Effect of Shear and pH on Heat-Induced Changes in Faba Bean Proteins
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Determination of Protein Solubility
2.3. Heat Treatment
2.4. Determination of Heat Stability
2.5. Zeta Potential and Particle Size
2.6. Attenuated Total Reflectance Fourier Transform Infrared Spectroscopic (ATR-FTIR) Analysis of FBPI Dispersions
2.7. Sodium Dodecyl Sulphide Polyacrylamide Gel Electrophoresis (SDS PAGE)
2.8. Statistics
3. Results
3.1. Solubility and Heat Stability
3.2. Zeta Particle and Particle Size
3.3. Changes in the Secondary Structure of Proteins as Impacted by Processing Conditions
3.4. Protein Partitioning
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ganesan, K.; Xu, B. Polyphenol-Rich Dry Common Beans (Phaseolus vulgaris L.) and Their Health Benefits. Int. J. Mol. Sci. 2017, 18, 2331. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Agarwal, D.K.; Kumar, S.; Reddy, Y.M.; Chintagunta, A.D.; Saritha, K.; Pal, G.; Kumar, S.J. Nutraceuticals derived from seed storage proteins: Implications for health wellness. Biocatal. Agric. Biotechnol. 2019, 17, 710–719. [Google Scholar] [CrossRef]
- Aune, D.; Chan, D.S.M.; Lau, R.; Vieira, R.; Greenwood, D.C.; Kampman, E.; Norat, T. Dietary fibre, whole grains, and risk of colorectal cancer: Systematic review and dose-response meta-analysis of prospective studies. BMJ 2011, 343, d6617. [Google Scholar] [CrossRef] [PubMed]
- Clemente, A.; Olias, R. Beneficial effects of legumes in gut health. Curr. Opin. Food Sci. 2017, 14, 32–36. [Google Scholar] [CrossRef]
- Sharma, G.; Srivastava, A.K.; Prakash, D. Phytochemicals of nutraceutical importance: Their role in health and diseases. Pharmacology 2011, 2, 408–427. [Google Scholar]
- Oliete, B.; Potin, F.; Cases, E.; Saurel, R. Modulation of the emulsifying properties of pea globulin soluble aggregates by dynamic high-pressure fluidization. Innov. Food Sci. Emerg. Technol. 2018, 47, 292–300. [Google Scholar] [CrossRef]
- Chao, D.; Aluko, R.E. Modification of the structural, emulsifying, and foaming properties of an isolated pea protein by thermal pretreatment. CyTA—J. Food 2018, 16, 357–366. [Google Scholar] [CrossRef]
- Yu, R.; Huppertz, T.; Vasiljevic, T. Impact of Reconstitution Conditions on the Solubility of Faba Bean Protein Isolate. Foods 2024, 13, 3857. [Google Scholar] [CrossRef]
- Sutariya, S.; Patel, H. Effect of hydrogen peroxide on improving the heat stability of whey protein isolate solutions. Food Chem. 2017, 223, 114–120. [Google Scholar] [CrossRef]
- Leonil, J.; Henry, G.; Jouanneau, D.; Delage, M.-M.; Forge, V.; Putaux, J.-L. Kinetics of Fibril Formation of Bovine κ-Casein Indicate a Conformational Rearrangement as a Critical Step in the Process. J. Mol. Biol. 2008, 381, 1267–1280. [Google Scholar] [CrossRef]
- Hu, Y.; Cheng, L.; Lee, S.J.; Yang, Z. Formation and characterisation of concentrated emulsion gels stabilised by faba bean protein isolate and its applications for 3D food printing. Colloids Surf. A Physicochem. Eng. Asp. 2023, 671, 131622. [Google Scholar] [CrossRef]
- Raikos, V.; Ranawana, V.; Duthie, G. Denaturation and oxidative stability of hemp seed (Cannabis sativa L.) protein isolate as affected by heat treatment. Plant Foods Hum. Nutr. 2015, 70, 304–309. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, Z.; Tan, L.; Tu, J.; Sun, Y.; Ye, Y.; Zhang, S.; Wu, L. Impact of high-speed shear homogenization pretreatment on structure, functional characteristics, and interfacial properties: A case of Rice Glutelin. Food Chem. X 2025, 25, 102219. [Google Scholar] [CrossRef]
