Comparative Decoding of Physicochemical and Flavor Profiles of Coffee Prepared by High-Pressure Carbon Dioxide, Ice Drip, and Traditional Cold Brew
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Preparation of Cold Brew Coffee with Different Extraction Methods
2.2.1. HPCD Cold Brew Coffee
2.2.2. Traditional Cold Brew Coffee
2.2.3. Ice Drip Coffee
2.3. Quality Evaluation of Cold Brew Coffee with Different Extraction Methods
2.3.1. Color Analysis
2.3.2. pH and Coffee Extraction
2.3.3. Sugar Profile
2.3.4. Organic Acids Profile
2.3.5. Caffeine
2.3.6. Chlorogenic Acids
2.3.7. Volatile Composition
2.3.8. Aroma Sensory Test
2.4. Data Processing and Multivariate Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Quality and Non-Volatile Compounds of Cold Brew Coffee with Different Extraction Methods
3.2. Volatile Flavor Quality Analysis
3.2.1. Volatile Compound Identification and Their Odor Activity Values
No | CAS | Compounds | Concentration (μg/L) 1 | Threshold (µg/L) 2 | OAVs | Odor 3 | ||||
---|---|---|---|---|---|---|---|---|---|---|
ID | HPCD | TCB | ID | HPCD | TCB | |||||
Pyrazine | ||||||||||
1 | 13360-65-1 | 3-Ethyl-2,5-dimethylpyrazine | 1255.08 ± 64.15 a | 1038.36 ± 246.2 a | 1392.32 ± 45.5 a | 1 [57] | 1255.08 | 1038.36 | 1392.32 | potato, cocoa, roasted [56] |
2 | 13925-03-6 | 2-Ethyl-6-methylpyrazine | 638.52 ± 42.96 a | 854.96 ± 432.36 a | 859.51 ± 50.93 a | 30 [57] | 21.28 | 28.50 | 28.65 | roasted potato [56] |
3 | 13360-64-0 | 2-Ethyl-5-methylpyrazine | 471.8 ± 30.16 a | 589.32 ± 266.6 a | 622.41 ± 39.14 a | 100 [57] | 4.72 | 5.89 | 6.22 | coffee bean, nutty [56] |
4 | 13925-07-0 | 2-Ethyl-3,5-dimethylpyrazine | 436.07 ± 21.41 a | 345.95 ± 83.57 a | 457.98 ± 31.69 a | 1 [57] | 436.07 | 345.95 | 457.98 | burnt, almond, roasted, nutty, coffee [56] |
5 | 123-32-0 | 2,5-Dimethylpyrazine | 407.71 ± 22.12 a | 707.26 ± 441.48 a | 596.6 ± 45.71 a | 2600 [57] | 0.16 | 0.27 | 0.23 | cocoa, roasted, nuts [56] |
6 | 109-08-0 | 2-Methylpyrazine | 379.08 ± 18.49 a | 662.92 ± 428.46 a | 563.88 ± 39.41 a | 60 [57] | 6.32 | 11.05 | 9.40 | nutty, cocoa, roasted [56] |
7 | 108-50-9 | 2,6-Dimethylpyrazine | 320.61 ± 18.55 a | 602.45 ± 405.22 a | 487.18 ± 37.3 a | 3100 [57] | 0.10 | 0.19 | 0.16 | cocoa, roasted, nuts [56] |
8 | 13067-27-1 | 2,6-Diethylpyrazine | 265.53 ± 9.53 a | 182.14 ± 38.01 b | 270.91 ± 7.79 a | 6 [58] | 44.25 | 30.36 | 45.15 | nutty, hazelnut [56] |
9 | 13925-00-3 | Ethylpyrazine | 220.11 ± 9.48 a | 376.9 ± 249.82 a | 324.05 ± 26.78 a | 6000 [57] | 0.04 | 0.06 | 0.05 | peanut, butter, musty [56] |
10 | 23747-48-0 | 6,7-Dihydro-5-methyl-5H-cyclopentapyrazine | 148.92 ± 8.06 a | 87.83 ± 24.99 a | 143.93 ± 7.43 a | -− | − | − | − | earthy, baked potato, peanut, roasted [56] |
11 | 13925-08-1 | 2-Methyl-5-vinylpyrazine | 146.8 ± 6.22 a | 117.99 ± 28.69 a | 145.93 ± 8.94 a | − | − | − | − | durian, vegetables [59] |
12 | 18138-05-1 | 3,5-Diethyl-2-methylpyrazine | 692.29 ± 41.32 a | 285.96 ± 108.25 b | 405.14 ± 281.07 ab | − | − | − | − | nutty, meaty, vegetable [56] |
13 | 5910-89-4 | 2,3-Dimethylpyrazine | 55.43 ± 7.18 a | 95.88 ± 88.98 a | 70.65 ± 3.93 a | 800 [58] | 0.07 | 0.12 | 0.09 | nutty, roasted [57] |
14 | 15707-24-1 | 2,3-Diethylpyrazine | 45.84 ± 2.17 b | 0 ± 0 c | 53.46 ± 3.1 a | − | − | − | − | raw, nutty, green pepper [57] |
15 | 29461-03-8 | 2-Methyl-5-propylpyrazine | 0 ± 0 b | 0 ± 0 b | 70.8 ± 7.09 a | 4 [60] | 0.00 | 0.00 | 17.70 | roasted [60] |
16 | 13925-09-2 | 2-Ethenyl-6-methylpyrazine | 0 ± 0 b | 129.1 ± 64.06 a | 169.88 ± 4.88 a | − | − | − | − | nutty, hazelnut [56] |
Furan | ||||||||||
17 | 623-17-6 | Furfuryl acetate | 2416.47 ± 127.08 a | 2085.52 ± 553.02 a | 2657.17 ± 143.7 a | 100 [57] | 24.16 | 20.86 | 26.57 | sweet, fruity, banana [56] |
18 | 620-02-0 | 5-Methylfurfural | 2136 ± 116.03 a | 2609.95 ± 1167.28 a | 2620.03 ± 161.96 a | 6000 [61] | 0.36 | 0.43 | 0.44 | spice, caramel, maple [56] |
