Transcriptome Analysis Reveals Quality Improvement Mechanisms in Ratoon Rice
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Experimental Design
2.3. Determination of Germination Potential and Germination Rate
2.4. Determination of Chalky Grain Rate and Chalkiness Degree
2.5. Determination of SOD Activity
2.6. Determination of CAT Activity
2.7. Determination of Transcriptomics
2.8. Statistical Analysis
3. Results
3.1. Comparison of Germination Potential (GP) and Germination Rate (GR) Between Main Rice and Ratoon Rice
3.2. Comparison of Chalky Grain Rate and Chalkiness Degree Between Main Rice and Ratoon Rice
3.3. Comparison of Superoxide Dismutase (SOD) and Catalase (CAT) Activities Between Main Rice and Ratoon Rice
3.4. Transcriptome Analysis
3.4.1. Quality Analysis of Transcriptome Sequencing
3.4.2. Analysis of Differentially Expressed Genes (DEGs)
3.4.3. Effects of Related Genes on Germination of Main Rice and Ratoon Rice
3.4.4. Effects of Related Genes on Chalkiness of Main Rice and Ratoon Rice
Indicator | Gene Name | 1 p-Value (19X) | 1 p-Value (NJXM) | 2 Fold Change (19X) | 2 Fold Change (NJXM) |
---|---|---|---|---|---|
Germination | qLTG3-1 (Os03g0103300) | 0.000000527 | 0.000000841 | 2.24 | 2.04 |
OsLOX2 (Os03g0738600) | 0.000000000 | 0.000000000 | 5.92 | 9.26 | |
OsSAMDC2 (OS02g0611200) | 0.000000000 | 0.000010445 | 2.68 | 2.57 | |
OsSAMDC4 (OS09g0424300) | 0.000000000 | 0.000035246 | 3.87 | 3.33 | |
Chalkiness | GAD3 (Os03g0236200) | 0.000000003 | 0.000000175 | 2.21 | 2.38 |
prx86 (Os06g0547400) | 0.000000061 | 0.000000000 | 2.06 | 2.55 | |
POX8.1 (OS07G0677100) | 0.000002788 | 0.000000667 | 5.93 | 5.69 | |
Perox4 (OS07G0677200) | 0.000000000 | 0.000000046 | 9.88 | 3.59 | |
OsEBP89 (Os03g0182800) | 0.000000000 | 0.000000001 | 0.24 | 0.27 | |
OsNCED3 (Os03g0645900) | 0.000000000 | 0.000000001 | 3.91 | 3.96 |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, W.; Luo, X.; Zhan, Z.; Shu, Z.; Wang, P.; Ding, W.; Zeng, X.; Shi, Y.-C. Comparison of the Structural and Functional Properties of Starches in Rice from Main and Ratoon Crops. J. Cereal Sci. 2021, 99, 103233. [Google Scholar] [CrossRef]
- Lin, F.; Rensing, C.; Pang, Z.; Zou, J.; Lin, S.; Letuma, P.; Zhang, Z.; Lin, W. Metabolomic Analysis Reveals Differential Metabolites and Pathways Involved in Grain Chalkiness Improvement under Rice Ratooning. Field Crops Res. 2022, 283, 108521. [Google Scholar] [CrossRef]
- Huang, X.; Yang, J.; Zhou, W.; Zhang, G.; Liao, B.; Wahab, A.; Yi, Z.; Tu, N. Comparison of the Source–Sink Characteristics between Main Season and Ratooning in Rice (Oryza sativa L.). Agronomy 2023, 13, 1731. [Google Scholar] [CrossRef]
- Zhang, W.; Zhan, Z.; Wang, H.; Shu, Z.; Wang, P.; Zeng, X. Structural, Pasting and Sensory Properties of Rice from Main and Ratoon Crops. Int. J. Food Prop. 2021, 24, 965–975. [Google Scholar] [CrossRef]
- Wang, X.; Liu, X.; Su, Y.; Shen, H. Rice Responses to Abiotic Stress: Key Proteins and Molecular Mechanisms. Int. J. Mol. Sci. 2025, 26, 896. [Google Scholar] [CrossRef]
- Yang, W.; Mo, X.; Zhang, Y.; Liu, Z.; Tang, Q.; Xu, J.; Pan, S.; Wang, Y.; Chen, G.; Hu, Y. Appropriate Stubble Height Can Effectively Improve the Rice Quality of Ratoon Rice. Foods 2024, 13, 1392. [Google Scholar] [CrossRef]
