Comparative Analysis of Roller Milling Strategies on Wheat Flour Physicochemical Properties and Their Implications for Microwave Freeze-Dried Instant Noodles
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Analysis of Wheat Flour Properties
2.4. Preparation of Microwave Freeze-Dried NFINs
2.5. Determination of the Quality Characteristics of NFINs
2.5.1. Color
2.5.2. Rehydration Ratio
2.5.3. Cooking Loss
2.5.4. Texture Properties
2.5.5. Microstructure Observation
2.5.6. Water State Distribution
2.6. In Vitro Starch Digestibility
2.7. Organoleptic Assessment
2.8. Statistical Analysis
3. Results and Discussion
3.1. Flour Extraction Rate and Proximate Composition
3.2. Particle Size of Wheat Flour
3.3. Color, Rehydration Ratio, and Cooking Loss of NFINs
3.4. Water State and Distribution in NFINs
3.5. Textural Properties of NFINs
3.6. Sensory Evaluation
3.7. Microstructure
3.8. In Vitro Starch Digestibility of NFINs
3.9. Correlation Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Instant Noodles Association. World Instant Noodles Statistical Report. 2024. Available online: https://instantnoodles.org/en/noodles/demand/ (accessed on 5 August 2025).
- Obadi, M.; Li, Y.; Xu, B. Identifying key factors and strategies for reducing oil content in fried instant noodles. J. Food Sci. 2022, 87, 4329–4347. [Google Scholar] [CrossRef]
- Pongpichaiudom, A.; Songsermpong, S. Characterization of frying, microwave-drying, infrared-drying, and hot-air drying on protein-enriched, instant noodle microstructure, and qualities. J. Food Process. Preserv. 2018, 42, e13560. [Google Scholar] [CrossRef]
- Bustos, M.C.; Rocha-Parra, D.; Sampedro, I.; de Pascual-Teresa, S.; León, A.E. The influence of different air-drying conditions on bioactive compounds and antioxidant activity of berries. J. Agric. Food Chem. 2018, 66, 2714–2723. [Google Scholar] [CrossRef]
- Llavata, B.; Picinelli, A.; Simal, S.; Cárcel, J.A. Cider apple pomace as a source of nutrients: Evaluation of the polyphenolic profile, antioxidant and fiber properties after drying process at different temperatures. Food Chem. X 2022, 15, 100403. [Google Scholar] [CrossRef]
- Singh, R.P.; Chidambara Murthy, K.N.; Jayaprakasha, G.K. Studies on the antioxidant activity of pomegranate (Punica granatum) peel and seed extracts using in vitro models. J. Agric. Food Chem. 2002, 50, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Pallavi, B.V.; Prashanth, K.V.H.; Ashok, I.A. Impact of different milling techniques towards vitamin D3 fortification in wheat flour. J. Food Sci. Technol. 2025, 62, 751–762. [Google Scholar] [CrossRef] [PubMed]
- Horuz, E.; Bozkurt, H.; Karataş, H.; Maskan, M. Effects of hybrid (microwave-convectional) and convectional drying on drying kinetics, total phenolics, antioxidant capacity, vitamin C, color and rehydration capacity of sour cherries. Food Chem. 2017, 230, 295–305. [Google Scholar] [CrossRef]
- Goztepe, B.; Kayacan, S.; Bozkurt, F.; Tomas, M.; Sagdic, O.; Karasu, S. Drying kinetics, total bioactive compounds, antioxidant activity, phenolic profile, lycopene and β-carotene content and color quality of Rosehip dehydrated by different methods. LWT-Food Sci. Technol. 2022, 153, 112476. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, Z.; Wang, B.; Liu, J.; Zhang, M. Effect of high-voltage electrostatic field-assisted freeze-thaw pretreatment on the microwave freeze drying process of hawthorn. Dry. Technol. 2024, 42, 477–491. [Google Scholar] [CrossRef]
- Li, L.; Chen, X.; Cao, W.; Liu, W.; Duan, X.; Ren, G.; Song, C. Effects of freeze–thaw pre-treatment with different freezing methods on the microwave freeze drying of carrots. Int. J. Food Sci. Technol. 2024, 59, 7181–7192. [Google Scholar] [CrossRef]
- Duan, X.; Miao, J.; Huang, L.; Li, B. Microwave freeze-drying of button mushroom (Agaricus bisporus) based on non-volatile taste components by controlling microwave power density. Int. J. Food Sci. Technol. 2022, 57, 379–389. [Google Scholar] [CrossRef]
- Yin, Y.; Liu, W.; Li, L.; Cao, W.; Chen, J.; Zhao, L.; Sun, X.; Duan, X.; Ren, G. Quality improvement of microwave freeze-dried prepared taro balls: Synergistic addition of guar gum and sodium bicarbonate. Int. J. Food Sci. Technol. 2024, 59, 5018–5028. [Google Scholar] [CrossRef]
- Miao, J. Study on Microwave Freeze-Drying Technology of Instant Noodles. Master’s Thesis, Henan University of Science and Technology, Luoyang, China, 2023. [Google Scholar]
- AACC Method 44-15.02; Moisture Content—Air-Oven Methods. AACC International: St. Paul, MN, USA, 2010.