19 | 98-00-0 | Furfuryl alcohol | 1882.72 ± 113.78 a | 2582.23 ± 1384.38 a | 2442.94 ± 91.63 a | 2000 [58] | 0.94 | 1.29 | 1.22 | sweet, creamy, vanilla [62] |
20 | 98-01-1 | Furfural | 969.22 ± 45.57 a | 1392.74 ± 760.99 a | 1251.16 ± 70.27 a | 3000 [57] | 0.32 | 0.46 | 0.42 | sweet, woody, almond [56] |
21 | 4437-22-3 | Difurfuryl ether | 358.15 ± 28.81 a | 138.9 ± 38.32 c | 247.64 ± 11.94 b | − | − | − | − | coffee, nutty, earthy [56] |
22 | 1192-62-7 | 2-Acetylfuran | 302.24 ± 14.42 a | 486.91 ± 294.22 a | 411.46 ± 32.46 a | 10000 [57] | 0.03 | 0.05 | 0.04 | sweet, balsam, almond [56] |
23 | 1193-79-9 | 2-Acetyl-5-methylfuran | 67.47 ± 5.68 a | 60.87 ± 20.3 a | 81.66 ± 7.82 a | − | − | − | − | sweet, musty, hay, coconut, coumarin [56] |
24 | 623-15-4 | Furfurylideneacetone | 64.26 ± 3.14 a | 0 ± 0 c | 24.37 ± 0.81 b | − | − | − | − | balsamic, creamy, vanilla-like [56] |
25 | 1197-40-6 | 2,2′-Methylenebisfuran | 0 ± 0 c | 130.38 ± 23.39 b | 207.16 ± 8.97 a | − | − | − | − | rich roasted [63] |
Phenol | ||||||||||
26 | 2785-89-9 | 4-Ethyl-2-methoxyphenol | 425.85 ± 42.45 a | 232.92 ± 45.45 b | 345 ± 18.89 a | 16 [64] | 26.62 | 14.56 | 21.56 | spicy, smoky, bacon [53] |
27 | 7786-61-0 | 4-Hydroxy-3-methoxystyrene | 318.89 ± 64.27 a | 234.41 ± 129.72 a | 366.46 ± 87.09 a | 19 [64] | 16.78 | 12.34 | 19.29 | woody, clove, amber [53] |
28 | 90-05-1 | Guaiacol | 248.68 ± 19.58 a | 183.66 ± 64.04 a | 230.23 ± 22.56 a | 1.6 [57] | 155.42 | 114.79 | 143.89 | phenolic, smoke, spice [53] |
29 | 108-95-2 | Phenol | 150.99 ± 20.34 a | 172.37 ± 54.29 a | 137.5 ± 4.66 a | 2400 [60] | 0.06 | 0.07 | 0.06 | phenolic, plastic rubber [56] |
30 | 108-39-4 | m-Cresol | 124.72 ± 8.58 a | 72.42 ± 18.72 c | 94.2 ± 5.76 ab | 31 [58] | 4.02 | 2.34 | 3.04 | medicinal, woody, leather [56] |
31 | 95-48-7 | o-Cresol | 68.08 ± 10.75 a | 0 ± 0 b | 56.97 ± 2.93 a | 260 [58] | 0.26 | 0.00 | 0.22 | musty, medicinal herbal, leathery [56] |
32 | 620-17-7 | 3-Ethylphenol | 36.72 ± 7.49 a | 0 ± 0 b | 0 ± 0 b | 1.7 [58] | 21.60 | 0.00 | 0.00 | leather, ink-like [64] |
33 | 96-76-4 | 2,4-Di-tert-butylphenol | 66.08 ± 13.11 a | 0 ± 0 b | 0 ± 0 b | 500 [58] | 0.13 | 0.00 | 0.00 | phenol [65] |
Pyrrole | ||||||||||
34 | 1438-94-4 | 1-Furfurylpyrrole | 273.19 ± 26.01 a | 181.3 ± 38.91 b | 287.42 ± 15.33 a | 100 [58] | 2.73 | 1.81 | 2.87 | plastic, waxy [56] |
35 | 1072-83-9 | 2-Acetylpyrrole | 275.67 ± 30.22 a | 249.43 ± 58.05 a | 320.82 ± 14.05 a | − | − | − | − | musty, nut skin, maraschino [56] |
36 | 1192-58-1 | N-Methylpyrrole-2-carboxaldehyde | 254.75 ± 12.78 a | 269.73 ± 122.71 a | 302.16 ± 15.16 a | 37 [58] | 6.89 | 7.29 | 8.17 | roasted, nutty [56] |
37 | 1003-29-8 | Pyrrole-2-carboxaldehyde | 125.7 ± 9.21 a | 136.57 ± 36.1 a | 144.03 ± 4.87 a | 65000 [58] | 0.00 | 0.00 | 0.00 | musty, beefy, coffee [56] |
Pyridine | ||||||||||
38 | 67402-83-9 | 1-Acetyl-1,4-dihydropyridine | 0 ± 0 b | 0 ± 0 b | 117.63 ± 10.16 a | 170000 [58] | 0.00 | 0.00 | 0.00 | animal, floral, moth ball [56] |
39 | 1122-62-9 | 2-Acetylpyridine | 0 ± 0 b | 0 ± 0 b | 56.61 ± 7.08 a | 19 [58] | 0.00 | 0.00 | 2.98 | popcorn, corn chip, fatty, tobacco [56] |
Aromatic aldehyde | ||||||||||
40 | 100-52-7 | Benzaldehyde | 138.82 ± 24.36 a | 132.25 ± 61.46 a | 137.51 ± 12.18 a | 320 [66] | 0.43 | 0.41 | 0.43 | cherry [66] |
41 | 4411-89-6 | 2-Phenyl-2-butenal | 78.55 ± 7.13 a | 0 ± 0 c | 63.66 ± 3.36 b | 883.8 [67] | 0.09 | 0.00 | 0.07 | sweet, narcissus, cortex [56] |
Cyclic ketone | ||||||||||
42 | 78-59-1 | Isophorone | 0 ± 0 b | 0 ± 0 b | 54.13 ± 6.36 a | 11000 [58] | 0.00 | 0.00 | 0.00 | woody, sweet, green, camphoraceous [56] |
43 | 80-71-7 | Methylcyclopentenolone | 45.01 ± 2 a | 0 ± 0 b | 43.11 ± 2.44 a | 300 [58] | 0.15 | 0.00 | 0.14 | caramel maple syrup [56] |
Pyranone | ||||||||||
44 | 118-71-8 | 3-Hydroxy-2-methyl-4-pyrone | 0 ± 0 c | 131.93 ± 34.12 b | 220.65 ± 28.15 a | 5800 [60] | 0.00 | 0.02 | 0.04 | sweet, caramel, cotton candy [68] |
Aromatic alcohol | ||||||||||