- Zheng, B.-A.; Matsumura, Y.; Mori, T. Conformational Changes and Surface Properties of Legumin from Broad Beans in Relation to Its Thermal Aggregation. Biosci. Biotechnol. Biochem. 1993, 57, 1366–1368. [Google Scholar] [CrossRef]
- Mohammadian, M.; Madadlou, A. Technological functionality and biological properties of food protein nanofibrils formed by heating at acidic condition. Trends Food Sci. Technol. 2018, 75, 115–128. [Google Scholar] [CrossRef]
- Quintero, J.; Torres, J.D.; Corrales-Garcia, L.L.; Ciro, G.; Delgado, E.; Rojas, J. Effect of the Concentration, pH, and Ca2+ Ions on the Rheological Properties of Concentrate Proteins from Quinoa, Lentil, and Black Bean. Foods 2022, 11, 3116. [Google Scholar] [CrossRef] [PubMed]
- Bogahawaththa, D.; Chau, N.H.B.; Trivedi, J.; Dissanayake, M.; Vasiljevic, T. Impact of selected process parameters on solubility and heat stability of pea protein isolate. LWT 2019, 102, 246–253. [Google Scholar] [CrossRef]
- Lin, W.; Barbut, S. Hybrid meat batter system: Effects of plant proteins (pea, brown rice, faba bean) and concentrations (3–12%) on texture, microstructure, rheology, water binding, and color. Poult. Sci. 2024, 103, 103822. [Google Scholar] [CrossRef]
- Amat, T.; Assifaoui, A.; Buczkowski, J.; Silva, J.V.; Schmitt, C.; Saurel, R. Interplay between soluble and insoluble protein/calcium/phytic acid complexes in dispersions of faba bean and pea protein concentrates around neutral pH. Food Hydrocoll. 2024, 147, 109273. [Google Scholar] [CrossRef]
- Ruiz, G.A.; Xiao, W.; van Boekel, M.; Minor, M.; Stieger, M. Effect of extraction pH on heat-induced aggregation, gelation and microstructure of protein isolate from quinoa (Chenopodium quinoa Willd). Food Chem. 2016, 209, 203–210. [Google Scholar] [CrossRef]
- Paulsen, P.V. Isolated soy protein usage in beverages. In Functional and Speciality Beverage Technology; Woodhead Publishing: Sawston, UK, 2009; pp. 318–345. [Google Scholar]
- Wang, Q.; Jin, Y.; Xiong, Y.L. Heating-Aided pH Shifting Modifies Hemp Seed Protein Structure, Cross-Linking, and Emulsifying Properties. J. Agric. Food Chem. 2018, 66, 10827–10834. [Google Scholar] [CrossRef]
- Roux, L.L.; Chacon, R.; Dupont, D.; Jeantet, R.; Deglaire, A.; Nau, F. In vitro static digestion reveals how plant proteins modulate model infant formula digestibility. Food Res. Int. 2020, 130, 108917. [Google Scholar] [CrossRef]
- Vadivel, V.; Pugalenthi, M. Effect of Various Processing Methods on the Levels of Antinutritional Constituents and Protein Digestibility of Mucuna pruriens (L.) Dc. Var. Utilis (wall. Ex Wight) Baker Ex Burck (velvet Bean) Seeds. J. Food Biochem. 2008, 32, 795–812. [Google Scholar] [CrossRef]
- Kimura, A.; Fukuda, T.; Zhang, M.; Motoyama, S.; Maruyama, N.; Utsumi, S. Comparison of Physicochemical Properties of 7S and 11S Globulins from Pea, Fava Bean, Cowpea, and French Bean with Those of Soybean—French Bean 7S Globulin Exhibits Excellent Properties. J. Agric. Food Chem. 2008, 56, 10273–10279. [Google Scholar] [CrossRef] [PubMed]
- Utsumi, S. Plant food protein engineering. Adv. Food Nutr. Res. 1992, 36, 89–208. [Google Scholar] [CrossRef] [PubMed]