- NY1094.1-2006; Wheat experimental milling Part 1: Equipment, sample preparation, and tempering. Ministry of Agriculture of the People’s Republic of China: Beijing, China, 2006.
- AACC Method 46-30.01; Crude Protein—Improved Kjeldahl Method. AACC International: St. Paul, MN, USA, 2010.
- AACC Method 08-01.01; Ash—Basic Method. AACC International: St. Paul, MN, USA, 2010.
- Wang, Z.; Duan, X.; Ren, G.; Guo, J.; Ji, J.; Xu, Y.; Cao, W.; Li, L.; Zhao, M.; Ang, Y.; et al. Improving effect of disaccharides maltodextrin on preparation of egg yolk powder by microwave-assisted freeze-drying: Functional properties structural properties retention rate of active IgY. Food Chem. 2023, 404, 134626. [Google Scholar] [CrossRef]
- Liu, D.; Li, J.; Zhang, J.; Liu, X.; Wang, M.; Hemar, Y.; Regenstein, J.M.; Zhou, P. Effect of partial acidification on the ultrafiltration and diafiltration of skim milk: Physico-chemical properties of the resulting milk protein concentrates. J. Food Eng. 2017, 212, 55–64. [Google Scholar] [CrossRef]
- Wei, X.; Ren, G.; Liu, W.; Zhao, M.; Xu, D. Effects of component ratios on the properties of sweet potato–oat composite dough and the quality of its steamed cake. J. Food Sci. 2024, 89, 3248–3259. [Google Scholar] [CrossRef]
- Englyst, H.N.; Kingman, S.; Cummings, J. Classification and measurement of nutritionally important starch fractions. Eur. J. Clin. Nutr. 1992, 46, S33–S50. [Google Scholar]
- Hu, F.; Li, J.-Y.; Zou, P.-R.; Thakur, K.; Zhang, J.-G.; Khan, M.R.; Wei, Z.-J. Effects of Lycium barbarum on gluten structure, in vitro starch digestibility, and compound noodle quality. Food Biosci. 2023, 54, 102915. [Google Scholar] [CrossRef]
- Wang, J.; Li, A.; Hu, J.; Zhang, B.; Liu, J.; Zhang, Y.; Wang, S. Effect of frying process on nutritional property, physicochemical quality, and in vitro digestibility of commercial instant noodles. Front. Nutr. 2022, 9, 823432. [Google Scholar] [CrossRef]
- Sakhare, S.D.; Inamdar, A.A.; Indrani, D.; Madhu Kiran, M.H.; Venkateswara Rao, G. Physicochemical and microstructure analysis of flour mill streams and milled products. J. Food Sci. Technol. 2015, 52, 407–414. [Google Scholar] [CrossRef]
- Pojić, M.M.; Spasojević, N.B.; Atlas, M.Đ. Chemometric approach to characterization of flour mill streams: Chemical and rheological properties. Food Bioprocess Technol. 2014, 7, 1298–1309. [Google Scholar] [CrossRef]
- Nkurikiye, E.; Lou, H.; Churchill, F.; Watt, J.; Blodgett, P.; Karkle, E.; Siliveru, K.; Li, Y. Physicochemical, rheological, and baking properties of wheat flours from different mill streams. Cereal Chem. 2024, 101, 468–479. [Google Scholar] [CrossRef]
