A Comprehensive Review of the Rehydration of Instant Powders: Mechanisms, Influencing Factors, and Improvement Strategies
Abstract
1. Introduction
2. Rehydration Mechanism of Instant Powders
3. Factors Influencing the Rehydration Properties of Instant Powders
3.1. Chemical Composition
3.1.1. Fat
3.1.2. Protein
3.1.3. Carbohydrates
3.1.4. Inorganic Salts
3.2. Microstructure
3.2.1. Surface Properties
3.2.2. Particle Shape
3.2.3. Particle Size
3.2.4. Molecular Aggregation State
3.3. Processing Technology
3.3.1. Drying
3.3.2. Pulverization
3.3.3. Storage
4. Improvement Strategy
4.1. Particle Structure Design
4.1.1. Adding Auxiliary Materials
4.1.2. Control of Particle Size, Porosity, and Density
4.1.3. Powder Surface Modification
4.1.4. Nanocomplex
4.2. Particle Modification
4.2.1. Physical Modification
4.2.2. Chemical Modification
4.2.3. Enzymatic Modification
5. Rehydration Method Parameters
5.1. Liquid Temperature
5.2. Mechanical Stirring
6. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, C.; Zhang, M.; Xu, B.; Chen, J. Improvement of the Quality of Solid Ingredients of Instant Soups: A Review. Food Rev. Int. 2021, 39, 1333–1358. [Google Scholar] [CrossRef]
- Trimedona, N.; Rahzarni; Muchrida, Y.; Zebua, E.A.; Utama, R.S. Physicochemical properties of instant beverage powders from red dragon fruit peel extracts with maltodextrin and cocoa powder as fillers. IOP Conf. Ser. Earth Environ. Sci. 2022, 1097, 012037. [Google Scholar]
- Wang, P.; Wang, Y.W.; Du, J.; Han, C.P.; Yu, D.Y. Effect of cold plasma treatment of sunflower seed protein modification on its structural and functional properties and its mechanism. Food Hydrocoll. 2024, 155, 110175. [Google Scholar] [CrossRef]
- Ren, Y.; Jia, F.H.; Li, D. Ingredients, structure and reconstitution properties of instant powder foods and the potential for healthy product development: A comprehensive review. Food Funct. 2024, 15, 37–61. [Google Scholar] [PubMed]
- Crowley, S.V.; Kelly, A.L.; Schuck, P.; Jeantet, R.; O’Mahony, J.A. Rehydration and Solubility Characteristics of High-Protein Dairy Powders. Adv. Dairy Chem. 2016, 13, 99–131. [Google Scholar]
- Khatri, B.; Hamid; Shams, R.; Dash, K.K.; Shaikh, A.M.; Béla, K. Sustainable drying techniques for liquid foods and foam mat drying. Discov. Food 2024, 4, 166. [Google Scholar] [CrossRef]
- Hogekamp, S.; Schubert, H. Rehydration of Food Powders. Food Sci. Technol. Int. 2016, 9, 223–235. [Google Scholar]
- Nnaedozie, C.C.; Sanders, C.; Montes, E.C.; Forny, L.; Niederreiter, G.; Palzer, S.; Salman, A.D. Investigation of rehydration of food powder mixtures. Powder Technol. 2019, 353, 311–319. [Google Scholar] [CrossRef]
- Murrieta-Pazos, I.; Gaiani, C.; Galet, L.; Cuq, B.; Desobry, S.; Scher, J. Comparative study of particle structure evolution during water sorption: Skim and whole milk powders. Colloids Surf. B Biointerfaces 2011, 87, 1–10. [Google Scholar]
- Deo, D.; Singh, S.P.; Mohanty, S.; Guhathakurata, S.; Pal, D.; Mallik, S. Biomimicking of phyto-based super-hydrophobic surfaces towards prospective applications: A review. J. Mater. Sci. 2022, 57, 8569–8596. [Google Scholar]
- He, R.; Li, M.; Huang, B.; Zou, X.; Li, S.; Sang, X.; Yang, L. Comparative analysis of multi-angle structural alterations and cold-water solubility of kudzu starch modifications using different methods. Int. J. Biol. Macromol. 2024, 264, 130522. [Google Scholar] [CrossRef]
- Wallach, R.; Troygot, O.; Saguy, I.S. Modeling rehydration of porous food materials: II. The dual porosity approach. J. Food Eng. 2011, 105, 416–421. [Google Scholar]
- Mitchell, W.R.; Forny, L.; Althaus, T.; Niederreiter, G.; Palzer, S.; Hounslow, M.J.; Salman, A.D. Surface tension-driven effects in the reconstitution of food powders. Chem. Eng. Res. Des. 2019, 146, 464–469. [Google Scholar] [CrossRef]
- Baldelli, A.; Oguzlu, H.; Liang, D.Y.; Subiantoro, A.; Woo, M.W.; Pratap-Singh, A. Spray freeze drying of dairy products: Effect of formulation on dispersibility. J. Food Eng. 2022, 335, 111191. [Google Scholar] [CrossRef]
- Himmetagaoglu, A.B.; Erbay, Z. Effects of spray drying process conditions on the quality properties of microencapsulated cream powder. Int. Dairy J. 2019, 88, 60–70. [Google Scholar] [CrossRef]
- Marabi, A.; Raemy, A.; Bauwens, I.; Burbidge, A.; Wallach, R.; Saguy, I.S. Effect of fat content on the dissolution enthalpy and kinetics of a model food powder. J. Food Eng. 2008, 85, 518–527. [Google Scholar] [CrossRef]
- Nugroho, R.W.N.; Outinen, M.; Toikkanen, O.; Rojas, O.J. Particle size and fat encapsulation define the colloidal dispersibility and reconstitution of growing-up milk powder. Powder Technol. 2021, 391, 133–141. [Google Scholar] [CrossRef]
- Ma, M.T.; Wen, Y.D.; Zhang, C.C.; Xu, Z.K.; Li, H.T.; Sui, Z.Q.; Corke, H. Extraction and characterization of starch granule-associated surface and channel lipids from small-granule starches that affect physicochemical properties. Food Hydrocoll. 2022, 126, 32. [Google Scholar] [CrossRef]
- Wang, S.; Chao, C.; Cai, J.; Niu, B.; Copeland, L.; Wang, S. Starch–lipid and starch–lipid–protein complexes: A comprehensive review. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1056–1079. [Google Scholar] [CrossRef]