- Hall, A.E.; Moraru, C.I. Structure and function of pea, lentil and faba bean proteins treated by high pressure processing and heat treatment. LWT 2021, 152, 112349. [Google Scholar] [CrossRef]
- Alavi, F.; Chen, L.; Wang, Z.; Emam-Djomeh, Z. Consequences of heating under alkaline pH alone or in the presence of maltodextrin on solubility, emulsifying and foaming properties of faba bean protein. Food Hydrocoll. 2021, 112, 106335. [Google Scholar] [CrossRef]
- Beck, S.M.; Knoerzer, K.; Sellahewa, J.; Emin, M.A.; Arcot, J. Effect of different heat-treatment times and applied shear on secondary structure, molecular weight distribution, solubility and rheological properties of pea protein isolate as investigated by capillary rheometry. J. Food Eng. 2017, 208, 66–76. [Google Scholar] [CrossRef]
- Nivala, O.; Nordlund, E.; Kruus, K.; Ercili-Cura, D. The effect of heat and transglutaminase treatment on emulsifying and gelling properties of faba bean protein isolate. LWT 2021, 139, 110517. [Google Scholar] [CrossRef]
- Keivaninahr, F.; Gadkari, P.; Benis, K.Z.; Tulbek, M.; Ghosh, S. Prediction of emulsification behaviour of pea and faba bean protein concentrates and isolates from structure–functionality analysis. RSC Adv. 2021, 11, 12117–12135. [Google Scholar] [CrossRef]
- Dissanayake, M.; Liyanaarachchi, S.; Vasiljevic, T. Functional properties of whey proteins microparticulated at low pH. J. Dairy Sci. 2012, 95, 1667–1679. [Google Scholar] [CrossRef]
- Mediwaththe, A.; Bogahawaththa, D.; Grewal, M.K.; Chandrapala, J.; Vasiljevic, T. Structural changes of native milk proteins subjected to controlled shearing and heating. Food Res. Int. 2018, 114, 151–158. [Google Scholar] [CrossRef]
- Sharan, S.; Zotzel, J.; Stadtmüller, J.; Bonerz, D.; Aschoff, J.; Olsen, K.; Rinnan, Å.; Saint-Eve, A.; Maillard, M.-N.; Orlien, V. Effect of industrial process conditions of fava bean (Vicia faba L.) concentrates on physico-chemical and functional properties. Innov. Food Sci. Emerg. Technol. 2022, 81, 103142. [Google Scholar] [CrossRef]
- Meng, G.-T.; Ma, C.-Y. Fourier-transform infrared spectroscopic study of globulin from Phaseolus angularis (red bean). Int. J. Biol. Macromol. 2001, 29, 287–294. [Google Scholar] [CrossRef]
- Tang, C.-H.; Sun, X.; Foegeding, E.A. Modulation of physicochemical and conformational properties of kidney bean vicilin (phaseolin) by glycation with glucose: Implications for structure–function relationships of legume vicilins. J. Agric. Food Chem. 2011, 59, 10114–10123. [Google Scholar] [CrossRef]
- Carbonaro, M.; Maselli, P.; Dore, P.; Nucara, A. Application of Fourier transform infrared spectroscopy to legume seed flour analysis. Food Chem. 2008, 108, 361–368. [Google Scholar] [CrossRef]
- Wang, J.; Liu, H.; Ren, G. Near-infrared spectroscopy (NIRS) evaluation and regional analysis of Chinese faba bean (Vicia faba L.). Crop J. 2014, 2, 28–37. [Google Scholar] [CrossRef]
- Deng, G.; Rodríguez-Espinosa, M.E.; Yan, M.; Lei, Y.; Guevara-Oquendo, V.H.; Feng, X.; Zhang, H.; Deng, H.; Zhang, W.; Samadi; et al. Using advanced vibrational molecular spectroscopy (ATR-Ft/IRS and synchrotron SR-IMS) to study an interaction between protein molecular structure from biodegradation residues and nutritional properties of cool-climate adapted faba bean seeds. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 229, 117935. [Google Scholar] [CrossRef] [PubMed]
