
- Ann, M.S. Research on public sentiment of the post-corona new normal: Through social media (SNS) big data analysis. J. Converg. Cult. Technol. 2022, 8, 209–215. [Google Scholar]
- Jeon, S.W.; Ahn, Y.J.; Ryu, G.H. A study on gamification consumer perception analysis using big data. Int. J. Adv. Cult. Technol. 2023, 11, 332–337. [Google Scholar]
- Byun, H.; Jeon, S.W.; Yi, E.S. A study on the current situation and trend analysis of the elderly healthcare applications using big data analysis. J. Korea Converg. Soc. 2022, 13, 313–325. [Google Scholar]
- Chakraborty, D.; Rana, N.P.; Khorana, S.; Singu, H.B.; Luthra, S. Big data in food: Systematic literature review and future directions. J. Comput. Inf. Syst. 2023, 63, 1243–1263. [Google Scholar] [CrossRef]
- Koren, O.; Bagozzi, B.E.; Benson, T.S. Food and water insecurity as causes of social unrest: Evidence from geolocated Twitter data. J. Peace Res. 2021, 58, 67–82. [Google Scholar] [CrossRef]
- Tamasiga, P.; Ouassou, E.; Onyeaka, H.; Bakwena, M.; Happonen, A.; Molala, M. Forecasting disruptions in global food value chains to tackle food insecurity: The role of AI and big data analytics—A bibliometric and scientometric analysis. J. Agric. Food Res. 2023, 14, 100819. [Google Scholar] [CrossRef]
- Fathi, M.; Kashani, M.H.; Jameii, S.M.; Mahdipour, E. Big data analytics in weather forecasting: A systematic review. Arch. Comput. Methods Eng. 2022, 29, 1247–1275. [Google Scholar] [CrossRef]
- Karatas, M.; Eriskin, L.; Deveci, M.; Pamucar, D.; Garg, H. Big data for healthcare industry 4.0: Applications, challenges and future perspectives. Expert Syst. Appl. 2022, 200, 116912. [Google Scholar] [CrossRef]
- Terrazas, G.; Ferry, N.; Ratchev, J.C. A cloud-based framework for shop floor big data management and elastic computing analytics. Int. J. Inf. Manag. 2019, 109, 204–214. [Google Scholar] [CrossRef]
- di Bella, E.; Leporatti, L.; Maggino, F. Big data and social indicators: Actual trends and new perspectives. Soc. Indic. Res. 2018, 135, 869–878. [Google Scholar] [CrossRef]
- Abkenar, S.B.; Kashani, M.H.; Mahdipour, E.; Jameii, S.M. 2021. Big data analytics meets social media: A systematic review of techniques, open issues, and future directions. Telemat. Inform. 2021, 57, 101517. [Google Scholar] [CrossRef]
- Martinez-Rojas, M.; del Carmen Pardo-Ferreira, M.; Rubio-Romero, J.C. Twitter as a tool for the management and analysis of emergency situations: A systematic literature review. Int. J. Inf. Manag. 2018, 43, 196–208. [Google Scholar] [CrossRef]
- Fan, J.; Han, F.; Liu, H. Challenges of big data analysis. Natl. Sci. Rev. 2014, 1, 293–314. [Google Scholar] [CrossRef]
- Wu, D.C.; Zhong, S.; Song, H. Tourism and hospitality forecasting with big data: A systematic review of the literature. J. Hosp. Tour. Res. 2025, 49, 615–634. [Google Scholar] [CrossRef]
