Zoonotic Pathogens in Food: New Advances and Editorial Insights
1. Introduction
2. Exploring New Frontiers in Foodborne Pathogens
2.1. Stress Response Mechanisms
2.2. Advances in Detection Technologies
2.3. Leveraging Nature for Food Safety
3. Conclusions
Author Contributions
Conflicts of Interest
List of Contributions
- D’Onofrio, F.; Schirone, M.; Paparella, A.; Krasteva, I.; Tittarelli, M.; Pomilio, F.; Iannetti, L.; D’Alterio, N.; Luciani, M. Stress Adaptation Responses of a Listeria monocytogenes 1/2a Strain via Proteome Profiling. Foods 2023, 12, 2166.
- Szymczak, B. Phenotypic and Genotypic Characteristics of Non-hemolytic L. monocytogenes Isolated from Food and Processing Environments. Foods 2023, 12, 3630.
- Parra-Flores, J.; Daza-Prieto, B.; Chavarria, P.; Troncoso, M.; Stöger, A.; Figueroa, G.; Mancilla-Rojano, J.; Cruz-Córdova, A.; Martinovic, A.; Ruppitsch, W. From traditional Typing to genomic Precision: Whole-Genome Sequencing of Listeria monocytogenes isolated from Refrigerated in Chile. Foods 2025, 14, 290.
- Counihan, K.L.; Kanrar, S.; Tilman, S.; Capobianco, J.; Armstrong, C.M.; Gehring, A. detection of Escherichia coli O157:H7 in Ground Beef Using Long-Read Sequencing. Foods 2024, 13, 828.
- Al-Kharousi, Z.S.; Mothershaw, A.S.; Nzeako, B. Antimicrobial Activity of Frankincense (Boswellia sacra) Oil and Smoke against Pathogenic and Airborne Microbes. Foods 2023, 12, 3442.
- Sepúlveda, F.; Puente-Diaz, L.; Ortiz-Viedma, J.; Rodríguez, A.; Char, C. Encapsulation of Cinnamaldehyde and vanillin as a Strategy to increase Their Antimicrobial Activity. Foods 2024, 13, 2032.
References
- Fung, F.; Wang, H.S.; Menon, S. Food Safety in the 21st Century. Biomed. J. 2018, 41, 88–95. [Google Scholar] [CrossRef]
- Pattabhiramaiah, M.; Mallikarjunaiah, S. Foodborne Pathogens and Food Safety Regulations. In Food Microbial and Molecular Biology, 1st ed.; Islam, S., Thangadurai, D., Sangeetha, J., Chowdhury, Z.Z., Eds.; Apple Academic Press: New York, NY, USA, 2023; Chapter 7; pp. 179–212. [Google Scholar]
- Adeyeye, S.A. The Role of Food Processing and Appropriate Storage Technologies in Ensuring Food Security and Food Availability in Africa. Nutr. Food Sci. 2017, 71, 122–139. [Google Scholar] [CrossRef]
- Abebe, E.; Gugsa, G.; Ahmed, M. Review on major food-borne zoonotic bacterial pathogens. J. Trop. Med. 2020, 2020, 4674235. [Google Scholar] [CrossRef]
- Hassanain, N.A.; Hassanain, M.A.; Ahmed, W.M.; Shaapan, R.M.; Barakat, A.M.; El-Fadaly, H.A. Public Health Importance of Foodborne Pathogens. World J. Med. Sci. 2013, 9, 208–222. [Google Scholar]
- Bintsis, T. Foodborne pathogens. AIMS Microbiol. 2017, 3, 529–563. [Google Scholar] [CrossRef] [PubMed]
- O’Shea, J.P.; Holm, R.; O’Driscoli, C.M.; Griffin, B.T. Food for Thought: Formulating Away the Food Effect—A PEARRL Review. J. Pharm. Pharmacol. 2019, 71, 510–535. [Google Scholar] [CrossRef]
- Chlebicz, A.; Śliżewska, K. Campylobacteriosis, salmonellosis, yersiniosis, and listeriosis as zoonotic foodborne diseases: A review. Int. J. Environ. Res. Public. Health 2018, 15, 863. [Google Scholar] [CrossRef]
- Ayana, Z.; Yohannis, M.; Abera, Z. Food-borne bacterial diseases in Ethiopia. Acad. J. Nutr. 2015, 4, 62–76. [Google Scholar]
- Desalegn, W.; Birke, W.; Teshome, T.; Bacha, K.; Tamene, A.; Tesfaye, L.; Tagesse, M. Intestinal Parasitosis and Associated Factors among Food Handlers Working in the University of Southern Ethiopia. Environ. Health Insights 2022, 16, 11786302221128455. [Google Scholar] [CrossRef]
- Aladhadh, M. A review of modern methods for the detection of foodborne pathogens. Microorganisms 2023, 11, 1111. [Google Scholar] [CrossRef]
- D’Onofrio, F.; Visciano, P.; Krasteva, I.; Torresi, M.; Tittarelli, M.; Pomilio, F.; Iannetti, L.; Di Febo, T.; Paparella, A.; Schirone, M.; et al. Immunoproteome profiling of Listeria monocytogenes under mild acid and salt stress conditions. Proteomics 2022, 22, 2200082. [Google Scholar] [CrossRef]
- Osek, J.; Lachtare, B.; Wieczorek, K. Listeria monocytogenes—How this pathogen survives in food-production environments? Front. Microbiol. 2022, 13, 866462. [Google Scholar] [CrossRef] [PubMed]
- Colagiorgi, A.; Di Ciccio, P.; Zanardi, E.; Ghidini, S.; Ianieri, A. A look inside the Listeria monocytogenes biofilms extracellular matrix. Microorganisms 2016, 4, 22. [Google Scholar] [CrossRef] [PubMed]