45 | 60-12-8 | Phenethyl alcohol | 64.35 ± 1.43 a | 0 ± 0 b | 0 ± 0 b | 564.23 [69] | 0.11 | 0.00 | 0.00 | floral, rose [69] |
Thiophene | ||||||||||
46 | 98-03-3 | 2-Thenaldehyde | 79.03 ± 8.55 a | 0 ± 0 b | 0 ± 0 b | 5000 [58] | 0.02 | 0.00 | 0.00 | sulfurous [63] |
Terpene | ||||||||||
47 | 78-70-6 | (±)-Linalool | 58.29 ± 19.21 a | 0 ± 0 b | 0 ± 0 b | 0.58 [70] | 100.50 | 0.00 | 0.00 | citrus, floral [70] |
Fatty acid | ||||||||||
48 | 503-74-2 | Isovaleric acid | 114.16 ± 9.41 a | 122.21 ± 74.19 a | 126.49 ± 9.99 a | 33.4 [71] | 3.42 | 3.66 | 3.79 | cheese, dairy, sour, fatty [56] |
3.2.2. Aroma Sensory Analysis
3.3. Differentiating Volatile Compounds Among Three Extraction Methods
3.3.1. Principal Component Analysis of Volatile Compounds from Different Extraction Methods
3.3.2. Identification of Key Differential Volatile Compounds
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, L.; Wang, X.; Manickavasagan, A.; Lim, L.-T. Extraction and Physicochemical Characteristics of High Pressure-Assisted Cold Brew Coffee. Future Foods 2022, 5, 100113. [Google Scholar] [CrossRef]
- Batali, M.; Lim, L.; Liang, J.; Yeager, S.; Thompson, A.; Han, J.; Ristenpart, W.; Guinard, J. Sensory Analysis of Full Immersion Coffee: Cold Brew Is More Floral, and Less Bitter, Sour, and Rubbery Than Hot Brew. Foods 2022, 11, 2440. [Google Scholar] [CrossRef]
- Cold Brew Coffee Market Size, Share & Industry Report [2032]. Available online: https://www.fortunebusinessinsights.com/cold-brew-coffee-market-102647 (accessed on 7 August 2025).
- Angeloni, G.; Guerrini, L.; Masella, P.; Innocenti, M.; Bellumori, M.; Parenti, A. Characterization and Comparison of Cold Brew and Cold Drip Coffee Extraction Methods. J. Sci. Food Agric. 2018, 99, 391–399. [Google Scholar] [CrossRef]
- Zhai, X.; Yang, M.; Zhang, J.; Zhang, L.; Tian, Y.; Li, C.; Bao, L.; Ma, C.; Abd El-Aty, A.M. Feasibility of Ultrasound-Assisted Extraction for Accelerated Cold Brew Coffee Processing: Characterization and Comparison with Conventional Brewing Methods. Front. Nutr. 2022, 9, 849811. [Google Scholar] [CrossRef]
- Kyroglou, S.; Laskari, R.; Vareltzis, P. Optimization of Sensory Properties of Cold Brew Coffee Produced by Reduced Pressure Cycles and Its Physicochemical Characteristics. Molecules 2022, 27, 2971. [Google Scholar] [CrossRef]
- Chen, S.; Xiao, Y.; Tang, W.; Jiang, F.; Zhu, J.; Zhou, Y.; Ye, L. Evaluation of Physicochemical Characteristics and Sensory Properties of Cold Brew Coffees Prepared Using Ultrahigh Pressure Under Different Extraction Conditions. Foods 2023, 12, 3857. [Google Scholar] [CrossRef] [PubMed]
- Sedraoui, S.; Badr, A.; Barba, M.G.M.; Doyen, A.; Tabka, Z.; Desjardins, Y. Optimization of the Ultrahigh-Pressure–Assisted Extraction of Phenolic Compounds and Antioxidant Activity from Palm Dates (Phoenix dactylifera L.). Food Anal. Methods 2020, 13, 1556–1569. [Google Scholar] [CrossRef]
- Yusoff, I.M.; Mat Taher, Z.; Rahmat, Z.; Chua, L.S. A Review of Ultrasound-Assisted Extraction for Plant Bioactive Compounds: Phenolics, Flavonoids, Thymols, Saponins and Proteins. Food Res. Int. 2022, 157, 111268. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Li, J.; Huo, Y.; Yang, W.; Chen, J.; Gao, Z.; Yang, Z. Ultrasonic Extraction and Antioxidant Evaluation of Oat Saponins. Ultrason. Sonochem. 2024, 109, 106989. [Google Scholar] [CrossRef]
- Hou, Z.; Chen, S.; Ye, X. High Pressure Processing Accelarated the Release of RG-I Pectic Polysaccharides from Citrus Peel. Carbohydr. Polym. 2021, 263, 118005. [Google Scholar] [CrossRef]
- Görgüç, A.; Özer, P.; Yılmaz, F.M. Simultaneous Effect of Vacuum and Ultrasound Assisted Enzymatic Extraction on the Recovery of Plant Protein and Bioactive Compounds from Sesame Bran. J. Food Compos. Anal. 2020, 87, 103424. [Google Scholar] [CrossRef]