- Cervantes-Ramírez, J.E.; Cabrera-Ramirez, A.H.; Morales-Sánchez, E.; Rodriguez-García, M.E.; Reyes-Vega, M.D.; Ramírez-Jiménez, A.K.; Contreras-Jiménez, B.L.; Gaytán-Martínez, M. Amylose-lipid complex formation from extruded maize starch mixed with fatty acids. Carbohyd. Polym. 2020, 246, 745–765. [Google Scholar] [CrossRef]
- Ermis, E.; Tekiner, I.H.; Lee, C.C.; Ucak, S.; Yetim, H. An overview of protein powders and their use in food formulations. J. Food Process Eng. 2023, 46, 134–155. [Google Scholar] [CrossRef]
- Gao, K.; Rao, J.J.; Chen, B.C. Plant protein solubility: A challenge or insurmountable obstacle. Adv. Colloid Interfac. 2024, 324, 103074. [Google Scholar] [CrossRef]
- Crowley, S.V.; Desautel, B.; Gazi, I.; Kelly, A.L.; Huppertz, T.; O’Mahony, J.A. Rehydration characteristics of milk protein concentrate powders. J. Food Eng. 2015, 149, 105–113. [Google Scholar] [CrossRef]
- McSweeney, D.J.; Maidannyk, V.; Montgomery, S.; O’Mahony, J.A.; McCarthy, N.A. The Influence of Composition and Manufacturing Approach on the Physical and Rehydration Properties of Milk Protein Concentrate Powders. Foods 2020, 9, 236. [Google Scholar] [CrossRef] [PubMed]
- Sim, S.Y.J.; Srv, A.; Chiang, J.H.; Henry, C.J. Plant Proteins for Future Foods: A Roadmap. Foods 2021, 10, 1967. [Google Scholar] [CrossRef]
- Etzbach, L.; Gola, S.; Kullmer, F.; Acir, I.H.; Wohlt, D.; Ignatzy, L.M.; Bader-Mittermaier, S.; Schweiggert-Weisz, U. Opportunities and challenges of plant proteins as functional ingredients for food production. Proc. Natl. Acad. Sci. USA 2024, 121, e2319019121. [Google Scholar] [CrossRef]
- Kovačević, J.; Bechtold, T.; Pham, T. Plant-Based Proteins and Their Modification and Processing for Vegan Cheese Production. Macromol 2024, 4, 23–41. [Google Scholar] [CrossRef]
- Shittu, T.A.; Lawal, M.O. Factors affecting instant properties of powdered cocoa beverages. Food Chem. 2007, 100, 91–98. [Google Scholar] [CrossRef]
- Benalaya, I.; Alves, G.; Lopes, J.; Silva, L.R. A Review of Natural Polysaccharides: Sources, Characteristics, Properties, Food, and Pharmaceutical Applications. Int. J. Mol. Sci. 2024, 25, 1322. [Google Scholar] [CrossRef]
- Li, W.H.; Cao, F.; Fan, J.; Ouyang, S.H.; Luo, Q.G.; Zheng, J.M.; Zhang, G.Q. Physically modified common buckwheat starch and their physicochemical and structural properties. Food Hydrocoll. 2014, 40, 237–244. [Google Scholar] [CrossRef]
- Hussain, R.; Gaiani, C.; Aberkane, L.; Scher, J. Characterization of high-milk-protein powders upon rehydration under various salt concentrations. J. Dairy Sci. 2011, 94, 14–23. [Google Scholar] [CrossRef]
- Takano, R.; Maurer, R.; Jacob, L.; Stowasser, F.; Stillhart, C.; Page, S. Formulating Amorphous Solid Dispersions: Impact of Inorganic Salts on Drug Release from Tablets Containing Itraconazole-HPMC Extrudate. Mol. Pharmaceut. 2020, 17, 2768–2778. [Google Scholar] [CrossRef]
- Curtis, R.A.; Ulrich, J.; Montaser, A.; Prausnitz, J.M.; Blanch, H.W. Protein-protein interactions in concentrated electrolyte solutions. Biotechnol. Bioeng. 2002, 79, 367–380. [Google Scholar] [CrossRef]
- Moghaddam, S.Z.; Thormann, E. The Hofmeister series: Specific ion effects in aqueous polymer solutions. J. Colloid Interface Sci. 2019, 555, 615–635. [Google Scholar] [CrossRef]
- Hussain, R.; Gaiani, C.; Aberkane, L.; Ghanbaja, J.; Scher, J. Multiscale Characterization of Casein Micelles Under NaCl Range Conditions. Food Biophys. 2011, 6, 503–511. [Google Scholar] [CrossRef]
- Nijdam, J.J.; Langrish, T.A.G. The effect of surface composition on the functional properties of milk powders. J. Food Eng. 2006, 77, 919–925. [Google Scholar] [CrossRef]
- Gaiani, C.; Ehrhardt, J.J.; Scher, J.; Hardy, J.; Desobry, S.; Banon, S. Surface composition of dairy powders observed by X-ray photoelectron spectroscopy and effects on their rehydration properties. Colloids Surf. B Biointerfaces 2006, 49, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Ho, T.M.; Ton, T.T.; Gaiani, C.; Bhandari, B.R.; Bansal, N. Changes in surface chemical composition relating to rehydration properties of spray-dried camel milk powder during accelerated storage. Food Chem. 2021, 361, 130136. [Google Scholar] [CrossRef] [PubMed]
- Fyfe, K.N.; Kravchuk, O.; Le, T.; Deeth, H.C.; Nguyen, A.V.; Bhandari, B. Storage induced changes to high protein powders: Influence on surface properties and solubility. J. Sci. Food Agric. 2011, 91, 2566–2575. [Google Scholar] [CrossRef]
- Ji, J.; Fitzpatrick, J.; Cronin, K.; Crean, A.; Miao, S. Assessment of measurement characteristics for rehydration of milk protein based powders. Food Hydrocoll. 2016, 54, 151–161. [Google Scholar] [CrossRef]
- Mishra, S.; Rai, T. Morphology and functional properties of corn, potato and tapioca starches. Food Hydrocoll. 2006, 20, 557–566. [Google Scholar] [CrossRef]
- Burgain, J.; Petit, J.; Scher, J.; Rasch, R.; Bhandari, B.; Gaiani, C. Surface chemistry and microscopy of food powders. Prog. Sur. Sci. 2017, 92, 409–429. [Google Scholar] [CrossRef]
- Fournaise, T.; Petit, J.; Gaiani, C. Main powder physicochemical characteristics influencing their reconstitution behavior. Powder Technol. 2021, 383, 65–73. [Google Scholar] [CrossRef]
- Fyfe, K.; Kravchuk, O.; Nguyen, A.V.; Deeth, H.; Bhandari, B. Influence of dryer type on surface characteristics of milk powders. Dry. Technol. 2011, 29, 758–769. [Google Scholar] [CrossRef]