- Yue, W.; Li, Y. Mapping the Ratoon Rice Suitability Region in China Using Random Forest and Recursive Feature Elimination Modeling. Field Crops Res. 2023, 301, 109016. [Google Scholar] [CrossRef]
- Kuang, N.; Zheng, H.; Tang, Q.; Chen, Y.; Wang, X.; Luo, Y. Amylose Content, Morphology, Crystal Structure, and Thermal Properties of Starch Grains in Main and Ratoon Rice Crops. Phyton 2021, 90, 1119–1230. [Google Scholar] [CrossRef]
- Ye, M.; Song, Y.; Baerson, S.R.; Long, J.; Wang, J.; Pan, Z.; Lin, W.; Zeng, R. Ratoon Rice Generated from Primed Parent Plants Exhibit Enhanced Herbivore Resistance. Plant Cell Environ. 2017, 40, 779–787. [Google Scholar] [CrossRef] [PubMed]
- Deng, F.; Yang, F.; Li, Q.; Zeng, Y.; Li, B.; Zhong, X.; Lu, H.; Wang, L.; Chen, H.; Chen, Y.; et al. Differences in Starch Structural and Physicochemical Properties and Texture Characteristics of Cooked Rice between the Main Crop and Ratoon Rice. Food Hydrocoll. 2021, 116, 106643. [Google Scholar] [CrossRef]
- Xie, W.; Ata-Ul-Karim, S.T.; Shiotsu, F.; Kato, Y. Crop Productivity in a Rice–Ratoon-Rice System vs. a Single-Crop System in Central Japan. Field Crops Res. 2023, 303, 109140. [Google Scholar] [CrossRef]
- Alizadeh, M.R.; Habibi, F. A Comparative Study on the Quality of the Main and Ratoon Rice Crops. J. Food Qual. 2016, 39, 669–674. [Google Scholar] [CrossRef]
- Liang, R.; Su, Y.; Qin, X.; Gao, Z.; Fu, Z.; Qiu, H.; Lin, X.; Zhu, J. Comparative Transcriptomic Analysis of Two Cucumis melo var. saccharinus Germplasms Differing in Fruit Physical and Chemical Characteristics. BMC Plant Biol. 2022, 22, 193. [Google Scholar] [CrossRef]
- Lin, F.; Huang, J.; Lin, S.; Letuma, P.; Xie, D.; Rensing, C.; Lin, W. Physiological and transcriptomic analysis reveal the regulatory mechanism underlying grain quality improvement induced by rice ratooning. J. Sci. Food Agric. 2023, 103, 3569–3578. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Zhang, Q.; Xiao, W.; Chen, D.; Hu, J.; Gao, N.; Huang, M.; Ye, X. Comparative Transcriptomic Analysis Reveals the Important Process in Two Rice Cultivars with Differences in Cadmium Accumulation. Ecotoxicol. Environ. Saf. 2023, 252, 114629. [Google Scholar] [CrossRef] [PubMed]
- Lin, F.; Lin, S.; Zhang, Z.; Lin, W.; Rensing, C.; Xie, D. GF14f Gene Is Negatively Associated with Yield and Grain Chalkiness under Rice Ratooning. Front. Plant Sci. 2023, 14, 1112146. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.; Bai, D.; Wang, X.; Dou, G.; Lv, J.; Bao, Y.; Wang, N.; Yu, L.; Zhou, Y.; Zhang, J.; et al. Identification of Candidate Genes for Hypoxia Tolerance in Rice by Genome-Wide Association Analysis and Transcriptome Sequencing. Rice 2025, 18, 10. [Google Scholar] [CrossRef]
- Chen, J.; Wang, W.; Zhu, L. Amino Acid Transporter as a Potential Carrier Protein for the Root-to-Shoot Translocation of Polybrominated Diphenyl Ethers in Rice. Environ. Sci. Technol. 2023, 57, 9722–9731. [Google Scholar] [CrossRef]
- Yao, Q.; Zheng, X.; Zhou, G.; Zhang, J. SGR-YOLO: A Method for Detecting Seed Germination Rate in Wild Rice. Front. Plant Sci. 2024, 14, 1305081. [Google Scholar] [CrossRef]