- Morata, A.; Del Fresno, J.M.; Gavahian, M.; Guamis, B.; Palomero, F.; López, C. Effect of HHP and UHPH High-Pressure Techniques on the Extraction and Stability of Grape and Other Fruit Anthocyanins. Antioxidants 2023, 12, 1746. [Google Scholar] [CrossRef]
- Kincal, D.; Hill, W.S.; Balaban, M.; Portier, K.M.; Sims, C.A.; Wei, C.I.; Marshall, M.R. A Continuous High-Pressure Carbon Dioxide System for Cloud and Quality Retention in Orange Juice. J. Food Sci. 2006, 71, C338–C344. [Google Scholar] [CrossRef]
- Balaban, M.O.; Arreola, A.G.; Marshall, M.; Peplow, A.; Wei, C.I.; Cornell, J. Inactivation of Pectinesterase in Orange Juice by Supercritical Carbon Dioxide. J. Food Sci. 1991, 56, 743–746. [Google Scholar] [CrossRef]
- Xu, Z.; Wu, J.; Zhang, Y.; Hu, X.; Liao, X.; Wang, Z. Extraction of Anthocyanins from Red Cabbage Using High Pressure CO2. Bioresour. Technol. 2010, 101, 7151–7157. [Google Scholar] [CrossRef] [PubMed]
- Zaghdoudi, K.; Framboisier, X.; Frochot, C.; Vanderesse, R.; Barth, D.; Kalthoum-Cherif, J.; Blanchard, F.; Guiavarc’h, Y. Response Surface Methodology Applied to Supercritical Fluid Extraction (SFE) of Carotenoids from Persimmon (Diospyros kaki L.). Food Chem. 2016, 208, 209–219. [Google Scholar] [CrossRef] [PubMed]
- Sato, T.; Ikeya, Y.; Adachi, S.; Yagasaki, K.; Nihei, K.; Itoh, N. Extraction of Strawberry Leaves with Supercritical Carbon Dioxide And Entrainers: Antioxidant Capacity, Total Phenolic Content, and Inhibitory Effect on Uric Acid Production of the Extract. Food Bioprod. Process. 2019, 117, 160–169. [Google Scholar] [CrossRef]
- Sookwong, P.; Mahatheeranont, S. Supercritical CO2 Extraction of Rice Bran Oil—The Technology, Manufacture, and Applications. J. Oleo Sci. 2017, 66, 557–564. [Google Scholar] [CrossRef]
- Bermejo, D.V.; Ibáñez, E.; Reglero, G.; Fornari, T. Effect of Cosolvents (Ethyl Lactate, Ethyl Acetate and Ethanol) on the Supercritical CO2 Extraction of Caffeine from Green Tea. J. Supercrit. Fluids 2016, 107, 507–512. [Google Scholar] [CrossRef]
- Liao, X.; Lei, R. High Pressure Carbon Dioxide Technology for Food; China Light Industry Press: Beijing, China, 2021; ISBN 978-7-5184-3215-8. [Google Scholar]
- Liao, X.; Gui, F.; Hu, X.; Chen, F.; Wu, J. High-density CO2 sterilization device. Chinese Patent ZL 200520132590.X, 6 December 2006. [Google Scholar]
- Lao Fei; Wu Jihong; Liao XiaoJun; Wu Mengting; Gao Min; Cai Yanpei Method for Rapid Preparation of Cold Brew Coffee Using Gentle High Pressure. Chinese Patent ZL 202110842969.3, 27 August 2024.
- Cai, Y.; Xu, Z.; Pan, X.; Gao, M.; Wu, M.; Wu, J.; Lao, F. Comparative Profiling of Hot and Cold Brew Coffee Flavor Using Chromatographic and Sensory Approaches. Foods 2022, 11, 2968. [Google Scholar] [CrossRef]
- Li, N.; Zhang, B.; Niu, J.; Shi, X.; Ma, T.; Han, S. The Influence of Pre-Fermentative Addition of Caffeic Acid and Rosmarinic Acid on the Color and Aroma Compounds of Dry Red Wines. Food Ferment. Ind. 2020, 46, 132–140. [Google Scholar] [CrossRef]
- Farr, J.; Giusti, M. ColorBySpectra: An Application to Automate Conversion of Spectral Data to Color Spaces; Giusti Phytochemicals Laboratory, Food Science and Technology Department, The Ohio State University: Columbus, OH, USA, 2017. [Google Scholar]
- GB 5009.8-2023; National Food Safety Standard—Determination of Fructose, Glucose, Sucrose, Maltose and Lactose in Foods. National Health Commission of the People’s Republic of China; State Administration for Market Regulation: Beijing, China, 2023.
- GB 5009.157-2016; National food safety standard—Determination of Organic Acid in Foods. National Health and Family Planning Commission of the People’s Republic of China: Beijing, China, 2016.
- GB 5009.139-2014; National food safety standard—Determination of Caffeine in Beverages. National Health and Family Planning Commission of the People’s Republic of China: Beijing, China, 2014.
- NY/T 3514-2019; Determination of Chlorogenic Acids in Coffee High Performance Liquid Chromatography. Ministry of Agriculture and Rural Affairs: Beijing, China, 2019.