- Balashankar, A.; Subramanian, L.; Fraiberger, S.P. Fine-grained prediction of food insecurity using news streams. Comput. Lang. 2021, 1–35. [Google Scholar] [CrossRef]
- Ahn, Y.; Yan, M.; Lin, Y.R.; Wang, Z. HungerGist: An interpretable predictive model for food insecurity. In Proceedings of the 2023 IEEE International Conference on Big Data (BigData), Sorrento, Italy, 15–18 December 2023; pp. 1–10. [Google Scholar]
- Eskandari, F.; Lake, A.A.; Butler, M. COVID-19 pandemic and food poverty conversations: Social network analysis of Twitter data. Nutr. Bull. 2022, 47, 93–105. [Google Scholar] [CrossRef]
- Martin, N.M.; Poirier, L.; Rosenblum, A.J.; Reznar, M.M.; Gittelsohn, J.; Barnett, D.J. Enhancing artificial intelligence for Twitter-based public discourse on food security during the COVID-19 pandemic. Disaster Med. Public Health Prep. 2022, 1–25. [Google Scholar] [CrossRef]
- Bartelme, T.; Schonfeld, M.; Pfeffer, J. Exploring food poverty experiences in the German Twitter-Sphere. BMC Public Health 2024, 24, 1398. [Google Scholar] [CrossRef]
- Goetz, S.J.; Heaton, C.; Imran, M.; Pan, Y.; Tian, Z.; Schmidt, C.; Qazi, U.; Ofli, F.; Mitra, P. Food insufficiency and Twitter emotions during a pandemic. Appl. Econ. Perspect. Policy 2022, 45, 1189–1210. [Google Scholar] [CrossRef] [PubMed]
- Lukyamuzi, A.; Ngubiri, J.; Okori, W. Tracking food insecurity from tweets using data mining techniques. In Proceedings of the 2018 International Conference on Software Engineering in Africa, Gothenburg, Sweden, 27 May–3 June 2018; pp. 27–34. [Google Scholar]
Data | Channel | Section | 2024 |
---|---|---|---|
Food insecurity | Naver | Blog | 26,160 |
Cafe | 7637 | ||
Daum | Blog | 4.455 | |
Cafe | 3 |
Categories | 2024 |
---|---|
Food/nutrition | 116 |
Cause/need | 99 |
Sentimental/response | 94 |
Connection/subject | 70 |
Total | 379 |
Rank | Word | Frequency | TF-IDF | Rank | Word | Frequency | TF-IDF |
---|---|---|---|---|---|---|---|
1 | Food | 76,460 | 12,185.7 | 26 | Many | 10,491 | 20,975.36 |
2 | Insecurity | 72,776 | 4165.255 | 27 | Problem | 10,337 | 21,392.58 |
3 | Health | 65,009 | 46,365.19 | 28 | Treatment | 10,219 | 23,637.09 |
4 | Intake | 30,770 | 35,141.11 | 29 | Improvement | 9721 | 20,697.33 |
5 | Stress | 28,274 | 35,392.8 | 30 | Nerve | 9546 | 21,458.17 |
6 | Help | 26,470 | 32,280.54 | 31 | Sleep | 9490 | 22,932.89 |
7 | Depression | 22,867 | 27,802.1 | 32 | Processed food | 9449 | 19,569.05 |
8 | Symptom | 21,042 | 32,467.51 | 33 | Brain | 9287 | 21,736.66 |
9 | Good | 20,672 | 29,869.37 | 34 | Exercise | 8972 | 21,365.58 |
10 | Mental | 18,732 | 30,658.68 | 35 | Stability | 8796 | 19,649.24 |
11 | Dish | 16,644 | 29,469.45 | 36 | Reduce | 8698 | 18,866.3 |