- Both, E.M.; Nuzzo, M.; Millqvist-Fureby, A.; Boom, R.M.; Schutyser, M.A.I. Morphology development during single droplet drying of mixed component formulations and milk. Food Res. Int. 2018, 109, 448–454. [Google Scholar] [CrossRef]
- Sygusch, J.; Rudolph, M. A contribution to wettability and wetting characterisation of ultrafine particles with varying shape and degree of hydrophobization. Appl. Surf. Sci. 2021, 566, 150725. [Google Scholar] [CrossRef]
- Ding, H.H.; Yu, W.; Boiarkina, I.; Depree, N.; Young, B.R. Effects of morphology on the dispersibility of instant whole milk powder. J. Food Eng. 2020, 276, 109841. [Google Scholar] [CrossRef]
- Gaiani, C.; Boyanova, P.; Hussain, R.; Pazos, I.M.; Karam, M.C.; Burgain, J.; Scher, J. Morphological descriptors and colour as a tool to better understand rehydration properties of dairy powders. Int. Dairy J. 2011, 21, 462–469. [Google Scholar] [CrossRef]
- Ding, H.H.; Wilson, D.; Yu, W.; Young, B.R. An investigation of the relative impact of process and shape factor variables on milk powder quality. Food Bioprod. Process. 2021, 126, 62–72. [Google Scholar] [CrossRef]
- Ding, H.H.; Wilson, D.I.; Yu, W.; Young, B.R.; Cui, X.H. Application of three-dimensional digital photogrammetry to quantify the surface roughness of milk powder. Foods 2023, 12, 967. [Google Scholar] [CrossRef]
- Zhao, X.; Meng, A.; Zhang, X.; Liu, H.; Guo, D.; Zhu, Y. Effects of ultrafine grinding on physicochemical, functional and surface properties of ginger stem powders. J. Sci. Food Agric. 2020, 100, 5558–5568. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.; Kaur, S.; Rasane, P.; Kumar, V.; Nanda, V. Effect of particle size on physical, techno-functional and antioxidant properties of corn silk powder. Int. J. Food Sci. Technol. 2022, 58, 2679–2685. [Google Scholar] [CrossRef]
- Camacho, M.M.; Silva-Espinoza, M.A.; Martínez-Navarrete, N. Flowability, rehydration behaviour and bioactive compounds of an orange powder product as affected by particle Size. Food Bioprocess. Technol. 2022, 15, 683–692. [Google Scholar] [CrossRef]
- Ong, X.Y.; Taylor, S.E.; Ramaioli, M. Rehydration of food powders: Interplay between physical properties and process conditions. Powder Technol. 2020, 371, 142–153. [Google Scholar] [CrossRef]
- Fitzpatrick, J.J.; van Lauwe, A.; Coursol, M.; O’Brien, A.; Fitzpatrick, K.L.; Ji, J.; Miao, S. Investigation of the rehydration behaviour of food powders by comparing the behaviour of twelve powders with different properties. Powder Technol. 2016, 297, 340–348. [Google Scholar] [CrossRef]
- Ueda, J.M.; Morales, P.; Fernández-Ruiz, V.; Ferreira, A.; Barros, L.; Carocho, M.; Heleno, S.A. Powdered Foods: Structure, Processing, and Challenges: A Review. Appl. Sci. 2023, 13, 12496. [Google Scholar] [CrossRef]
- Murrieta-Pazos, I.; Gaiani, C.; Galet, L.; Calvet, R.; Cuq, B.; Scher, J. Food powders: Surface and form characterization revisited. J. Food Eng. 2012, 112, 1–21. [Google Scholar] [CrossRef]
- Li, N.; Zhong, Q. Improving rehydration properties of spray-dried milk protein isolates by supplementing soluble caseins. Food Res. Int. 2021, 150, 110770. [Google Scholar] [CrossRef]
- Zhan, Q.; Ye, X.T.; Zhang, Y.; Kong, X.L.; Bao, J.S.; Corke, H.; Sui, Z.Q. Starch granule-associated proteins affect the physicochemical properties of rice starch. Food Hydrocoll. 2020, 101, 105504. [Google Scholar] [CrossRef]
- Gaware, T.J.; Sutar, N.; Thorat, B.N. Drying of Tomato Using Different Methods: Comparison of Dehydration and Rehydration Kinetics. Drying Technol. 2010, 28, 651–658. [Google Scholar] [CrossRef]
- Zotarelli, M.F.; Durigon, A.; da Silva, V.M.; Hubinger, M.D.; Laurindo, J.B. Rehydration of mango powders produced by cast-tape drying, freeze drying, and spray drying. Drying Technol. 2020, 40, 175–187. [Google Scholar] [CrossRef]
- Aravindakshan, S.; Nguyen, T.H.A.; Kyomugasho, C.; Buve, C.; Dewettinck, K.; Van Loey, A.; Hendrickx, M.E. The Impact of Drying and Rehydration on the Structural Properties and Quality Attributes of Pre-Cooked Dried Beans. Foods 2021, 10, 1665. [Google Scholar] [CrossRef]
- Zhang, X.; Xue, L.; Wu, Z.; Zhang, W.; Zhang, H.; Zhao, C.; Liu, D. Insight into the Effects of Drying Methods on Lanzhou Lily Rehydration. Foods 2023, 12, 1817. [Google Scholar] [CrossRef]
- Filla, J.M.; Ritsche, L.; Hinrichs, J. Whey protein-pectin complexes as fat replacer: Structural effects of spray drying. Food Hydrocoll. 2025, 169, 111585. [Google Scholar] [CrossRef]
- Dehghannya, J.; Habibi-Ghods, M. Influence of microwave power and pulse ratio on color, sensory attributes, and microstructure of potato slices during intermittent microwave—Hot-air drying. J. Agric. Food Res. 2025, 22, 102141. [Google Scholar] [CrossRef]
- Bhatta, S.; Stevanovic Janezic, T.; Ratti, C. Freeze-Drying of Plant-Based Foods. Foods 2020, 9, 87. [Google Scholar] [CrossRef]
- Calin-Sanchez, A.; Lipan, L.; Cano-Lamadrid, M.; Kharaghani, A.; Masztalerz, K.; Carbonell-Barrachina, A.A.; Figiel, A. Comparison of Traditional and Novel Drying Techniques and Its Effect on Quality of Fruits, Vegetables and Aromatic Herbs. Foods 2020, 9, 1261. [Google Scholar] [CrossRef] [PubMed]