- Rosa-Sibakov, N.; Poutanen, K.; Micard, V. How does wheat grain, bran and aleurone structure impact their nutritional and technological properties? Trends Food Sci. Technol. 2015, 41, 118–134. [Google Scholar] [CrossRef]
- Bojanić, N.; Rakić, D.; Fišteš, A. Effects of Roller Milling Parameters on Wheat-Flour Damaged Starch: A Comprehensive Passage Analysis and Response-Surface Methodology Optimization. Foods 2024, 13, 3386. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Gao, J.; Jin, X.; Wang, Y.; Dong, Z.; Ying, J.; Zhou, W. Whole-wheat flour particle size influences dough properties, bread structure and in vitro starch digestibility. Food Funct. 2020, 11, 3610–3620. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Luo, L.-J.; Zhu, K.-X.; Guo, X.-N.; Peng, W.; Zhou, H.-M. Effect of vacuum mixing on the quality characteristics of fresh noodles. J. Food Eng. 2012, 110, 525–531. [Google Scholar] [CrossRef]
- Hermans, W.; Silventoinen-Veijalainen, P.; De Bondt, Y.; Langenaeken, N.A.; Nordlund, E.; Courtin, C.M. Isolating a fraction enriched in sub-aleurone gluten proteins through dry fractionation of wheat miller’s bran. Innov. Food Sci. Emerg. Technol. 2024, 96, 103775. [Google Scholar] [CrossRef]
- Chen, Y.; Li, X.; Xu, F.; Yu, Q.; Zhang, Q. Effects of inulin with different polymerisation degrees on dough rheology and water distribution in the fresh noodles. Int. J. Food Sci. Technol. 2023, 58, 5418–5429. [Google Scholar] [CrossRef]
- Wei, X.; Ren, G.; Duan, X.; Li, L.; Cao, W.; Chen, J.; Sun, X.; Zhao, L.; Liu, W. Quality enhancement of sweet potato puree oat mixed-grain noodles based on curdlan: Recommended addition level and mechanism. Int. J. Food Sci. Technol. 2024, 59, 4892–4906. [Google Scholar] [CrossRef]
- Li, L.; Wang, N.; Ma, S.; Yang, S.; Chen, X.; Ke, Y.; Wang, X. Relationship of moisture status and quality characteristics of fresh wet noodles prepared from different grade wheat flours from flour milling streams. J. Chem. 2018, 2018, 7464297. [Google Scholar] [CrossRef]
- Yao, M.; Li, M.; Dhital, S.; Tian, Y.; Guo, B. Texture and digestion of noodles with varied gluten contents and cooking time: The view from protein matrix and inner structure. Food Chem. 2020, 315, 126230. [Google Scholar] [CrossRef] [PubMed]
- Patra, P.; Sanchez, C.P.; Lanzer, M.; Schwarz, U.S. Pair cross-correlation analysis for assessing protein co-localization. Biophys. J. 2025, 124, 1–12. [Google Scholar] [CrossRef]
- Gallo, V.; Romano, A.; Masi, P. Does the presence of fibres affect the microstructure and in vitro starch digestibility of commercial Italian pasta? Food Struct. 2020, 24, 100139. [Google Scholar] [CrossRef]
- Li, J.; Kang, J.; Wang, L.; Li, Z.; Wang, R.; Chen, Z.X.; Hou, G.G. Effect of water migration between arabinoxylans and gluten on baking quality of whole wheat bread detected by magnetic resonance imaging (MRI). J. Agric. Food Chem. 2012, 60, 6507–6514. [Google Scholar] [CrossRef]