12 | Body | 16,120 | 27,221.66 | 37 | Balance | 8583 | 19,564.36 |
13 | Eat | 15,694 | 29,457.07 | 38 | People | 8498 | 19,130.61 |
14 | Function | 15,404 | 26,893.31 | 39 | Vegetable | 8244 | 18,024.83 |
15 | Effect | 14,867 | 29,867.79 | 40 | Inclusion | 8005 | 17,812.78 |
16 | Important | 13,790 | 24,125.14 | 41 | Mind | 7933 | 18,692.32 |
17 | Influence | 13,035 | 24,156.91 | 42 | Fruit | 7734 | 17,442.91 |
18 | Management | 12,534 | 24,690.3 | 43 | Decrease | 7417 | 17,542.98 |
19 | Method | 12,224 | 23,477.33 | 44 | Need | 7266 | 16,897.16 |
20 | Obstacle | 11,495 | 24,423.79 | 45 | Vitamin A | 7149 | 22,085.36 |
21 | Maintain | 11,414 | 22,444.73 | 46 | Mood | 7125 | 17,479.93 |
22 | Effectiveness | 11,383 | 22,940.46 | 47 | Cause | 7059 | 18,074.13 |
23 | Diet | 11,311 | 22,888.57 | 48 | Omega | 6842 | 19,522.23 |
24 | Relax | 11,287 | 22,325.13 | 49 | Causing | 6706 | 16,489.62 |
25 | Magnesium | 10,507 | 29,402.93 | 50 | Prevention | 6701 | 16,809.99 |
Rank | Word | Degree Centrality | Betweenness Centrality | Closeness Centrality | Page Rank | Group | Category |
---|---|---|---|---|---|---|---|
1 | Insecurity | 209 | 26.727 | 0.005 | 1.077 | 1 | Sentimental/response |
2 | Fatty acid | 200 | 17.547 | 0.005 | 1.035 | 1 | Food/nutrition |
3 | Vitamin D | 199 | 14.912 | 0.005 | 1.030 | 1 | Food/nutrition |
4 | Calcium | 205 | 20.221 | 0.005 | 1.058 | 1 | Food/nutrition |
5 | Fiber | 198 | 13.411 | 0.005 | 1.025 | 1 | Food/nutrition |
6 | Iron | 196 | 15.450 | 0.005 | 1.017 | 1 | Food/nutrition |
7 | Theanin | 176 | 11.173 | 0.004 | 0.928 | 1 | Food/nutrition |
8 | Melatonin | 192 | 14.440 | 0.004 | 0.999 | 1 | Food/nutrition |
9 | Oriental medicine | 194 | 15.274 | 0.004 | 1.008 | 1 | Food/nutrition |
10 | Salmon | 198 | 14.924 | 0.005 | 1.026 | 1 | Food/nutrition |
11 | Tryptophan | 193 | 13.947 | 0.004 | 1.003 | 1 | Food/nutrition |
12 | Vitamin C | 196 | 17.604 | 0.005 | 1.018 | 1 | Food/nutrition |
13 | Dairy product | 200 | 16.169 | 0.005 | 1.035 | 1 | Food/nutrition |
14 | Walnut | 197 | 14.864 | 0.005 | 1.021 | 1 | Food/nutrition |
15 | Spinach | 195 | 13.656 | 0.004 | 1.012 | 1 | Food/nutrition |
16 | Amino acid | 199 | 20.392 | 0.005 | 1.032 | 1 | Food/nutrition |
17 | Neurotransmitter | 197 | 21.038 | 0.005 | 1.023 | 1 | Food/nutrition |
18 | Antioxidant | 201 | 15.937 | 0.005 | 1.039 | 1 | Food/nutrition |
19 | Green tea | 197 | 14.022 | 0.005 | 1.021 | 1 | Food/nutrition |
20 | Yogurt | 196 | 13.918 | 0.005 | 1.016 | 1 | Food/nutrition |
21 | Help | 209 | 26.727 | 0.005 | 1.077 | 1 | Sentimental/response |
22 | Effect | 209 | 26.727 | 0.005 | 1.077 | 1 | Sentimental/response |
23 | Mood | 209 | 26.727 | 0.005 | 1.077 | 1 | Sentimental/response |
24 | Change | 209 | 26.727 | 0.005 | 1.077 | 1 | Sentimental/response |