- Heo, J.; Adhikari, K.; Choi, K.S.; Lee, J. Analysis of Caffeine, Chlorogenic Acid, Trigonelline, and Volatile Compounds in Cold Brew Coffee Using High-Performance Liquid Chromatography and Solid-Phase Microextraction—Gas Chromatography-Mass Spectrometry. Foods 2020, 9, 1746. [Google Scholar] [CrossRef]
- Zhang, D.; Gao, M.; Cai, Y.; Wu, J.; Lao, F. Profiling Flavor Characteristics of Cold Brew Coffee with GC-MS, Electronic Nose and Tongue: Effect of Roasting Degrees and Freeze-Drying. J. Sci. Food Agric. 2024, 104, 6139–6148. [Google Scholar] [CrossRef]
- Czerny, M.; Grosch, W. Potent Odorants of Raw Arabica Coffee. Their Changes during Roasting. J. Agric. Food Chem. 2000, 48, 868–872. [Google Scholar] [CrossRef]
- Yang, Y.; Ai, L.; Mu, Z.; Liu, H.; Yan, X.; Ni, L.; Zhang, H.; Xia, Y. Flavor Compounds with High Odor Activity Values (OAV > 1) Dominate the Aroma of Aged Chinese Rice Wine (huangjiu) by Molecular Association. Food Chem. 2022, 383, 132370. [Google Scholar] [CrossRef]
- Heo, J.; Choi, K.S.; Wang, S.; Adhikari, K.; Lee, J. Cold Brew Coffee: Consumer Acceptability and Characterization Using the Check-All-That-Apply (CATA) Method. Foods 2019, 8, 344. [Google Scholar] [CrossRef]
- Pang, Z.; Lu, Y.; Zhou, G.; Hui, F.; Xu, L.; Viau, C.; Spigelman, A.F.; MacDonald, P.E.; Wishart, D.S.; Li, S.; et al. MetaboAnalyst 6.0: Towards a Unified Platform for Metabolomics Data Processing, Analysis and Interpretation. Nucleic Acids Res. 2024, 52, W398–W406. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Wu, Y.; Li, J.; Wang, X.; Zeng, Z.; Xu, J.; Liu, Y.; Feng, J.; Chen, H.; He, Y. TBtools-II: A “One for All, All for One” Bioinformatics Platform for Biological Big-Data Mining. Mol. Plant 2023, 16, 1733–1742. [Google Scholar] [CrossRef]
- Junjie, Y. Quality Changes in Cloudy Apple-Kiwifruit Mixed Juice: Innovative Clean Label Concept. Ph.D. Thesis, China Agricultural University, Beijing, China, 2017. [Google Scholar]
- Lao, F.; Cheng, H.; Wang, Q.; Wang, X.; Liao, X.; Xu, Z. Enhanced Water Extraction with High-Pressure Carbon Dioxide on Purple Sweet Potato Pigments: Comparison to Traditional Aqueous and Ethanolic Extraction. J. CO2 Util. 2020, 40, 101188. [Google Scholar] [CrossRef]
- Yeager, S.E.; Batali, M.E.; Lim, L.X.; Liang, J.; Han, J.; Thompson, A.N.; Guinard, J.; Ristenpart, W.D. Roast Level and Brew Temperature Significantly Affect the Color of Brewed Coffee. J. Food Sci. 2022, 87, 1837–1850. [Google Scholar] [CrossRef]
- Maksimowski, D.; Oziembłowski, M.; Kolniak-Ostek, J.; Stach, M.; Zubaidi, M.A.; Nawirska-Olszańska, A. Effect of Cold Brew Coffee Storage in Industrial Production on the Physical-Chemical Characteristics of Final Product. Foods 2023, 12, 3840. [Google Scholar] [CrossRef]
- Li, T.; Deng, L.-L.; Xia, R.; Luo, L.; Zhong, G. Effects of Different Extraction Methods on Physicochemical and Sensory Properties of Coffee Stock Solution. Food Ferment. Ind. 2022, 48, 168–174. [Google Scholar] [CrossRef]
- Wang, X.; Lim, L.-T. Effects of Grind Size, Temperature, and Brewing Ratio on Immersion Cold Brewed and French Press Hot Brewed Coffees. Appl. Food Res. 2023, 3, 100334. [Google Scholar] [CrossRef]
- Rao, N.Z.; Fuller, M. Acidity and Antioxidant Activity of Cold Brew Coffee. Sci. Rep. 2018, 8, 16030. [Google Scholar] [CrossRef]
- Cordoba, N.; Pataquiva, L.; Osorio, C.; Moreno, F.L.M.; Ruiz, R.Y. Effect of Grinding, Extraction Time and Type of Coffee on the Physicochemical and Flavour Characteristics of Cold Brew Coffee. Sci. Rep. 2019, 9, 8440. [Google Scholar] [CrossRef] [PubMed]
- Fuller, M.; Rao, N.Z. The Effect of Time, Roasting Temperature, and Grind Size on Caffeine and Chlorogenic Acid Concentrations in Cold Brew Coffee. Sci. Rep. 2017, 7, 17979. [Google Scholar] [CrossRef]
- Pan, L.; Xiao, Y.; Jiang, F.; Jiang, T.; Zhu, J.; Tang, W.; Liu, X.; Zhou, Y.; Yu, L. Comparison of Characterization of Cold Brew and Hot Brew Coffee Prepared at Various Roasting Degrees. J. Food Process. Preserv. 2023, 3175570. [Google Scholar] [CrossRef]
- Zakaria, N.H.; Whanmek, K.; Thangsiri, S.; Chathiran, W.; Srichamnong, W.; Suttisansanee, U.; Santivarangkna, C. Optimization of Cold Brew Coffee Using Central Composite Design and Its Properties Compared with Hot Brew Coffee. Foods 2023, 12, 2412. [Google Scholar] [CrossRef] [PubMed]