- Qian, J.; Mo, X.; Wang, Y.; Li, Q. Seed Priming with 2,4-Epibrassionolide Enhances Seed Germination and Heat Tolerance in Rice by Regulating the Antioxidant System and Plant Hormone Signaling Pathways. Antioxidants 2025, 14, 242. [Google Scholar] [CrossRef]
- Huang, J.; Pan, Y.; Chen, H.; Zhang, Z.; Fang, C.; Shao, C.; Amjad, H.; Lin, W.; Lin, W. Physiochemical mechanisms involved in the improvement of grain-filling, rice quality mediated by related enzyme activities in the ratoon cultivation system. Field Crops Res. 2020, 258, 107962. [Google Scholar] [CrossRef]
- Thongnok, S.; Siripornadulsil, W.; Siripornadulsil, S. Responses to Arsenic Stress of Rice Varieties Coinoculated with the Heavy Metal-Resistant and Rice Growth-Promoting Bacteria Pseudomonas Stutzeri and Cupriavidus Taiwanensis. Plant Physiol. Biochem. 2022, 191, 42–54. [Google Scholar] [CrossRef]
- Zhao, H.; Zhang, R.; Yan, X.; Fan, K. Superoxide Dismutase Nanozymes: An Emerging Star for Anti-Oxidation. J. Mater. Chem. B 2021, 9, 6939–6957. [Google Scholar] [CrossRef] [PubMed]
- Chioti, V.; Zervoudakis, G. Is Root Catalase a Bifunctional Catalase-Peroxidase? Antioxidants 2017, 6, 39. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.-X.; Zhu, F.-Y.; Gao, B.; Ma, K.-L.; Zhang, Y.; Fernie, A.R.; Luo, J.; Yi, S.-Y.; Liu, Y.-X.; Xu, Z.-H.; et al. Full-Length Transcript-Based Proteogenomics of Rice Improves its Genome and Proteome Annotation. Plant Physiol. 2020, 183, 915–931. [Google Scholar] [CrossRef] [PubMed]
- Fujino, K.; Sekiguchi, H.; Matsuda, Y.; Sugimoto, K.; Ono, K.; Yano, M. Molecular Identification of a Major Quantitative Trait Locus, qLTG3–1, Controlling Low-Temperature Germinability in Rice. Proc. Natl. Acad. Sci. USA 2008, 105, 12623–12628. [Google Scholar] [CrossRef]
- Huang, J.; Cai, M.; Long, Q.; Liu, L.; Lin, Q.; Jiang, L.; Chen, S.; Wan, J. OsLOX2, a Rice Type I Lipoxygenase, Confers Opposite Effects on Seed Germination and Longevity. Transgenic Res. 2014, 23, 643–655. [Google Scholar] [CrossRef]
- Chen, M.; Chen, J.; Fang, J.; Guo, Z.; Lu, S. Down-Regulation of S-Adenosylmethionine Decarboxylase Genes Results in Reduced Plant Length, Pollen Viability, and Abiotic Stress Tolerance. Plant Cell Tissue Organ Cult. 2014, 116, 311–322. [Google Scholar] [CrossRef]
- Qin, Y.; Kim, S.-M.; Sohn, J.-K. Genetic Analysis and QTL Mapping for Grain Chalkiness Characteristics of Brown Rice (Oryza sativa L.). Genes Genom. 2009, 31, 155–164. [Google Scholar] [CrossRef]
- Du, Y.; Long, C.; Deng, X.; Zhang, Z.; Liu, J.; Xu, Y.; Liu, D.; Zeng, Y. Physiological Basis of High Nighttime Temperature-Induced Chalkiness Formation during Early Grain-Filling Stage in Rice (Oryza sativa L.). Agronomy 2023, 13, 1475. [Google Scholar] [CrossRef]
- El-kereamy, A.; Bi, Y.-M.; Ranathunge, K.; Beatty, P.H.; Good, A.G.; Rothstein, S.J. The Rice R2R3-MYB Transcription Factor OsMYB55 Is Involved in the Tolerance to High Temperature and Modulates Amino Acid Metabolism. PLoS ONE 2012, 7, e52030. [Google Scholar] [CrossRef] [PubMed]
- Suriyasak, C.; Harano, K.; Tanamachi, K.; Matsuo, K.; Tamada, A.; Iwaya-Inoue, M.; Ishibashi, Y. Reactive Oxygen Species Induced by Heat Stress during Grain Filling of Rice (Oryza sativa L.) Are Involved in Occurrence of Grain Chalkiness. J. Plant Physiol. 2017, 216, 52–57. [Google Scholar] [CrossRef] [PubMed]