- Kamkari, A.; Dadashi, S.; Heshmati, M.K.; Dehghannya, J.; Ramezan, Y. The effect of cold plasma pretreatment on drying efficiency of beetroot by intermittent microwave-hot air (IMHA) hybrid dryer method: Assessing drying kinetic, physical properties, and microstructure of the product. Lwt 2024, 212, 117010. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, M.; Guo, X.; Bai, X.; Zhang, J.; Huo, R.; Zhang, Y. Improving the adsorption characteristics and antioxidant activity of oat bran by superfine grinding. Food Sci. Nutr. 2022, 11, 216–227. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Wang, N.; Wang, C.; Zhang, S.; Tian, L. Effects of superfine pulverization technology on the morphology, microstructure, and physicochemical properties of apium graveolens L. root. Microsc. Res. Tech. 2022, 85, 2455–2466. [Google Scholar] [CrossRef] [PubMed]
- Lai, S.; Cui, Q.; Sun, Y.; Liu, R.; Niu, Y. Effects of Particle Size Distribution on the Physicochemical, Functional, and Structural Properties of Alfalfa Leaf Powder. Agriculture 2024, 14, 634. [Google Scholar] [CrossRef]
- Huang, Y.W.; Sun, X.X.; Guo, H.M.; He, X.S.; Jiang, J.; Zhang, G.Q.; Li, W.H. Changes in the thermal, pasting, morphological and structural characteristic of common buckwheat starch after ultrafine milling. Int. J. Food Sci. Tech. 2021, 56, 2696–2707. [Google Scholar] [CrossRef]
- Savlak, N.; Türker, B.; Yeşilkanat, N. Effects of particle size distribution on some physical, chemical and functional properties of unripe banana flour. Food Chem. 2016, 213, 180–186. [Google Scholar] [CrossRef]
- Addo, K.A.; Bi, J.F.; Chen, Q.Q.; Wu, X.Y.; Zhou, M.; Lyu, J.; Song, J.X. Understanding the caking behavior of amorphous jujube powder by powder rheometer. Lwt-Food Sci. Tech. 2019, 101, 483–490. [Google Scholar] [CrossRef]
- Chen, M.Y.; Zhang, D.J.; Dong, W.B.; Luo, Z.L.; Kang, C.; Li, H.C.; Wang, G.; Gong, J.B. Amorphous and humidity caking: A review. Chin. J. Chem. Eng. 2019, 27, 1429–1438. [Google Scholar] [CrossRef]
- Zafar, U.; Vivacqua, V.; Calvert, G.; Ghadiri, M.; Cleaver, J.A.S. A review of bulk powder caking. Powder Technol. 2017, 313, 389–401. [Google Scholar] [CrossRef]
- Hartmann, M.; Palzer, S. Caking of amorphous powders—Material aspects, modelling and applications. Powder Technol. 2011, 206, 112–121. [Google Scholar] [CrossRef]
- Juarez-Enriquez, E.; Olivas, G.I.; Zamudio-Flores, P.B.; Ortega-Rivas, E.; Perez-Vega, S.; Sepulveda, D.R. Effect of water content on the flowability of hygroscopic powders. J. Food Eng. 2017, 205, 12–17. [Google Scholar] [CrossRef]
- Sultana, A.; Aghajanzadeh, S.; Thibault, B.; Ratti, C.; Khalloufi, S. Exploring conventional and emerging dehydration technologies for slurry/liquid food matrices and their impact on porosity of powders: A comprehensive review. Compr. Rev. Food Sci. Food Saf. 2024, 23, e13347. [Google Scholar] [CrossRef]
- Da Silva, D.F.; Tziouri, D.; Ahrné, L.; Bovet, N.; Larsen, F.H.; Ipsen, R.; Hougaard, A.B. Reconstitution behavior of cheese powders: Effects of cheese age and dairy ingredients on wettability, dispersibility and total rehydration. J. Food Eng. 2020, 270, 109763. [Google Scholar] [CrossRef]
- Gaiani, C.; Schuck, P.; Scher, J.; Desobry, S.; Banon, S. Dairy powder rehydration: Influence of protein state, incorporation mode, and agglomeration. J. Dairy Sci. 2007, 90, 570–581. [Google Scholar] [CrossRef] [PubMed]
- Ben Abdelaziz, I.; Sahli, A.; Bornaz, S.; Scher, J.; Gaiani, C. Dynamic method to characterize rehydration of powdered cocoa beverage: Influence of sugar nature, quantity and size. Powder Technol. 2014, 264, 184–189. [Google Scholar] [CrossRef]
- Boiarkina, I.; Depree, N.; Yu, W.; Wilson, D.I.; Young, B.R. Rapid particle size measurements used as a proxy to control instant whole milk powder dispersibility. Dairy Sci. Technol. 2016, 96, 777–786. [Google Scholar] [CrossRef]
- Sakurai, Y.; Mise, R.; Kimura, S.-i.; Noguchi, S.; Iwao, Y.; Itai, S. Novel method for improving the water dispersibility and flowability of fine green tea powder using a fluidized bed granulator. J. Food Eng. 2017, 206, 118–124. [Google Scholar] [CrossRef]
- Rieder, A.; Franceschinis, E.; De Santi, M.; Realdon, N.; Santomaso, A.C. Reconstitution of Food Powders Granulated with Oil-in-Water Emulsions. Chem. Eng. Technol. 2020, 43, 859–868. [Google Scholar] [CrossRef]
- Xu, P.W.; Yuan, X.F.; Zhao, B. Jet milling improves the polyphenol dissolution profile and biological activities of the hemp seed shell. Food Biosci. 2024, 57, 103497. [Google Scholar] [CrossRef]
- Lee, H.; Yoo, B. Particle Agglomeration and Properties of Pregelatinized Potato Starch Powder. Gels 2023, 9, 93. [Google Scholar] [CrossRef]
- Murphy, E.G.; Regost, N.E.; Roos, Y.H.; Fenelon, M.A. Powder and Reconstituted Properties of Commercial Infant and Follow-On Formulas. Foods 2020, 9, 84. [Google Scholar] [CrossRef]
- Zaiter, A.; Becker, L.; Karam, M.C.; Dicko, A. Effect of particle size on antioxidant activity and catechin content of green tea powders. J. Food Sci. Tech. Mys. 2016, 53, 2025–2032. [Google Scholar] [CrossRef]
- Gu, Y.J.; Qian, X.J.; Sun, B.H.; Ma, S.; Tian, X.L.; Wang, X.X. Nutritional composition and physicochemical properties of oat flour sieving fractions with different particle size. Lwt-Food Sci. Technol. 2022, 154, 112757. [Google Scholar] [CrossRef]