- Aquino, F.J.T.; Augusti, R.; Alves, J.D.O.; Diniz, M.E.R.; Morais, S.A.L.; Alves, B.H.P.; Nascimento, E.A.; Sabino, A.A. Direct Infusion Electrospray Ionization Mass Spectrometry Applied to the Detection of Forgeries: Roasted Coffees Adulterated with Their Husks. Microchem. J. 2014, 117, 127–132. [Google Scholar] [CrossRef]
- Tang, W.; Xiao, Y.; Jiang, T.; Jiang, F.; Zhu, J.; Zhou, Y. Effect of Roasting Degree on Physicochemical Indexes and Flavor Components of Cold Brew Coffee. Food Sci. 2022, 43, 239–248. [Google Scholar]
- Wang, W.; Rao, L.; Wu, X.; Wang, Y.; Zhao, L.; Liao, X. Supercritical Carbon Dioxide Applications in Food Processing. Food Eng. Rev. 2020, 13, 570–591. [Google Scholar] [CrossRef]
- Shi, Q.; Xiao, Y.; Zhou, Y.; Tang, W.; Jiang, F.; Zhou, X.; Lu, H. Comparison of Ultra-High-Pressure and Conventional Cold Brew Coffee at Different Roasting Degrees: Physicochemical Characteristics and Volatile and Non-Volatile Components. Foods 2024, 13, 3119. [Google Scholar] [CrossRef]
- Amanpour, A.; Selli, S. Differentiation of Volatile Profiles and Odor Activity Values of Turkish Coffee and French Press Coffee: Turkish Coffee and French Press Coffee Volatiles. J. Food Process. Preserv. 2015, 40, 1116–1124. [Google Scholar] [CrossRef]
- Moon, J.-K.; Shibamoto, T. Role of Roasting Conditions in the Profile of Volatile Flavor Chemicals Formed from Coffee Beans. J. Agric. Food Chem. 2009, 57, 5823–5831. [Google Scholar] [CrossRef]
- Dippong, T.; Dan, M.; Kovacs, M.H.; Kovacs, E.D.; Levei, E.A.; Cadar, O. Analysis of Volatile Compounds, Composition, and Thermal Behavior of Coffee Beans According to Variety and Roasting Intensity. Foods 2022, 11, 3146. [Google Scholar] [CrossRef] [PubMed]
- The Good Scents Company. Available online: http://www.thegoodscentscompany.com/ (accessed on 2 March 2025).
- Caporaso, N.; Whitworth, M.B.; Cui, C.; Fisk, I.D. Variability of Single Bean Coffee Volatile Compounds of Arabica and Robusta Roasted Coffees Analysed by SPME-GC-MS. Food Res. Int. 2018, 108, 628–640. [Google Scholar] [CrossRef] [PubMed]
- Van Gemert, L.J. Odour Thresholds: Compilations of Odour Threshold Values in air, Water and Other Media; Oliemans Punter: Zeist, The Netherlands, 2011. [Google Scholar]
- Chemical Database Online. Available online: https://www.chembk.com/en (accessed on 11 March 2025).
- Piccino, S.; Boulanger, R.; Descroix, F.; Sing, A.S.C. Aromatic Composition and Potent Odorants of the “Specialty Coffee” Brew “Bourbon Pointu” Correlated to Its Three Trade Classifications. Food Res. Int. 2014, 61, 264–271. [Google Scholar] [CrossRef]
- Sunarharum, W.B.; Williams, D.J.; Smyth, H.E. Complexity of Coffee Flavor: A Compositional and Sensory Perspective. Food Res. Int. 2014, 62, 315–325. [Google Scholar] [CrossRef]
- Liu, J.; Wan, P.; Xie, C.; Chen, D.-W. Key Aroma-Active Compounds in Brown Sugar and Their Influence on Sweetness. Food Chem. 2021, 345, 128826. [Google Scholar] [CrossRef] [PubMed]
- Chemical Book. Available online: https://www.chemicalbook.com (accessed on 2 March 2025).
- Czerny, M.; Christlbauer, M.; Christlbauer, M.; Fischer, A.; Granvogl, M.; Hammer, M.; Hartl, C.; Hernandez, N.M.; Schieberle, P. Re-Investigation on Odour Thresholds of Key Food Aroma Compounds and Development of an Aroma Language Based on Odour Qualities of Defined Aqueous Odorant Solutions. Eur. Food Res. Technol. 2008, 228, 265–273. [Google Scholar] [CrossRef]
- Frank, S.; Reglitz, K.; Mall, V.; Morgenstern, U.; Steinhaus, M. Molecular Background of the Undesired Odor of Polypropylene Materials and Insights into the Sources of Key Odorants. Indoor Air 2021, 31, 1038–1049. [Google Scholar] [CrossRef]
- Wickramasinghe, P.C.K.; Munafo, J.P. Key Odorants from the Fermentation Broth of the Edible Mushroom Ischnoderma resinosum. J. Agric. Food Chem. 2019, 67, 2036–2042. [Google Scholar] [CrossRef] [PubMed]
- Al-Dalali, S.; Zheng, F.; Sun, B.; Chen, F.; Wang, P.; Wang, W. Determination of the Aroma Changes of Zhengrong Vinegar During Different Processing Steps by SPME–GC–MS and GC-O. J. Food Meas. Charact. 2019, 14, 535–547. [Google Scholar] [CrossRef]