25 | Psychology | 209 | 26.727 | 0.005 | 1.077 | 1 | Sentimental/response |
26 | Recommend | 209 | 26.727 | 0.005 | 1.077 | 1 | Sentimental/response |
27 | Side effect | 209 | 26.727 | 0.005 | 1.077 | 1 | Sentimental/response |
28 | Danger | 209 | 26.727 | 0.005 | 1.077 | 1 | Sentimental/response |
29 | Take effect | 209 | 26.727 | 0.005 | 1.077 | 1 | Sentimental/response |
30 | Positive | 209 | 26.727 | 0.005 | 1.077 | 1 | Sentimental/response |
31 | Insomnia | 207 | 25.099 | 0.005 | 1.068 | 1 | Sentimental/response |
32 | Worry | 209 | 26.727 | 0.005 | 1.077 | 1 | Sentimental/response |
33 | Postscript | 209 | 26.727 | 0.005 | 1.077 | 1 | Sentimental/response |
34 | Tiredness | 206 | 24.362 | 0.005 | 1.063 | 1 | Sentimental/response |
35 | Advantage | 207 | 24.716 | 0.005 | 1.068 | 1 | Sentimental/response |
36 | Solution | 209 | 26.727 | 0.005 | 1.077 | 1 | Sentimental/response |
37 | Poor | 205 | 23.119 | 0.005 | 1.059 | 1 | Sentimental/response |
38 | Negation | 206 | 20.610 | 0.005 | 1.062 | 1 | Sentimental/response |
39 | Reference | 208 | 25.018 | 0.005 | 1.072 | 1 | Sentimental/response |
40 | Caution | 209 | 26.727 | 0.005 | 1.077 | 1 | Sentimental/response |
41 | Food | 209 | 26.727 | 0.005 | 1.077 | 2 | Food/nutrition |
42 | Magnesium | 207 | 24.936 | 0.005 | 1.068 | 2 | Food/nutrition |
43 | Processed food | 208 | 22.250 | 0.005 | 1.071 | 2 | Food/nutrition |
44 | Vitamin B | 209 | 26.727 | 0.005 | 1.077 | 2 | Food/nutrition |
45 | Caffeine | 204 | 18.882 | 0.005 | 1.053 | 2 | Food/nutrition |
46 | Tonic | 207 | 24.751 | 0.005 | 1.068 | 2 | Food/nutrition |
47 | Sugar | 203 | 17.791 | 0.005 | 1.048 | 2 | Food/nutrition |
48 | Protein | 207 | 24.661 | 0.005 | 1.068 | 2 | Food/nutrition |
49 | Vitamin | 208 | 25.657 | 0.005 | 1.072 | 2 | Food/nutrition |
50 | Fermentation | 206 | 19.628 | 0.005 | 1.062 | 2 | Food/nutrition |
51 | Microorganism | 197 | 15.635 | 0.005 | 1.021 | 2 | Food/nutrition |
52 | Probiotics | 199 | 16.772 | 0.005 | 1.030 | 2 | Food/nutrition |
53 | Fish | 205 | 18.612 | 0.005 | 1.057 | 2 | Food/nutrition |
54 | Serotonin | 207 | 25.590 | 0.005 | 1.068 | 2 | Food/nutrition |
55 | Water | 209 | 26.727 | 0.005 | 1.077 | 2 | Food/nutrition |
56 | Coffee | 204 | 18.876 | 0.005 | 1.053 | 2 | Food/nutrition |
57 | Mineral | 206 | 24.057 | 0.005 | 1.063 | 2 | Food/nutrition |
58 | Egg | 207 | 20.579 | 0.005 | 1.066 | 2 | Food/nutrition |
59 | Additive | 207 | 21.220 | 0.005 | 1.067 | 2 | Food/nutrition |
60 | Medical supplies | 200 | 22.748 | 0.005 | 1.037 | 2 | Food/nutrition |
61 | Degenerate | 207 | 21.879 | 0.005 | 1.067 | 2 | Sentimental/response |
62 | Wellbeing | 200 | 19.383 | 0.005 | 1.036 | 2 | Sentimental/response |
63 | Purchase | 206 | 20.747 | 0.005 | 1.062 | 2 | Sentimental/response |