- Azeem, M.; Mu, T.H.; Zhang, M. Influence of particle size distribution on nutritional composition, microstructural and antioxidant properties of orange and purple-fleshed sweet potato flour. J. Food Process. Pres. 2021, 45, 15283. [Google Scholar] [CrossRef]
- Hu, C.; Xiong, Z.Y.; Xiong, H.G.; Chen, L.; Zhang, M.C.; Wang, P.K.; Nawaz, A.; Walayat, N. Effects of granule size on physicochemical and digestive properties of potato powder. J. Sci. Food Agric. 2020, 100, 4005–4011. [Google Scholar] [CrossRef]
- Kim, E.H.J.; Chen, X.D.; Pearce, D. Surface composition of industrial spray-dried milk powders. 1. Development of surface composition during manufacture. J. Food Eng. 2009, 94, 163–168. [Google Scholar]
- Angelopoulou, D.; Meunier, V.; Forny, L.; Niederreiter, G.; Palzer, S.; Salman, A.D. Particle surface design for enhanced reconstitution of fat-based food powders. Powder Technol. 2021, 393, 397–404. [Google Scholar] [CrossRef]
- Ji, J.F.; Cronin, K.; Fitzpatrick, J.; Miao, S. Enhanced wetting behaviours of whey protein isolate powder: The different effects of lecithin addition by fluidised bed agglomeration and coating processes. Food Hydrocoll. 2017, 71, 94–101. [Google Scholar] [CrossRef]
- Hailu, Y.; Maidannyk, V.A.; Murphy, E.G.; McCarthy, N.A. Improving the physical and wettability properties of skim milk powders through agglomeration and lecithination. J. Food Eng. 2023, 357, 111597. [Google Scholar] [CrossRef]
- Alves, E.S.; Ferreira, C.S.R.; Souza, P.R.; Bruni, A.R.S.; Castro, M.C.; Saqueti, B.H.F.; Santos, O.O.; Madrona, G.S.; Visentainer, J.V. Freeze-dried human milk microcapsules using gum arabic and maltodextrin: An approach to improving solubility. Int. J. Biol. Macromol. 2023, 238, 124100. [Google Scholar] [CrossRef]
- Khan, K.U.; Minhas, M.U.; Badshah, S.F.; Suhail, M.; Ahmad, A.; Ijaz, S. Overview of nanoparticulate strategies for solubility enhancement of poorly soluble drugs. Life Sci. 2022, 291, 120301. [Google Scholar] [CrossRef]
- Xu, G.R.; Li, L.; Bao, X.Y.; Yao, P. Curcumin, casein and soy polysaccharide ternary complex nanoparticles for enhanced dispersibility, stability and oral bioavailability of curcumin. Food Biosci. 2020, 35, 100569. [Google Scholar] [CrossRef]
- Liu, C.R.; Xu, B.X.; McClements, D.J.; Xu, X.F.; Cui, S.; Gao, L.; Zhou, L.Y.; Xiong, L.; Sun, Q.J.; Dai, L. Properties of curcumin-loaded zein-tea saponin nanoparticles prepared by antisolvent co-precipitation and precipitation. Food Chem. 2022, 391, 133224. [Google Scholar] [CrossRef] [PubMed]
- Cao, F.; Lu, S.M.; Wang, L.; Zheng, M.Y.; Quek, S.Y. Modified porous starch for enhanced properties: Synthesis, characterization and applications. Food Chem. 2023, 415, 135765. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.Y.; Guo, X.X.; Ma, X.Y.; Xie, Z.R.; Wu, Y.W.; Ouyang, J. Physicochemical properties of a novel chestnut porous starch nanoparticle. Int. J. Biol. Macromol. 2024, 261, 129920. [Google Scholar] [CrossRef]
- Wu, W.W.; Wang, L.L.; Wang, S.Y. Amorphous silibinin nanoparticles loaded into porous starch to enhance remarkably its solubility and bioavailability in vivo. Colloids Surf. B Biointerfaces 2021, 198, 111474. [Google Scholar] [CrossRef]
- González, L.C.; Loubes, M.A.; Tolaba, M.P. Incidence of milling energy on dry-milling attributes of rice starch modified by planetary ball milling. Food Hydrocol. 2018, 82, 155–163. [Google Scholar] [CrossRef]
- Leandro, G.C.; Laroque, D.A.; Monteiro, A.R.; Carciofi, B.A.M.; Valencia, G.A. Current Status and Perspectives of Starch Powders Modified by Cold Plasma: A Review. J. Polym. Environ. 2024, 32, 510–523. [Google Scholar] [CrossRef]
- Kaur, P.; Annapure, U.S. Understanding the atmospheric cold plasma-induced modification of finger millet (Eleusine coracana) starch and its related mechanisms. Int. J. Biol. Macromol. 2024, 268, 131615. [Google Scholar] [CrossRef]
- Zhang, Z.; Ye, J.; Guo, D.; Wu, J.; Chen, L.; Luo, S.; Liu, C. Improving the instant properties of kudzu powder by complexing with different chain-length fatty acids. Lwt 2022, 167, 113821. [Google Scholar] [CrossRef]
- Wu, J.; Xu, S.; Huang, Y.; Zhang, X.; Liu, Y.; Wang, H.; Zhong, Y.; Bai, L.; Liu, C. Prevents kudzu starch from agglomeration during rapid pasting with hot water by a non-destructive superheated steam treatment. Food Chem. 2022, 386, 132819. [Google Scholar] [CrossRef]
- Falsafi, S.R.; Maghsoudlou, Y.; Rostamabadi, H.; Rostamabadi, M.M.; Hamedi, H.; Hosseini, S.M.H. Preparation of physically modified oat starch with different sonication treatments. Food Hydrocoll. 2019, 89, 311–320. [Google Scholar] [CrossRef]
- Sujka, M. Ultrasonic modification of starch—Impact on granules porosity. Ultrason. Sonochem. 2017, 37, 424–429. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.H.; Li, X.Z.; Yang, D.C.L.; Lei, A.L.; Zhang, F.S. Structural and functional properties of chestnut starch based on high-pressure homogenization. Lwt 2022, 154, 112647. [Google Scholar] [CrossRef]
- Yi, M.; Tang, X.; Liang, S.; He, R.; Huang, T.; Lin, Q.; Zhang, R. Effect of microwave alone and microwave-assisted modification on the physicochemical properties of starch and its application in food. Food Chem. 2024, 446, 138841. [Google Scholar] [CrossRef]