- Sahu, P.K.; Jayalakshmi, K.; Tilgam, J.; Gupta, A.; Nagaraju, Y.; Kumar, A.; Hamid, S.; Singh, H.V.; Minkina, T.; Rajput, V.D.; et al. ROS Generated from Biotic Stress: Effects on Plants and Alleviation by Endophytic Microbes. Front. Plant Sci. 2022, 13, 1042936. [Google Scholar] [CrossRef]
- The UniProt, C.o.n.s.o.r.t.i.u.m.; Bateman, A.; Martin, M.-J.; Orchard, S.; Magrane, M.; Agivetova, R.; Ahmad, S.; Alpi, E.; Bowler-Barnett, E.H.; Britto, R.; et al. UniProt: The Universal Protein Knowledgebase in 2021. Nucleic Acids Res. 2021, 49, D480–D489. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, J.; Chen, S.; Ma, X.; Wei, H.; Chen, C.; Gao, N.; Zou, Y.; Kong, D.; Li, T.; et al. An APETALA2/Ethylene Responsive Factor, OsEBP89 Knockout Enhances Adaptation to Direct-Seeding on Wet Land and Tolerance to Drought Stress in Rice. Mol. Genet. Genom. 2020, 295, 941–956. [Google Scholar] [CrossRef]
- Xie, Q.; Xu, J.; Huang, K.; Su, Y.; Tong, J.; Huang, Z.; Huang, C.; Wei, M.; Lin, W.; Xiao, L. Dynamic Formation and Transcriptional Regulation Mediated by Phytohormones during Chalkiness Formation in Rice. BMC Plant Biol. 2021, 21, 308. [Google Scholar] [CrossRef]
- Chen, Y.; Xiang, Z.; Liu, M.; Wang, S.; Zhang, L.; Cai, D.; Huang, Y.; Mao, D.; Fu, J.; Chen, L. ABA Biosynthesis Gene OsNCED3 Contributes to Preharvest Sprouting Resistance and Grain Development in Rice. Plant Cell Environ. 2023, 46, 1384–1401. [Google Scholar] [CrossRef]
1 Sample | 2 Raw Reads | 3 Clean Reads | 4 Clean Base (G) | 5 Q20 (%) | 6 Q30 (%) | 7 GC Content % |
---|---|---|---|---|---|---|
19X1-1 | 56,681,894 | 53,736,944 | 8.06 | 97.69 | 94.04 | 54.95 |
19X1-2 | 54,061,666 | 50,933,190 | 7.64 | 97.79 | 94.27 | 54.60 |
19X1-3 | 50,917,028 | 48,219,568 | 7.23 | 97.71 | 94.04 | 54.21 |
19X2-1 | 53,420,054 | 50,697,788 | 7.60 | 97.82 | 94.27 | 54.11 |
19X2-2 | 51,073,464 | 48,442,364 | 7.27 | 97.66 | 94.94 | 54.86 |
19X2-3 | 53,402,892 | 50,456,662 | 7.57 | 97.84 | 94.20 | 53.51 |
NJXM1-1 | 58,398,026 | 55,019,038 | 8.25 | 97.71 | 94.07 | 54.51 |
NJXM1-2 | 52,317,108 | 49,315,350 | 7.40 | 97.81 | 94.17 | 54.75 |
NJXM1-3 | 55,880,982 | 52,427,952 | 7.86 | 97.70 | 94.07 | 54.53 |
NJXM2-1 | 55,335,660 | 52,339,804 | 7.85 | 97.74 | 94.13 | 55.56 |
NJXM2-2 | 56,037,472 | 53,674,624 | 8.05 | 97.86 | 94.28 | 53.29 |
NJXM2-3 | 51,332,944 | 48,764,212 | 7.31 | 97.71 | 94.05 | 55.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, F.; Ning, L.; Qiang, Z.; Fu, X.; Qu, C. Transcriptome Analysis Reveals Quality Improvement Mechanisms in Ratoon Rice. Foods 2025, 14, 2873. https://doi.org/10.3390/foods14162873
Xue F, Ning L, Qiang Z, Fu X, Qu C. Transcriptome Analysis Reveals Quality Improvement Mechanisms in Ratoon Rice. Foods. 2025; 14(16):2873. https://doi.org/10.3390/foods14162873
Chicago/Turabian StyleXue, Feiyan, Lele Ning, Zhuangzhuang Qiang, Xiaotong Fu, and Chenling Qu. 2025. "Transcriptome Analysis Reveals Quality Improvement Mechanisms in Ratoon Rice" Foods 14, no. 16: 2873. https://doi.org/10.3390/foods14162873
APA StyleXue, F., Ning, L., Qiang, Z., Fu, X., & Qu, C. (2025). Transcriptome Analysis Reveals Quality Improvement Mechanisms in Ratoon Rice. Foods, 14(16), 2873. https://doi.org/10.3390/foods14162873