64 | Inconvenience | 201 | 16.336 | 0.005 | 1.039 | 2 | Sentimental/response |
65 | Production | 201 | 22.779 | 0.005 | 1.041 | 2 | Sentimental/response |
66 | Happy | 206 | 20.148 | 0.005 | 1.062 | 2 | Sentimental/response |
67 | Freedom | 204 | 20.464 | 0.005 | 1.053 | 2 | Sentimental/response |
68 | Limit | 202 | 17.696 | 0.005 | 1.044 | 2 | Sentimental/response |
69 | Interruption | 202 | 17.565 | 0.005 | 1.044 | 2 | Sentimental/response |
70 | Promote | 205 | 23.607 | 0.005 | 1.059 | 2 | Sentimental/response |
71 | Practice | 194 | 13.540 | 0.004 | 1.008 | 2 | Sentimental/response |
72 | Experience | 156 | 8.347 | 0.004 | 0.840 | 2 | Sentimental/response |
73 | Investment | 168 | 9.922 | 0.004 | 0.893 | 2 | Sentimental/response |
74 | Sharing | 198 | 18.504 | 0.005 | 1.027 | 2 | Sentimental/response |
75 | Efficiency | 202 | 20.074 | 0.005 | 1.044 | 2 | Sentimental/response |
76 | Expectation | 162 | 7.288 | 0.004 | 0.866 | 2 | Sentimental/response |
77 | Hard | 202 | 23.206 | 0.005 | 1.045 | 2 | Sentimental/response |
78 | Popularity | 201 | 23.293 | 0.005 | 1.041 | 2 | Sentimental/response |
79 | Action | 184 | 14.275 | 0.004 | 0.964 | 2 | Sentimental/response |
80 | Emphasis | 191 | 16.610 | 0.004 | 0.995 | 2 | Sentimental/response |
81 | Omega | 204 | 17.602 | 0.005 | 1.053 | 3 | Food/nutrition |
82 | Bean | 205 | 18.900 | 0.005 | 1.057 | 3 | Food/nutrition |
83 | Lactobacillus | 197 | 15.713 | 0.005 | 1.021 | 3 | Food/nutrition |
84 | Inositol | 152 | 4.112 | 0.004 | 0.820 | 3 | Food/nutrition |
85 | Enzyme | 193 | 14.602 | 0.004 | 1.003 | 3 | Food/nutrition |
86 | Salt | 191 | 12.974 | 0.004 | 0.994 | 3 | Food/nutrition |
87 | Organic farming | 195 | 15.610 | 0.004 | 1.013 | 3 | Food/nutrition |
88 | Potassium | 185 | 11.319 | 0.004 | 0.967 | 3 | Food/nutrition |
89 | Conquest | 205 | 19.866 | 0.005 | 1.058 | 3 | Sentimental/response |
90 | Liveliness | 207 | 25.082 | 0.005 | 1.068 | 3 | Sentimental/response |
91 | Removal | 206 | 24.870 | 0.005 | 1.063 | 3 | Sentimental/response |
92 | Perfection | 202 | 19.208 | 0.005 | 1.044 | 3 | Sentimental/response |
93 | Comfortable | 193 | 15.814 | 0.004 | 1.004 | 3 | Sentimental/response |
94 | Communication | 176 | 9.570 | 0.004 | 0.927 | 3 | Sentimental/response |
Date | Food | Insecurity | Health | Intake | Stress | Mental | Body | Processed Food | Vegetable | Fruit |
---|---|---|---|---|---|---|---|---|---|---|
2024-01-1w | 1388 | 1255 | 899 | 493 | 451 | 202 | 226 | 104 | 119 | 119 |
2024-01-3w | 1475 | 1309 | 863 | 597 | 455 | 246 | 239 | 85 | 114 | 123 |
2024-01-5w | 1366 | 1283 | 804 | 562 | 451 | 234 | 252 | 101 | 107 | 105 |
2024-02-2w | 1368 | 1257 | 900 | 586 | 537 | 230 | 213 | 89 | 119 | 129 |
2024-02-4w | 1328 | 1290 | 1048 | 510 | 534 | 288 | 302 | 209 | 140 | 132 |