- Zailani, M.A.; Kamilah, H.; Husaini, A.; Seruji, A.Z.R.A.; Sarbini, S.R. Functional and digestibility properties of sago (metroxylon sagu) starch modified by microwave heat treatment. Food Hydrocoll. 2022, 122, 107042. [Google Scholar] [CrossRef]
- Zhang, W.H.; McClements, D.J.; Chen, J.; Deng, L.Z.; Cui, Y.Y.; Geng, Q.; Li, T.; Liu, C.M.; Dai, T.T. Improvement of rice protein functionality by electro-activation technology: Modulation of molecular and physicochemical properties. Food Hydrocoll. 2025, 159, 110607. [Google Scholar] [CrossRef]
- Fan, Z.J.; Xing, Y.J.; Gao, Y.; San, Y.; Zheng, L.; Wang, Z.J.; Regenstein, J.M. Soy proteins modified using cavitation jet technology. Int. J. Biol. Macromol. 2024, 278, 134988. [Google Scholar] [CrossRef] [PubMed]
- Ni, D.D.; Liao, M.J.; Ma, L.J.; Chen, F.; Liao, X.J.; Hu, X.S.; Miao, S.; Fitzpatrick, J.; Ji, J.F. Enhanced rehydration behaviors of micellar casein powder: The effects of high hydrostatic pressure treatments on micelle structures. Food Res. Int. 2021, 150, 110797. [Google Scholar] [CrossRef]
- Pietrysiak, E.; Smith, D.M.; Smith, B.M.; Ganjyal, G.M. Enhanced functionality of pea-rice protein isolate blends through direct steam injection processing. Food Chem. 2018, 243, 338–344. [Google Scholar] [CrossRef]
- Chakraborty, I.; N, P.; Mal, S.S.; Paul, U.C.; Rahman, M.H.; Mazumder, N. An Insight into the Gelatinization Properties Influencing the Modified Starches Used in Food Industry: A review. Food Bioproc. Technol. 2022, 15, 1195–1223. [Google Scholar] [CrossRef]
- Zhou, Y.; Petrova, S.P.; Edgar, K.J. Chemical synthesis of polysaccharide-protein and polysaccharide-peptide conjugates: A review. Carbohydr. Polym. 2021, 274, 118662. [Google Scholar] [CrossRef]
- De Oliveira, F.C.; Coimbra, J.S.; de Oliveira, E.B.; Zuniga, A.D.; Rojas, E.E. Food Protein-polysaccharide Conjugates Obtained via the Maillard Reaction: A Review. Crit. Rev. Food Sci. Nutr. 2016, 56, 1108–1125. [Google Scholar] [CrossRef] [PubMed]
- Panthi, R.R.; Bot, F.; O’Mahony, J.A. Influence of Glycomacropeptide on Rehydration Characteristics of Micellar Casein Concentrate Powder. Foods 2021, 10, 1960. [Google Scholar] [CrossRef] [PubMed]
- Kushwaha, R.; Singh, V.; Kaur, S.; Wani, A.A.; Kaur, D. Elucidating the impact of chemical modifications on the structure, and properties of jackfruit seed starch. Food Biosci. 2023, 56, 103097. [Google Scholar] [CrossRef]
- Huang, X.M.; Chen, L.W.; Liu, Y.C. Effects of ultrasonic and ozone modification on the morphology, mechanical, thermal and barrier properties of corn starch films. Food Hydrocoll. 2024, 147, 109376. [Google Scholar] [CrossRef]
- Li, P.; Jin, Y.; Sheng, L. Impact of microwave assisted phosphorylation on the physicochemistry and rehydration behaviour of egg white powder. Food Hydrocoll. 2020, 100, 105380. [Google Scholar] [CrossRef]
- Luo, J.; Wang, S.; Xie, H.; Ouyang, K.; Wang, C.; Yang, Y.; Xiong, H.; Zhao, Q. Improving the functional properties of rice glutelin: Impact of succinic anhydride modification. Int. J. Food Sci. Technol. 2024, 59, 2739–2750. [Google Scholar] [CrossRef]
- Glusac, J.; Fishman, A. Enzymatic and chemical modification of zein for food application. Trends Food Sci.Technol. 2021, 112, 507–517. [Google Scholar] [CrossRef]
- He, M.Y.; Li, L.J.; Wu, C.L.; Zheng, L.; Jiang, L.Z.; Huang, Y.Y.; Teng, F.; Li, Y. Effects of glycation and acylation on the structural characteristics and physicochemical properties of soy protein isolate. J. Food Sci. 2021, 86, 1737–1750. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.J.; Zhang, W.T.; Chen, Y.M.; Li, M.; Liu, C.; Wu, X.L. Effect of glycosylation modification on structure and properties of soy protein isolate: A review. J. Food Sci. 2024, 89, 4620–4637. [Google Scholar] [CrossRef] [PubMed]
- Ryan, G.; O’Regan, J.; FitzGerald, R.J. Rehydration and water sorption behaviour of bovine milk protein isolate and its associated enzymatic hydrolysates. Int. Dairy J. 2022, 128, 105323. [Google Scholar] [CrossRef]
- Chorfa, N.; Nlandu, H.; Belkacemi, K.; Hamoudi, S. Physical and Enzymatic Hydrolysis Modifications of Potato Starch Granules. Polymers 2022, 14, 2027. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; McClements, D.J.; Peng, X.; Chen, L.; Xu, Z.; Meng, M.; Ji, H.; Long, J.; Qiu, C.; Zhao, J.; et al. Research progresses on enzymatic modification of starch with 4-α-glucanotransferase. Trends Food Sci. Technol. 2023, 131, 164–174. [Google Scholar] [CrossRef]
- Li, H.; Cui, B.; Janaswamy, S.; Guo, L. Structural and functional modifications of kudzu starch modified by branching enzyme. Int. J. Food Prop. 2019, 22, 952–966. [Google Scholar] [CrossRef]
- Santoso, T.; Ho, T.M.; Vinothsankar, G.; Jouppila, K.; Chen, T.; Owens, A.; Lazarjani, M.P.; Farouk, M.M.; Colgrave, M.L.; Otter, D.; et al. Effects of Laccase and Transglutaminase on the Physicochemical and Functional Properties of Hybrid Lupin and Whey Protein Powder. Foods 2024, 13, 3679. [Google Scholar] [CrossRef]
- Cui, Q.; Sun, Y.X.; Zhou, Z.J.; Cheng, J.J.; Guo, M.R. Effects of Enzymatic Hydrolysis on Physicochemical Properties and Solubility and Bitterness of Milk Protein Hydrolysates. Foods 2021, 10, 2462. [Google Scholar] [CrossRef]