- Laleg, K.; Barron, C.; Santé-Lhoutellier, V.; Walrand, S.; Micard, V. Protein enriched pasta: Structure and digestibility of its protein network. Food Funct. 2016, 7, 1196–1207. [Google Scholar] [CrossRef]
- Sun, X.; Bu, Z.; Qiao, B.; Drawbridge, P.; Fang, Y. The effects of wheat cultivar, flour particle size and bran content on the rheology and microstructure of dough and the texture of whole wheat breads and noodles. Food Chem. 2023, 410, 135447. [Google Scholar] [CrossRef]
- Choi, S.J.; Woo, H.D.; Ko, S.H.; Moon, T.W. Confocal laser scanning microscopy to investigate the effect of cooking and sodium bisulfite on in vitro digestibility of waxy sorghum flour. Cereal Chem. 2008, 85, 65–69. [Google Scholar] [CrossRef]
- Rachman, A.; Chen, L.; Brennan, M.; Brennan, C. Effects of addition of buckwheat bran on physicochemical, pasting properties and starch digestion of buckwheat gels. Eur. Food Res. Technol. 2020, 246, 2111–2117. [Google Scholar] [CrossRef]
- Xu, L.; Wang, Z.; Feng, M.; Feng, Y.; Zhang, S.; Lu, Y.; Teng, C.; Ma, K.; Hu, X.; Li, Y.; et al. Mechanistic insights into the digestion resistance of wheat starch upon complexation with peanut skin polyphenols. Food Chem. 2025, 484, 144468. [Google Scholar] [CrossRef]
- Zhang, H.; Yin, L.; Wang, Q.; Wang, Y.; Su, J.; Li, C.; Zhou, X. Effects of freeze–thaw cycles on the physicochemical and in vitro digestibility of starch in pre-fermented frozen raw dough. Int. J. Food Sci. Technol. 2024, 59, 3297–3307. [Google Scholar] [CrossRef]
- Wu, X.; Xiao, Y.; Zhang, B.; Luo, F.; Lin, Q.; Ding, Y. Insights into the relations between particle size and physicochemical properties of starch nanoparticles prepared by combining high-speed shearing with precipitation. Starch–Stärke 2022, 74, 2100122. [Google Scholar] [CrossRef]
- Zou, S.; Wang, L.; Wang, A.; Zhang, Q.; Li, Z.; Qiu, J. Effect of moisture distribution changes induced by different cooking temperature on cooking quality and texture properties of noodles made from whole tartary buckwheat. Foods 2021, 10, 2543. [Google Scholar] [CrossRef] [PubMed]
- Bressiani, J.; Santetti, G.S.; Oro, T.; Esteres, V.; Biduski, B.; de Miranda, M.Z.; Gutkoski, L.C.; de Almeida, J.L.; Gularte, M.A. Hydration properties and arabinoxylans content of whole wheat flour intended for cookie production as affected by particle size and Brazilian cultivars. LWT 2021, 150, 111918. [Google Scholar] [CrossRef]
Sample | Flour Extraction Rate (%) | Protein Content (%) | Ash Content (%) |
---|---|---|---|
CL | 66.46 ± 0.68 c | 10.33 ± 0.06 c | 0.49 ± 0.02 bc |
2S | 65.63 ± 0.23 cd | 10.26 ± 0.04 c | 0.46 ± 0.03 bc |
2BM | 67.68 ± 0.29 b | 10.66 ± 0.05 b | 0.51 ± 0.01 ab |