- Berrazaga, I.; Bourlieu-Lacanal, C.; Laleg, K.; Jardin, J.; Briard-Bion, V.; Dupont, D.; Walrand, S.; Micard, V. Effect of protein aggregation in wheat-legume mixed pasta diets on their in vitro digestion kinetics in comparison to “rapid” and “slow” animal proteins. PLoS ONE 2020, 15, e0232425. [Google Scholar] [CrossRef]
- Peng, W.; Kong, X.; Chen, Y.; Zhang, C.; Yang, Y.; Hua, Y. Effects of heat treatment on the emulsifying properties of pea proteins. Food Hydrocoll. 2016, 52, 301–310. [Google Scholar] [CrossRef]
- Martineau-Côté, D.; L’Hocine, L.; Tuccillo, F.; Wanasundara, J.P.D.; Stoddard, F.L. Nadathur, S., Wanasundara, J.P.D., Scanlin, L., Eds.; Chapter 8—Faba Bean as a Sustainable Plant Protein Source. In Sustainable Protein Sources, 2nd ed.; Academic Press: Cambridge, MA, USA, 2024; pp. 163–184. [Google Scholar] [CrossRef]
- Danielsson, C.E. Seed globulins of the Gramineae and Leguminosae. Biochem. J. 1949, 44, 387–400. [Google Scholar] [CrossRef] [PubMed]
- Mundi, S.; Aluko, R.E. Physicochemical and functional properties of kidney bean albumin and globulin protein fractions. Food Res. Int. 2012, 48, 299–306. [Google Scholar] [CrossRef]
- Tang, Q.; Roos, Y.H.; O’Sullivan, M.; Miao, S. A comparative study on gelation behaviours of lentil-dairy binary protein gels treated by heat and microbial transglutaminase. Food Hydrocoll. 2025, 159, 110568. [Google Scholar] [CrossRef]
- Lam, A.C.Y.; Can Karaca, A.; Tyler, R.T.; Nickerson, M.T. Pea protein isolates: Structure, extraction, and functionality. Food Rev. Int. 2018, 34, 126–147. [Google Scholar] [CrossRef]
- Liu, C.; Damodaran, S.; Heinonen, M. Effects of microbial transglutaminase treatment on physiochemical properties and emulsifying functionality of faba bean protein isolate. LWT 2019, 99, 396–403. [Google Scholar] [CrossRef]
- Dong, C.; Zhao, J.; Wang, L.; Jiang, J. New insights into the cross-linking between myosin and alkali-treated pea protein by transglutaminase under low ionic conditions: Contribution of legumin and vicilin fractions. Food Hydrocoll. 2024, 149, 109620. [Google Scholar] [CrossRef]
- Sanchez-Monge, R.; Lopez-Torrejón, G.; Pascual, C.Y.; Varela, J.; Martin-Esteban, M.; Salcedo, G. Vicilin and convicilin are potential major allergens from pea. Clin. Exp. Allergy 2004, 34, 1747–1753. [Google Scholar] [CrossRef]
- Shevkani, K.; Singh, N.; Kaur, A.; Rana, J.C. Structural and functional characterization of kidney bean and field pea protein isolates: A comparative study. Food Hydrocoll. 2015, 43, 679–689. [Google Scholar] [CrossRef]
- Mession, J.-L.; Chihi, M.L.; Sok, N.; Saurel, R. Effect of globular pea proteins fractionation on their heat-induced aggregation and acid cold-set gelation. Food Hydrocoll. 2015, 46, 233–243. [Google Scholar] [CrossRef]
- O’Kane, F.E.; Happe, R.P.; Vereijken, J.M.; Gruppen, H.; van Boekel, M.A.J.S. Characterization of Pea Vicilin. 1. Denoting Convicilin as the α-Subunit of the Pisum Vicilin Family. J. Agric. Food Chem. 2004, 52, 3141–3148. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, Q.; Chen, Q.; Sun, F.; Liu, H.; Kong, B. Synergistic modification of pea protein structure using high-intensity ultrasound and pH-shifting technology to improve solubility and emulsification. Ultrason. Sonochem. 2022, 88, 106099. [Google Scholar] [CrossRef] [PubMed]