- Kang, D.; Lee, H.-U.; Davaatseren, M.; Chung, M.-S. Comparison of Acrylamide and Furan Concentrations, Antioxidant Activities, and Volatile Profiles in Cold or Hot Brew Coffees. Food Sci. Biotechnol. 2019, 29, 141–148. [Google Scholar] [CrossRef]
- Wang, R.; Chang, S.; Liang, M.; Wu, Y.; Xin, R.; Liu, Y.; Chen, L.; Zhou, S. Characterization of Key Odorants in Soy Sauce and Their Concentration Changes During Storage. J. Food Qual. 2023, 6673089. [Google Scholar] [CrossRef]
- Shi, J.; Tong, G.; Yang, Q.; Huang, M.; Ye, H.; Liu, Y.; Wu, J.; Zhang, J.; Sun, X.; Zhao, D. Characterization of Key Aroma Compounds in Tartary Buckwheat (Fagopyrum tataricum Gaertn.) by Means of Sensory-Directed Flavor Analysis. J. Agric. Food Chem. 2021, 69, 11361–11371. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, V.; Lopez, R.; Cacho, J.F. Quantitative Determination of the Odorants of Young Red Wines from Different Grape Varieties. J. Sci. Food Agric. 2000, 80, 1659–1667. [Google Scholar] [CrossRef]
- Wang, D.; Wang, J.; Lang, Y.; Huang, M.; Hu, S.; Liu, H.; Sun, B.; Long, Y.; Wu, J.; Dong, W. Interactions Between Food Matrices and Odorants: A review. Food Chem. 2025, 466, 142086. [Google Scholar] [CrossRef]
- Sun, Z.; Lin, Y.; Qu, F.; Cui, H.; Tao, G.; Zhang, X.; Xu, S. Influence of Aroma Binding Factors of Coffee Matrix on Characteristic Aroma in a Model System. LWT 2024, 211, 116930. [Google Scholar] [CrossRef]
- Zanin, R.C.; Smrke, S.; Kurozawa, L.E.; Yamashita, F.; Yeretzian, C. Novel Experimental Approach to Study Aroma Release upon Reconstitution of Instant Coffee Products. Food Chem. 2020, 317, 126455. [Google Scholar] [CrossRef]
- Mei, S.; Ding, J.; Chen, X. Identification of Differential Volatile and Non-Volatile Compounds in Coffee Leaves Prepared from Different Tea Processing Steps Using HS-SPME/GC–MS and HPLC-Orbitrap-MS/MS and Investigation of the Binding Mechanism of Key Phytochemicals with Olfactory and Taste Receptors Using Molecular Docking. Food Res. Int. 2023, 168, 112760. [Google Scholar] [CrossRef]
- Zhu, L.; Hu, W.; Murtaza, A.; Iqbal, A.; Kong, M.; Zhang, J.; Li, J.; Xu, X.; Pan, S. Browning Inhibition in Fresh-Cut Chinese Water Chestnut Under High Pressure CO2 Treatment: Regulation of Reactive Oxygen Species and Membrane Lipid Metabolism. Food Chem. 2023, 427, 136586. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, S.; Fernandes, F.A.N. Green Chemistry Applied to Ground Coffee Volatile Compounds Modification Aiming Coffee Aroma Improvement. J. Food Process. Preserv. 2023, 4921802. [Google Scholar] [CrossRef]
- Greenacre, M.; Groenen, P.J.F.; Hastie, T.; D’Enza, A.I.; Markos, A.; Tuzhilina, E. Principal Component Analysis. Nat. Rev. Methods Primer 2022, 2, 100. [Google Scholar] [CrossRef]
- Trygg, J.; Wold, S. Orthogonal Projections to Latent Structures (O-PLS). J. Chemom. 2002, 16, 119–128. [Google Scholar] [CrossRef]
- Tapp, H.S.; Kemsley, E.K. Notes on the Practical Utility of OPLS. TrAC Trends Anal. Chem. 2009, 28, 1322–1327. [Google Scholar] [CrossRef]
- Ossoliński, K.; Ruman, T.; Copié, V.; Tripet, B.P.; Nogueira, L.B.; Nogueira, K.O.P.C.; Kołodziej, A.; Płaza-Altamer, A.; Ossolińska, A.; Ossoliński, T.; et al. Metabolomic and Elemental Profiling of blood Serum in Bladder Cancer. J. Pharm. Anal. 2022, 12, 889–900. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Zhang, L.; Yi, D.; Luo, Y.; Zheng, C.; Wu, Y. Insights into the Volatile Flavor Profiles of Two Types of Beef Tallow via Electronic Nose and Gas Chromatography–Ion Mobility Spectrometry Analysis. Foods 2024, 13, 1489. [Google Scholar] [CrossRef]
- Zhou, P.; Hu, O.; Fu, H.; Ouyang, L.; Gong, X.; Meng, P.; Wang, Z.; Dai, M.; Guo, X.; Wang, Y. UPLC–Q-TOF/MS-Based Untargeted Metabolomics Coupled with Chemometrics Approach for Tieguanyin Tea with Seasonal and Year Variations. Food Chem. 2019, 283, 73–82. [Google Scholar] [CrossRef]
- Yun, J.; Cui, C.; Zhang, S.; Zhu, J.; Peng, C.; Cai, H.; Yang, X.; Hou, R. Use of Headspace GC/MS Combined with Chemometric Analysis to Identify the Geographic Origins of Black Tea. Food Chem. 2021, 360, 130033. [Google Scholar] [CrossRef]
- Xie, L.; Guo, S.; Rao, H.; Lan, B.; Zheng, B.; Zhang, N. Characterization of Volatile Flavor Compounds and Aroma Active Components in Button Mushroom (Agaricus bisporus) across Various Cooking Methods. Foods 2024, 13, 685. [Google Scholar] [CrossRef] [PubMed]