- Shahbal, N.; Jing, X.P.; Bhandari, B.; Dayananda, B.; Prakash, S. Effect of enzymatic hydrolysis on solubility and surface properties of pea, rice, hemp, and oat proteins: Implication on high protein concentrations. Food Biosci. 2023, 53, 102515. [Google Scholar] [CrossRef]
- Ren, S.H.; Du, Y.H.; Zhang, J.Y.; Zhao, K.Y.; Guo, Z.W.; Wang, Z.J. Commercial Production of Highly Rehydrated Soy Protein Powder by the Treatment of Soy Lecithin Modification Combined with Alcalase Hydrolysis. Foods 2024, 13, 1800. [Google Scholar] [CrossRef]
- Zhang, A.Q.; Li, X.Y.; Liu, B.H.; Yin, Y.Q.; Zhang, H.L.; Zhang, Y.H. Comprehensive application possibility: Construction hydrophilic, amphiphilic and hydrophobic system of modified zein by enzymatic or cysteine modification. Food Hydrocoll. 2023, 135, 108159. [Google Scholar] [CrossRef]
- Magalhaes, I.S.; Guimaraes, A.D.B.; Tribst, A.A.L.; de Oliveira, E.B.; Junior, B.R.D.L. Ultrasound-assisted enzymatic hydrolysis of goat milk casein: Effects on hydrolysis kinetics and on the solubility and antioxidant activity of hydrolysates. Food Res. Int. 2022, 157, 155745. [Google Scholar] [CrossRef]
- Galet, L.; Vu, T.O.; Oulahna, D.; Fages, J. The Wetting Behaviour and Dispersion Rate of Cocoa Powder in Water. Food Bioprod. Proc. 2004, 82, 298–303. [Google Scholar] [CrossRef]
- McCarthy, N.A.; Kelly, P.M.; Maher, P.G.; Fenelon, M.A. Dissolution of milk protein concentrate (MPC) powders by ultrasonication. J. Food Eng. 2014, 126, 142–148. [Google Scholar] [CrossRef]
- Guo, L.; Li, J.; Yuan, Y.; Gui, Y.; Zou, F.; Lu, L.; Cui, B. Structural and functional modification of kudzu starch using α-amylase and transglucosidase. Int. J. Biol. Macromol. 2021, 169, 67–74. [Google Scholar] [CrossRef]
- Li, H.; Zhao, T.; Li, H.; Yu, J. Effect of Heat Treatment on the Property, Structure, and Aggregation of Skim Milk Proteins. Front. Nutr. 2021, 8, 714869. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Chen, F. Plant Protein Heat-Induced Gels: Formation Mechanisms and Regulatory Strategies. Coatings 2023, 13, 1899. [Google Scholar] [CrossRef]
- Schober, C.; Fitzpatrick, J.J. Effect of vortex formation on powder sinkability for reconstituting milk powders in water to high solids content in a stirred-tank. J. Food Eng. 2005, 71, 1–8. [Google Scholar] [CrossRef]
- Gaudel, N.; M’Be, U.; de Richter, S.K.; Fournaise, T.; Burgain, J.; Jenny, M.; Petit, J.; Gaiani, C. Effect of stirring speed and particle size on couscous powder reconstitution. Powder Technol. 2023, 430, 119026. [Google Scholar] [CrossRef]
- Jeantet, R.; Schuck, P.; Six, T.; Andre, C.; Delaplace, G. The influence of stirring speed, temperature and solid concentration on the rehydration time of micellar casein powder. Dairy Sci. Technol. 2009, 90, 225–236. [Google Scholar] [CrossRef]
Surface Properties | Surface Atomic Ratio | Instant Powder | |
---|---|---|---|
C/O Ratio | C/Other Carbon Bond Ratio | ||
Hydrophilic | 0~2 | 0~1 | Sugar, latex, xanthan gum, pectin, lactose, and agar gum |
Neutral | 2~4 | 1~2 | Corn flour, instant coffee, flour, semolina, pea fiber, instant mashed potatoes, yeast, and skim milk |
Hydrophobic | 4~7 | 2~5 | Cocoa, hazelnut, whole milk, whey protein, casein, and concentrated dairy products |
Methods | Advantages | Disadvantages | Powder Properties | References |
---|---|---|---|---|
Spray Drying | Continuous, rapid, economical | Heat Damage, Low Porosity | Spherical, Dense, Poorly Soluble | [64] |
Hot-Air Drying (Convective Drying) | Simple, low-cost | Time-Consuming, High Damage | Irregular, Hard, Poor Rehydration | [65] |
Freeze-Drying (Lyophilization) | Maximum quality and nutrient retention | Expensive, Very Slow | Porous, Soluble, Optimal Quality | [66] |
Vacuum Drying | Reduced heat damage, good quality | Slow, Prone to Collapse | Good Quality, Moderate Porosity | [67] |
Combined Drying Technologies | Synergistic: faster and higher quality | Complex, high-cost, difficult control | Tunable properties; often engineered for high porosity and solubility | [68] |
Instant Powder | Particle Size | References |
---|---|---|
Corn silk powder | 364.4 μm | [52] |
Green tea powder | 100~180 μm | [89] |
Oat powder | 132~180 μm | [90] |
Orange powder | <75 μm | [91] |
Potato powder | <62 μm | [92] |
Banana powder | >212 μm | [73] |
Ginger stalk powder | <10 μm | [51] |
SMP, SSMP, WMP | 160, 180, and 220 μm | [48] |
Methods | Sample | Effects | References |
---|---|---|---|
Ball milling | Rice starch | Water solubility index and swelling power are improved. | [104] |
Extrusion and shearing | Kudzu starch | The granular structure of starch is destroyed, and the rehydration performance is improved | [107] |
Heat treatment | Cassava starch | The agglomeration rate is significantly reduced from 42.2% to 2.97%, and the particle structure remains basically unaffected | [108] |
Ultrasound | Oat starch | Ultrasound treatment increases amylose content, swelling power, solubility, light transmittance, water retention capacity, and lipid retention capacity | [109] |
Ultrasound | Rice, corn, wheat and potato starches | Specific surface area and porosity are increased | [110] |
High-pressure homogenization | Chestnut starch | Solubility, swelling power, and transparency are improved | [111] |