- Taha, A.; Hu, T.; Zhang, Z.; Bakry, A.M.; Khalifa, I.; Pan, S.; Hu, H. Effect of different oils and ultrasound emulsification conditions on the physicochemical properties of emulsions stabilized by soy protein isolate. Ultrason. Sonochem. 2018, 49, 283–293. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.-M.; Ma, C.-Y. Structural characterization of globulin from common buckwheat (Fagopyrum esculentum Moench) using circular dichroism and Raman spectroscopy. Food Chem. 2007, 102, 150–160. [Google Scholar] [CrossRef]
- Shrestha, S.; van’t Hag, L.; Haritos, V.; Dhital, S. Rheological and textural properties of heat-induced gels from pulse protein isolates: Lentil, mungbean and yellow pea. Food Hydrocoll. 2023, 143, 108904. [Google Scholar] [CrossRef]
- Qu, W.; Zhang, X.; Chen, W.; Wang, Z.; He, R.; Ma, H. Effects of ultrasonic and graft treatments on grafting degree, structure, functionality, and digestibility of rapeseed protein isolate-dextran conjugates. Ultrason. Sonochem. 2018, 42, 250–259. [Google Scholar] [CrossRef]
- Wang, Q.; Johnson, J.L.; Agar, N.Y.; Agar, J.N.; Weissman, J.S. Protein aggregation and protein instability govern familial amyotrophic lateral sclerosis patient survival. PLoS Biol. 2008, 6, e170. [Google Scholar] [CrossRef]
- Hu, Y.; Cheng, L.; Gilbert, E.P.; Lee, S.J.; Yang, Z. Impact of thermosonication at neutral pH on the structural characteristics of faba bean protein isolate dispersions and their physicochemical and techno-functional properties. Food Hydrocoll. 2024, 154, 110140. [Google Scholar] [CrossRef]
- Li, C.; Tian, Y.; Liu, C.; Dou, Z.; Diao, J. Effects of heat treatment on the structural and functional properties of Phaseolus vulgaris L. protein. Foods 2023, 12, 2869. [Google Scholar] [CrossRef]
- Shen, P.; Ma, X.; Griskonyte, J.; Peng, J.; Gouzy, R.; Sagis, L.M.; Landman, J. Augmentation of faba bean globulin gelation with pre-aggregation. Food Hydrocoll. 2025, 168, 111546. [Google Scholar] [CrossRef]
- Fenimore, P.W.; Frauenfelder, H.; McMahon, B.H.; Parak, F.G. Slaving: Solvent fluctuations dominate protein dynamics and functions. Proc. Natl. Acad. Sci. USA 2002, 99, 16047–16051. [Google Scholar] [CrossRef]
- Scharnagl, C.; Reif, M.; Friedrich, J. Stability of proteins: Temperature, pressure and the role of the solvent. Biochim. Biophys. Acta 2005, 1749, 187–213. [Google Scholar] [CrossRef]
- Walstra, P. Effects of agitation on proteins. In Food Colloids: Fundamentals of Formulation; Dickinson, E., Miller, R., Eds.; Royal Society of Chemistry: Cambridge, UK, 2001; pp. 245–254. [Google Scholar]
- Oluwajuyitan, T.D.; Aluko, R.E. Structural and functional properties of fava bean legumin and vicilin protein fractions. Int. J. Food Sci. Technol. 2024, 59, 6698–6716. [Google Scholar] [CrossRef]
Protein Dispersion | Solubility (%) | Heat Stability (%) | ||
---|---|---|---|---|
Protein Concentration | pH | Control | Shear Rate | |
100 s−1 | 1000 s−1 | |||
4 | 6.8 | 99.2 A | 95.6 Aa | 101.7 Cc |
7.5 | 97.9 A | 98.8 Bb | 101.6 Cc | |
8 | 6.8 | 99.3 A | 97.9 Bb | 101.0 Cc |
7.5 | 100.8 A | 102.2 Cc | 103.1 Cc | |
SEM | 0.9 | 1.2 |
Protein Dispersion | Particle Size (nm) | Zeta Potential (mV) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Concentration | pH | Bulk | Serum | Bulk | Serum | ||||||||