2024-03-2w | 1341 | 1299 | 990 | 489 | 541 | 273 | 266 | 175 | 128 | 116 |
2024-03-4w | 1436 | 1307 | 1058 | 546 | 511 | 226 | 279 | 177 | 121 | 116 |
2024-04-2w | 1346 | 1414 | 1029 | 610 | 485 | 272 | 284 | 185 | 141 | 137 |
2024-04-4w | 1432 | 1337 | 964 | 496 | 535 | 232 | 233 | 153 | 110 | 116 |
2024-05-1w | 1354 | 1300 | 930 | 583 | 555 | 267 | 295 | 147 | 124 | 118 |
2024-05-3w | 1510 | 1337 | 866 | 534 | 483 | 292 | 259 | 126 | 118 | 111 |
2024-06-1w | 1480 | 1362 | 1028 | 591 | 568 | 284 | 277 | 128 | 125 | 124 |
2024-06-3w | 1492 | 1363 | 970 | 571 | 560 | 243 | 236 | 126 | 144 | 142 |
2024-07-1w | 1345 | 1391 | 1219 | 538 | 570 | 369 | 288 | 207 | 159 | 157 |
2024-07-3w | 1355 | 1414 | 1576 | 559 | 533 | 495 | 372 | 276 | 214 | 180 |
2024-07-5w | 1257 | 1344 | 1900 | 501 | 468 | 575 | 448 | 320 | 212 | 200 |
2024-08-2w | 1295 | 1430 | 1901 | 544 | 511 | 527 | 459 | 301 | 236 | 207 |
2024-08-4w | 1469 | 1376 | 1472 | 616 | 563 | 485 | 375 | 185 | 184 | 167 |
2024-09-2w | 1476 | 1374 | 1425 | 566 | 483 | 483 | 391 | 175 | 163 | 163 |
2024-09-4w | 1482 | 1413 | 1296 | 583 | 558 | 415 | 350 | 175 | 169 | 148 |
2024-10-1w | 1487 | 1368 | 1408 | 624 | 471 | 481 | 307 | 163 | 164 | 146 |
2024-10-3w | 1563 | 1477 | 1666 | 662 | 497 | 545 | 386 | 187 | 174 | 170 |
2024-11-1w | 1584 | 1367 | 1473 | 597 | 551 | 423 | 309 | 157 | 169 | 150 |
2024-11-3w | 1579 | 1475 | 1118 | 622 | 523 | 314 | 237 | 196 | 158 | 141 |
2024-12-1w | 1570 | 1522 | 1423 | 699 | 657 | 404 | 331 | 238 | 194 | 166 |
2024-12-3w | 1709 | 1706 | 1445 | 791 | 763 | 404 | 325 | 236 | 192 | 188 |
2024-12-5w | 687 | 778 | 600 | 468 | 314 | 114 | 97 | 130 | 91 | 82 |
Frequency | Frequency Percentage | |
---|---|---|
Good feeling | 98,959 | 37.52512 |
Joy | 4992 | 1.89296 |
Interest | 7964 | 3.019938 |
Positive total | 111,915 | 42.43802 |
Sadness | 27,726 | 10.54021 |
Disgust | 3978 | 1.51 |
Fear | 87,479 | 33.17 |
Pain | 27,892 | 10.58 |
Anger | 1938 | 0.73 |
Fright | 2716 | 1.03 |
Negative total | 151,799 | 57.56198 |
Total | 163,714 | 100.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, H.; Yoon, H.H.; Cho, M. Exploring Consumer Perception of Food Insecurity Using Big Data. Foods 2025, 14, 2965. https://doi.org/10.3390/foods14172965
Jung H, Yoon HH, Cho M. Exploring Consumer Perception of Food Insecurity Using Big Data. Foods. 2025; 14(17):2965. https://doi.org/10.3390/foods14172965
Chicago/Turabian StyleJung, Hyosun, Hye Hyun Yoon, and Meehee Cho. 2025. "Exploring Consumer Perception of Food Insecurity Using Big Data" Foods 14, no. 17: 2965. https://doi.org/10.3390/foods14172965
APA StyleJung, H., Yoon, H. H., & Cho, M. (2025). Exploring Consumer Perception of Food Insecurity Using Big Data. Foods, 14(17), 2965. https://doi.org/10.3390/foods14172965