TCB | HPCD | ID | |
---|---|---|---|
Color L* | 47.33 ± 0.19 b | 42.91 ± 0.56 c | 57.59 ± 0.00 a |
Color a* | 21.16 ± 0.09 b | 14.81 ± 0.13 c | 27.98 ± 0.08 a |
Color b* | 67.09 ± 0.10 b | 56.08 ± 0.47 c | 82.16 ± 0.06 a |
pH | 5.22 ± 0.02 a | 5.24 ± 0.02 a | 5.25 ± 0.02 a |
TDS | 2.10 ± 0.00 a | 1.73 ± 0.06 b | 1.70 ± 0.10 b |
Extraction rate (%) | 21.0 ± 0.0 a | 17.3 ± 0.6 b | 17.0 ± 1.0 b |
Fructose (g/100 g) | ND (<0.5) | ND (<0.5) | ND (<0.5) |
Glucose (g/100 g) | ND (<0.5) | ND (<0.5) | ND (<0.5) |
Sucrose (g/100 g) | ND (<0.5) | ND (<0.5) | ND (<0.5) |
Maltose (g/100 g) | ND (<0.5) | ND (<0.5) | ND (<0.5) |
Lactose (g/100 g) | ND (<0.5) | ND (<0.5) | ND (<0.5) |
Citric acid (mg/kg) | ND (<250) | ND (<250) | ND (<250) |
Succinic acid (mg/kg) | ND (<1250) | ND (<1250) | ND (<1250) |
Adipic acid (mg/kg) | ND (<25) | ND (<25) | ND (<25) |
Fumaric acid (mg/kg) | 13 ± 0 a | 10 ± 0 c | 12 ± 0 b |
Tartaric acid (mg/kg) | ND (<250) | ND (<250) | ND (<250) |
Malic acid (mg/kg) | ND (<500) | ND (<500) | ND (<500) |
Lactic acid (mg/kg) | ND (<250) | ND (<250) | ND (<250) |
5-Caffeoylquinic acid (mg/kg) | 231 ± 11 b | 177 ± 9 c | 267 ± 1 a |
4-Caffeoylquinic acid (mg/kg) | 271 ± 3 b | 207 ± 2 c | 321 ± 6 a |
3-Caffeoylquinic acid (mg/kg) | 522 ± 7 b | 413 ± 14 c | 651 ± 13 a |
Caffeine (mg/kg) | 950 ± 3 b | 737 ± 3 c | 1152 ± 14 a |
Compounds | VIP | ||
---|---|---|---|
HPCD and ID | HPCD and TCB | TCB and ID | |
Phenethyl alcohol | 1.21441 | - | 1.14997 |
o-Cresol | 1.20399 | 1.23984 | − |
N-Methylpyrrole-2-carboxaldehyde | − | − | 1.08742 |
Methylcyclopentenolone | 1.21466 | 1.24057 | − |
m-Cresol | 1.15941 | − | 1.10081 |
Isophorone | − | 1.23505 | 1.14301 |
Furfurylideneacetone | 1.21428 | 1.23348 | 1.14503 |
Furfuryl alcohol | − | − | 1.12274 |
Furfural | − | − | 1.12071 |
Ethylpyrazine | − | − | 1.12331 |
Difurfuryl ether | 1.20627 | 1.22926 | 1.11891 |
6,7-Dihydro-5-methyl-5H-cyclopentapyrazine | 1.1496 | 1.1978 | − |
5-Methylfurfural | − | − | 1.09433 |
4-Ethyl-2-methoxyphenol | 1.18205 | 1.20819 | 1.01781 |
3-Hydroxy-2-methyl-4-pyrone | 1.12882 | 1.17274 | 1.13325 |
3-Ethylphenol | 1.16704 | − | 1.12206 |
3-Ethyl-2,5-dimethylpyrazine | − | − | 1.04849 |
3,5-Diethyl-2-methylpyrazine | 1.18088 | − | - |
2-Thenaldehyde | 1.20808 | − | 1.13853 |
2-Phenyl-2-butenal | 1.21125 | 1.23993 | 1.02584 |
2-Methylpyrazine | − | − | 1.13122 |
2-Methyl-5-propylpyrazine | − | 1.22568 | 1.14657 |
2-Ethyl-6-methylpyrazine | − | − | 1.12093 |
2-Ethyl-5-methylpyrazine | − | − | 1.11541 |
2-Ethenyl-6-methylpyrazine | 1.10941 | − | 1.14963 |
2-Acetylpyridine | − | 1.2343 | 1.14187 |
2-Acetylfuran | − | − | 1.11253 |
2,6-Dimethylpyrazine | − | − | 1.12976 |
2,6-Diethylpyrazine | 1.13788 | 1.17858 | - |
2,5-Dimethylpyrazine | − | − | 1.1256 |
2,4-Di-tert-butylphenol | 1.16794 | − | 1.1191 |
2,3-Diethylpyrazine | 1.21332 | 1.23596 | − |
2,2′-Methylenebisfuran | 1.16493 | 1.24033 | 1.14866 |
1-Furfurylpyrrole | 1.10399 | 1.22074 | − |
1-Acetyl-1,4-dihydropyridine | − | 1.23277 | 1.14171 |
(±)-Linalool | 1.14674 | − | 1.10164 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Zhou, Y.; Zong, Y.; Wu, J.; Lao, F. Comparative Decoding of Physicochemical and Flavor Profiles of Coffee Prepared by High-Pressure Carbon Dioxide, Ice Drip, and Traditional Cold Brew. Foods 2025, 14, 2840. https://doi.org/10.3390/foods14162840
Wang Z, Zhou Y, Zong Y, Wu J, Lao F. Comparative Decoding of Physicochemical and Flavor Profiles of Coffee Prepared by High-Pressure Carbon Dioxide, Ice Drip, and Traditional Cold Brew. Foods. 2025; 14(16):2840. https://doi.org/10.3390/foods14162840
Chicago/Turabian StyleWang, Zihang, Yixuan Zhou, Yinquan Zong, Jihong Wu, and Fei Lao. 2025. "Comparative Decoding of Physicochemical and Flavor Profiles of Coffee Prepared by High-Pressure Carbon Dioxide, Ice Drip, and Traditional Cold Brew" Foods 14, no. 16: 2840. https://doi.org/10.3390/foods14162840
APA StyleWang, Z., Zhou, Y., Zong, Y., Wu, J., & Lao, F. (2025). Comparative Decoding of Physicochemical and Flavor Profiles of Coffee Prepared by High-Pressure Carbon Dioxide, Ice Drip, and Traditional Cold Brew. Foods, 14(16), 2840. https://doi.org/10.3390/foods14162840