Microwave | Sago starch | The amylose content and double helix degree are increased, the morphology of starch granules is changed, and water solubility is enhanced | [112,113] |
Cold plasma treatment | Millet starch | Starch molecules are depolymerized, affecting amylose content, crystal structure, water solubility, and thermal properties. Water solubility is significantly increased by 6.7 times | [105,106] |
Electrical activation | Rice protein | Large aggregates are depolymerized, particle size is reduced, specific surface area is increased, surface charge is enhanced, and the dispersibility index is increased from 1.89% to 49.56% | [114] |
Cavitation jet technology | Soy protein | The cavitation effect generated by cavitation jet changes the structural composition of protein aggregates, reduces particle size, and improves solubility | [115] |
High hydrostatic pressure treatments | Natural micellar casein | Porous powders with loose structures are produced, thereby significantly improving wetting, dispersion, and dissolution behaviors | [116] |
Direct steam injection processing | Pea-rice protein isolate blends | High-molecular-weight aggregates are destroyed, surface hydrophobicity is reduced, disulfide bonds are formed, and the solubility of the blends is improved | [117] |
Methods | Sample | Effects | References |
---|---|---|---|
Acid modification (hydrochloric acid/malic acid) | Jackfruit seed starch | The amylose content of acid-modified starch slightly decreases, while its swelling power and water-binding capacity decrease, and solubility increases. | [122] |
Ozonation | Corn starch | Ozonation leads to an increase in the number of carbonyl and carboxyl groups, significantly affecting gelatinization properties, gel texture, water absorption rate, and solubility index. | [123] |
pH cycling | MPI | The cross-linking of casein micelles on the powder surface decreases, and surface porosity increases. With the increase in MPI content, the rehydration performance is improved. | [58] |
Phosphorylation | Egg white protein powder | The electronegativity increases and surface hydrophobicity decreases. The particle size decreases while the specific surface area increases. The particles become looser and more porous. Phosphorylated proteins have higher solubility than non-phosphorylated proteins. | [124] |
Succinylation | Rice protein | By derivatizing the ε-amino groups of lysine residues, the protein surface has small pits and protrusions, and solubility is enhanced. | [125] |
Cross-linking, deamidation | Zein | Water solubility is enhanced. | [126] |
Glycosylation and acylation | Soy protein isolate | Water solubility is enhanced, the viscosity coefficient (k) decreases, while the flow index (n) value increases. | [127,128] |
Methods | Sample | Effects | References |
---|---|---|---|
Pullulanase | Potato starch | Forms low-molecular-weight hydrolysates, with increased solubility. | [130] |
4-α-glucanotransferase | Native starch | Alters amylose content, branch chain length distribution, and molecular weight distribution. | [131] |
Maltogenic amylase | Kudzu starch | Reduces amylose content and molecular weight, but increases the proportion of short chains and branch chain density, decreases crystallinity, and enhances solubility. | [132] |
Laccase and transglutaminase | Mixed lupin and whey protein powder | Improves protein solubility, emulsion stability, and foaming capacity of the mixture. | [133] |
Alcalase, Protamex, Flavourzyme | MPC | Significantly increases solubility and degree of hydrolysis. | [134] |
Alcalase | Pea, rice, hemp, and oat proteins | Significantly increases solubility and degree of hydrolysis. | [135] |
Alcalase | Soy protein isolate | Destroys the structure of soy protein, changes its physicochemical properties, and improves its functional characteristics. The wetting time and dispersion time are reduced, and solubility is increased. | [136] |
Enzymatic hydrolysis and cysteine modification | Zein | Increases hydrophilicity. | [137] |
Alcalase, Brauzyn, Flavourzyme | Goat milk cheese protein | The hydrolysates exhibit high solubility. | [138] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, H.; Zhang, N.; Xie, L.; Li, G.; Chen, L.; Liao, Z. A Comprehensive Review of the Rehydration of Instant Powders: Mechanisms, Influencing Factors, and Improvement Strategies. Foods 2025, 14, 2883. https://doi.org/10.3390/foods14162883
Jiang H, Zhang N, Xie L, Li G, Chen L, Liao Z. A Comprehensive Review of the Rehydration of Instant Powders: Mechanisms, Influencing Factors, and Improvement Strategies. Foods. 2025; 14(16):2883. https://doi.org/10.3390/foods14162883
Chicago/Turabian StyleJiang, Hedong, Nanhai Zhang, Liuming Xie, Gonglong Li, Lihua Chen, and Zhenggen Liao. 2025. "A Comprehensive Review of the Rehydration of Instant Powders: Mechanisms, Influencing Factors, and Improvement Strategies" Foods 14, no. 16: 2883. https://doi.org/10.3390/foods14162883
APA StyleJiang, H., Zhang, N., Xie, L., Li, G., Chen, L., & Liao, Z. (2025). A Comprehensive Review of the Rehydration of Instant Powders: Mechanisms, Influencing Factors, and Improvement Strategies. Foods, 14(16), 2883. https://doi.org/10.3390/foods14162883