- Colagiorgi, A.; Bruini, I.; Di Ciccio, P.; Zanardi, E.; Ghiddini, S.; Ianieri, A. Listeria monocytogenes biofilms in the wonderland of food industry. Pathogens 2017, 6, 41. [Google Scholar] [CrossRef] [PubMed]
- Midelet, G.; Kobilinsky, a.; Carpentier, B. Construction and analysis of fractional multifactorial designs to study attachment strength and transfer of Listeria monocytogenes from pure or mixed biofilms after contact with a solid model food. Appl. Environ. Microbiol. 2006, 72, 2313–2321. [Google Scholar] [CrossRef]
- Harvey, J.; Keenan, K.P.; Gilmour, A. Assessing biofilm formation by Listeria monocytogenes strains. Food Microbiol. 2007, 24, 380–392. [Google Scholar] [CrossRef]
- Di Bonaventura, G.; Piccolomini, R.; Paludi, D.; D’Orio, V.; Vergara, A.; Conter, M.; Ianieri, A. Influence of temperature on biofilm formation by Listeria monocytogenes on various food-contact surfaces: Relationship with motility and cell surface hydrophobicity. J. Appl. Microbiol. 2008, 104, 1552–1561. [Google Scholar] [CrossRef]
- Mazaheri, T.; Cervantes-Huamán, B.R.H.; Bermúdez-Capdevila, M.; Ripolles-Avila, C.; Rodríguez-Jerez, J.J. Listeria monocytogenes biofilms in the food industry: Is the current hygiene program sufficient to combat the persistence of the pathogen? Microorganisms 2021, 9, 181. [Google Scholar] [CrossRef]
- Finn, L.; Onyeaka, H.; O’Neill, S. Listeria monocytogenes Biofilms in Food-Associated Environments: A Persistent Enigma. Foods 2023, 12, 3339. [Google Scholar] [CrossRef]
- Balkir, P.; Kemahlioglu, K.; Yucel, U. Foodomics: A new approach in food quality and safety. Trends Food Sci. Technol. 2020, 108, 49–57. [Google Scholar] [CrossRef]
- Zavadilová, L.; Kašná, E.; Krupová, Z.; Klímová, A. Health traits in current dairy cattle breeding: A review. Czech J. Anim. Sci. 2021, 66, 235–250. [Google Scholar] [CrossRef]
- Sidira, M.; Smaoui, S.; Varzakas, T. Recent proteomics, metabolomics and lipidomics approaches in meat safety, processing and quality analysis. Appl. Sci. 2024, 14, 5147. [Google Scholar] [CrossRef]
- Tarbeeva, S.; Kozlova, A.; Sarygina, E.; Kiseleva, O.; Ponomarenko, E.; Ilgisonis, E. Food for thought: Proteomics for meat safety. Life 2023, 13, 255. [Google Scholar] [CrossRef] [PubMed]
- Suravajhala, P.; Goltsov, A. Three grand challenges in high throughput omics technologies. Biomolecules 2022, 12, 1238. [Google Scholar] [CrossRef]
- Mahrous, E.; Chen, R.; Zhao, C.; Farag, M.A. Lipidomics in food quality and authentication: A comprehensive review of novel trends and applications using chromatographic and spectroscopic techniques. Crit. Rev. Food Sci. Nutr. 2023, 64, 9058–9081. [Google Scholar] [CrossRef]
- Su, G.; Yu, C.; Liang, S.; Wang, W.; Wang, H. Multi-omics in food safety and authenticity in terms of food components. Food Chem. 2024, 437, 137943. [Google Scholar] [CrossRef]
- Martínez, A.; Abanto, M.; Días, N.B.; Olate, P.; Pérez Nuñez, I.; Díaz, R.; Sepúlveda, N.; Paz, E.A.; Quiñones, J. Recent trends in food quality and authentication: The role of omics technologies in dairy and meat production. Int. J. Mol. Sci. 2025, 26, 4405. [Google Scholar] [CrossRef]
- Mahato, D.K.; Kamle, M.; Pandhi, S.; Pandey, S.; Gupta, A.; Paul, V.; Kalsi, R.; Agrawal, S.; Islam, D.; Khare, S.; et al. Foodomics: A Sustainable Approach for the Specific Nutrition and Diets for Human Health. Food Chem. X 2024, 24, 101872. [Google Scholar] [CrossRef]
- Brito, L.F.; Bedere, N.; Douhard, F.; Oliveira, H.R.; Arnal, M.; Peñagaricano, F.; Schinckel, A.P.; Baes, C.F.; Miglior, F. Review: Genetic selection of high-yielding dairy cattle toward sustainable farming systems in a rapidly changing world. Animal 2021, 15 (Suppl. S1), 100292. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schirone, M.; Luciani, M.; Iannetti, L. Zoonotic Pathogens in Food: New Advances and Editorial Insights. Foods 2025, 14, 2847. https://doi.org/10.3390/foods14162847
Schirone M, Luciani M, Iannetti L. Zoonotic Pathogens in Food: New Advances and Editorial Insights. Foods. 2025; 14(16):2847. https://doi.org/10.3390/foods14162847
Chicago/Turabian StyleSchirone, Maria, Mirella Luciani, and Luigi Iannetti. 2025. "Zoonotic Pathogens in Food: New Advances and Editorial Insights" Foods 14, no. 16: 2847. https://doi.org/10.3390/foods14162847
APA StyleSchirone, M., Luciani, M., & Iannetti, L. (2025). Zoonotic Pathogens in Food: New Advances and Editorial Insights. Foods, 14(16), 2847. https://doi.org/10.3390/foods14162847