CL-IRG | 64.02 ± 0.89 d | 10.30 ± 0.02 c | 0.47 ± 0.03 bc |
2S-IRG | 64.89 ± 0.12 d | 10.25 ± 0.02 c | 0.45 ± 0.01 c |
2BM-IRG | 69.80 ± 0.03 a | 10.98 ± 0.01 a | 0.54 ± 0.02 a |
Samples | D10 (μm) | D50 (μm) | D90 (μm) | D(4,3) (μm) |
---|---|---|---|---|
CL | 5.32 ± 0.03 c | 38.12 ± 0.39 b | 178.62 ± 2.21 c | 69.18 ± 0.38 d |
2S | 5.12 ± 0.08 d | 36.51 ± 0.91 c | 171.23 ± 0.42 d | 65.27 ± 0.82 e |
2BM | 5.06 ± 0.05 d | 34.85 ± 0.11 d | 177.36 ± 1.75 c | 67.33 ± 0.77 de |
CL-IRG | 6.83 ± 0.06 a | 49.43 ± 1.29 a | 234.43 ± 0.76 a | 95.04 ± 0.33 a |
2S-IRG | 5.42 ± 0.06 b | 36.59 ± 0.45 c | 173.49 ± 3.92 d | 76.42 ± 1.39 c |
2BM-IRG | 5.26 ± 0.03 c | 34.71 ± 0.13 d | 190.03 ± 0.92 b | 86.38 ± 2.20 b |
Sample | L* | a* | b* | WI | Rehydration Ratio | Cooking Loss (%) |
---|---|---|---|---|---|---|
CL | 88.32 ± 1.70 a | 0.07 ± 0.06 a | 8.87 ± 0.27 a | 85.14 ± 1.38 a | 2.62 ± 0.5 ab | 6.18 ± 0.68 bc |
2S | 87.40 ± 4.00 a | 0.16 ± 0.17 a | 8.69 ± 0.68 a | 84.62 ± 3.71 a | 2.32 ± 0.42 ab | 5.74 ± 0.59 bcd |
2BM | 87.88 ± 1.80 a | 0.15 ± 0.07 a | 9.32 ± 0.66 a | 83.65 ± 1.11 a | 2.45 ± 0.58 ab | 6.54 ± 0.11 ab |
CL-IRG | 85.15 ± 1.93 a | 0.19 ± 0.09 a | 8.48 ± 0.59 a | 84.05 ± 0.22 a | 1.85 ± 0.16 b | 5.17 ± 0.63 cd |
2S-IRG | 86.37 ± 0.07 a | 0.06 ± 0.03 a | 8.29 ± 0.31 a | 84.45 ± 1.83 a | 2.53 ± 0.63 ab | 4.71 ± 0.13 d |
2BM-IRG | 87.75 ± 2.74 a | 0.18 ± 0.16 a | 9.41 ± 0.57 a | 82.89 ± 1.93 a | 2.82 ± 0.62 a | 7.60 ± 0.57 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Zhang, P.; Li, L.; Yang, T.; Cao, W.; Liu, W.; Duan, X.; Ren, G. Comparative Analysis of Roller Milling Strategies on Wheat Flour Physicochemical Properties and Their Implications for Microwave Freeze-Dried Instant Noodles. Foods 2025, 14, 2885. https://doi.org/10.3390/foods14162885
Chen J, Zhang P, Li L, Yang T, Cao W, Liu W, Duan X, Ren G. Comparative Analysis of Roller Milling Strategies on Wheat Flour Physicochemical Properties and Their Implications for Microwave Freeze-Dried Instant Noodles. Foods. 2025; 14(16):2885. https://doi.org/10.3390/foods14162885
Chicago/Turabian StyleChen, Junliang, Peijie Zhang, Linlin Li, Tongxiang Yang, Weiwei Cao, Wenchao Liu, Xu Duan, and Guangyue Ren. 2025. "Comparative Analysis of Roller Milling Strategies on Wheat Flour Physicochemical Properties and Their Implications for Microwave Freeze-Dried Instant Noodles" Foods 14, no. 16: 2885. https://doi.org/10.3390/foods14162885
APA StyleChen, J., Zhang, P., Li, L., Yang, T., Cao, W., Liu, W., Duan, X., & Ren, G. (2025). Comparative Analysis of Roller Milling Strategies on Wheat Flour Physicochemical Properties and Their Implications for Microwave Freeze-Dried Instant Noodles. Foods, 14(16), 2885. https://doi.org/10.3390/foods14162885