Control | Heated 100 s−1 | Heated 1000 s−1 | Control | Heated 100 s−1 | Heated 1000 s−1 | Control | Heated 100 s−1 | Heated 1000 s−1 | Control | Heated 100 s−1 | Heated 1000 s−1 | ||
4 | 6.8 | 491 Ab | 262 Bc | 273 Bc | 438 Bb | 254 Bc | 247 Bc | −21.4 A1 | −21.6 A1 | −22.0 A1 | −21.2 A1 | −20.9 A1 | −21.1 A1 |
7.5 | 195 Bc | 165 Cc | 161 Cc | 198 Bc | 162 Cc | 161 Cc | −23.7 B1 | −26.7 C1 | −26.0 C1 | −24.3 B1 | −25.7 C1 | −22.9 A1 | |
8 | 6.8 | 754 Aa | 672 Aa | 457 Ab | 575 Ab | 467 Ab | 413 Ab | −21.8 A1 | −23.2 B2 | −23.4 B2 | −21.0 A1 | −20.7 A1 | −21.7 A1 |
7.5 | 232 Bc | 303 Bc | 211 Bc | 235 Bc | 291 Bc | 209 Bc | −32.5 D2 | −36.7 E3 | −36.6 E3 | −31.2 C2 | −33.2 D2 | −32.1 C2 | |
SEM | 23.7 | 0.3 |
pH | Concentration (w/w %) | Shearing Rate (s−1) | Heat Treatment | Intermolecular β-Sheets Aggregates (IEM β-S) | Native β-Sheet | Random Coil (RC) | α-Helix (AH) | β-Turn | Intramolecular Antiparallel β-Sheet Aggregates (IEM β-S) | Aggregated β-Sheets (A β-S) |
---|---|---|---|---|---|---|---|---|---|---|
Wavenumber (cm−1) | 1620–1630 | 1630–1645 | 1646–1650 | 1651–1660 | 1661–1675 | 1675–1690 | 1691–1700 | |||
6.8 | 4 | Control | No | 20.4 ± 3.0 A | 25.0 ± 2.9 A | 9.6 ± 1.0 A | 7.5 ± 0.6 B | 12.0 ± 1.7 BC | 6.9 ± 0.9 F | 16.8 ± 1.0 A |
100 | Heated | 15.9 ± 1.0 BC | 24.6 ± 1.6 A | 6.3 ± 1.5 A | 8.6 ± 1.0 AB | 12.7 ± 1.0 BC | 10.3 ± 1.8 EF | 15.8 ± 1.3 AB | ||
1000 | Heated | 12.8 ± 1.2 CD | 8.1 ± 0.5 E | 8.5 ± 0.6 A | 7.8 ± 0.4 B | 21.5 ± 2.8 A | 12.6 ± 0.3 CD | 12.2 ± 1.9 CD | ||
8 | Control | No | 13.5 ± 1.0 BC | 12.4 ± 1.1 CD | 9.2 ± 0.8 A | 10.3 ± 2.8 AB | 10.5 ± 1.1 C | 16.7 ± 1.7 AB | 12.2 ± 1.9 CD | |
100 | Heated | 15.3 ± 0.6 BC | 9.2 ± 0.1 DE | 8.4 ± 0.4 A | 9.8 ± 0.3 AB | 13.1 ± 0.1 BC | 14.0 ± 1.8 BC | 9.2 ± 1.6 E | ||
1000 | Heated | 17.3 ± 1.9 AB | 9.0 ± 0.5 DE | 8.9 ± 0.9 A | 10.1 ± 0.7 AB | 13.7 ± 0.5 BC | 11.6 ± 2.3 DE | 8.7 ± 1.4 E | ||
7.5 | 4 | Control | No | 12.1 ± 1.2 D | 15.9 ± 3.3 B | 8.2 ± 0.6 A | 8.7 ± 1.8 AB | 12.8 ± 1.0 BC | 19.7 ± 1.0 A | 12.1 ± 1.4 CD |
100 | Heated | 13.9 ± 1.5 BC | 12.8 ± 0.7 CD | 8.6 ± 0.2 A | 9.0 ± 0.5 AB | 12.7 ± 0.8 BC | 18.1 ± 1.0 A | 11.3 ± 1.2 CD | ||
1000 | Heated | 16.7 ± 1.2 AB | 14.2 ± 0.9 BC | 8.8 ± 0.5 A | 8.1 ± 1.1 B | 12.8 ± 0.7 BC | 14.1 ± 0.7 BC | 8.0 ± 0.4 F | ||
8 | Control | No | 12.8 ± 0.4 CD | 10.7 ± 0.8 DE | 7.5 ± 0.6 A | 10.0 ± 0.6 AB | 12.9 ± 0.5 BC | 17.5 ± 1.7 AB | 14.1 ± 1.2 BC | |
100 | Heated | 17.1 ± 1.7 AB | 12.6 ± 2.5 CD | 6.6 ± 0.8 A | 10.3 ± 1.5 AB | 11.1 ± 1.6 BC | 14.1 ± 1.3 BC | 10.1 ± 1.1 DE | ||
1000 | Heated | 12.6 ± 0.7 CD | 12.4 ± 2.0 CD | 7.1 ± 0.4 A | 12.1 ± 1.0 A | 14.3 ± 0.8 B | 11.7 ± 1.3 DE | 13.8 ± 1.8 BC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, R.; Huppertz, T.; Vasiljevic, T. Effect of Shear and pH on Heat-Induced Changes in Faba Bean Proteins. Foods 2025, 14, 2906. https://doi.org/10.3390/foods14162906
Yu R, Huppertz T, Vasiljevic T. Effect of Shear and pH on Heat-Induced Changes in Faba Bean Proteins. Foods. 2025; 14(16):2906. https://doi.org/10.3390/foods14162906
Chicago/Turabian StyleYu, Rui, Thom Huppertz, and Todor Vasiljevic. 2025. "Effect of Shear and pH on Heat-Induced Changes in Faba Bean Proteins" Foods 14, no. 16: 2906. https://doi.org/10.3390/foods14162906
APA StyleYu, R., Huppertz, T., & Vasiljevic, T. (2025). Effect of Shear and pH on Heat-Induced Changes in Faba Bean Proteins. Foods, 14(16), 2906. https://doi.org/10.3390/foods14162906