In Vitro Inhibitory Effects and Molecular Mechanism of Four Theaflavins on Isozymes of CYP450 and UGTs
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents and Instruments
2.2. Inhibition of CYP450 by Theaflavins
2.3. Inhibition of UGTs by Theaflavins
2.4. LC-MS/MS Analysis
2.5. Molecular Docking Analysis
2.6. Data Analysis
3. Results
3.1. Inhibition of CYP450 Activities by Theaflavins in HLMs
3.2. Inhibition of UGT Activities by Theaflavins in Human Recombinant UGTs
3.3. Molecular Docking of Theaflavins with Five Key Enzymes
3.3.1. Theaflavins with UGT1A1 and UGT1A3
3.3.2. Comparison of Molecular Docking of UGT1A4, CYP1A2, and CYP2C8 with Theaflavin and Its Isomers Under Competitive Inhibition Conditions
3.4. Comparison of Molecular Docking of Five Key Enzymes with Theaflavin and Its Isomers Under Non-Competitive Inhibition Conditions
3.4.1. Comparison of Molecular Docking of UGT1A1 with Theaflavin and Its Isomers Under Non-Competitive Inhibition Conditions
3.4.2. Comparison of Molecular Docking of UGT1A3 with Theaflavin and Its Isomers Under Non-Competitive Inhibition Conditions
3.4.3. Comparison of Molecular Docking of UGT1A4, CYP1A2, and CYP2C8 with Theaflavin and Its Isomers Under Non-Competitive Inhibition Conditions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Chen, J.; Zheng, Y.; Gong, S.; Zheng, Z.; Hu, J.; Ma, L.; Li, X.; Yu, H. Mechanisms of theaflavins against gout and strategies for improving the bioavailability. Phytomed. Int. J. Phytother. Phytopharm. 2023, 114, 154782. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Wang, J.; Cao, Y.; Liu, W.; Duan, L.; Hu, J.; Peng, J. The Antiobesity Effects and Potential Mechanisms of Theaflavins. J. Med. Food 2024, 27, 1–11. [Google Scholar] [CrossRef]
- Sirotkin, A.V.; Kolesárová, A. The anti-obesity and health-promoting effects of tea and coffee. Physiol. Res. 2021, 70, 161–168. [Google Scholar] [CrossRef]
- Li, M.; Zhang, C.; Xiao, X.; Zhu, M.; Quan, W.; Liu, X.; Zhang, S.; Liu, Z. Theaflavins in Black Tea Mitigate Aging-Associated Cognitive Dysfunction via the Microbiota-Gut-Brain Axis. J. Agric. Food Chem. 2023, 71, 2356–2369. [Google Scholar] [CrossRef]
- Wang, M.; Xu, J.; Han, T.; Tang, L. Effects of theaflavins on the structure and function of bovine lactoferrin. Food Chem. 2021, 338, 128048. [Google Scholar] [CrossRef]
- Shi, M.; Lu, Y.; Wu, J.; Zheng, Z.; Lv, C.; Ye, J.; Qin, S.; Zeng, C. Beneficial Effects of Theaflavins on Metabolic Syndrome: From Molecular Evidence to Gut Microbiome. Int. J. Mol. Sci. 2022, 23, 7595. [Google Scholar] [CrossRef]
- Ishimoto, K.; Konishi, Y.; Otani, S.; Maeda, S.; Ago, Y.; Hino, N.; Suzuki, M.; Nakagawa, S. Suppressive effect of black tea polyphenol theaflavins in a mouse model of ovalbumin-induced food allergy. J. Nat. Med. 2023, 77, 604–609. [Google Scholar] [CrossRef] [PubMed]
- Inarejos-Garcia, A.M.; Heil, J.; Guilera Bermell, S.; Morlock, G.E. Stability of Flavan-3-ols, Theaflavins, and Methylxanthines in 30 Industrial Green, Black, and White Tea (Camellia sinensis L.) Extracts Characterized via Liquid Chromatography Techniques. Antioxidants 2023, 12, 2121. [Google Scholar] [CrossRef]
- Canpolat, S.; Düşgün, C.; Ildız, E.; Canpolat, E.Y.; İşlek, C. Antioxidant potential and fatty acid composition of Lactarius sanguifluus. Prospect. Pharm. Sci. 2024, 22, 1–6. [Google Scholar] [CrossRef]
- Zhao, M.; Ma, J.; Li, M.; Zhang, Y.; Jiang, B.; Zhao, X.; Huai, C.; Shen, L.; Zhang, N.; He, L.; et al. Cytochrome P450 Enzymes and Drug Metabolism in Humans. Int. J. Mol. Sci. 2021, 22, 12808. [Google Scholar] [CrossRef] [PubMed]
- Fozard, J.; Hieger, M. Hepatic Failure from Pennyroyal Tea Interaction with Medications Metabolized by the Cytochrome P450 Enzymes. Am. J. Ther. 2020, 27, e694–e696. [Google Scholar] [CrossRef]
- Iizaka, Y.; Sherman, D.H.; Anzai, Y. An overview of the cytochrome P450 enzymes that catalyze the same-site multistep oxidation reactions in biotechnologically relevant selected actinomycete strains. Appl. Microbiol. Biotechnol. 2021, 105, 2647–2661. [Google Scholar] [CrossRef]
- Feng, Q.; Torii, Y.; Uchida, K.; Nakamura, Y.; Hara, Y.; Osawa, T. Black tea polyphenols, theaflavins, prevent cellular DNA damage by inhibiting oxidative stress and suppressing cytochrome P450 1A1 in cell cultures. J. Agric. Food Chem. 2002, 50, 213–220. [Google Scholar] [CrossRef] [PubMed]
- Muir, W.I.; Akter, Y.; Bruerton, K.; Groves, P.J. An evaluation of bird weight and diet nutrient density during early lay on ISA Brown performance, egg quality, bone characteristics, and liver health at 50 weeks of age. Poult. Sci. 2022, 101, 101765. [Google Scholar] [CrossRef] [PubMed]
- Sheng, Y.; Yang, H.; Wu, T.; Zhu, L.; Liu, L.; Liu, X. Alterations of Cytochrome P450s and UDP-Glucuronosyltransferases in Brain Under Diseases and Their Clinical Significances. Front. Pharmacol. 2021, 12, 650027. [Google Scholar] [CrossRef] [PubMed]
- Allain, E.P.; Rouleau, M.; Lévesque, E.; Guillemette, C. Emerging roles for UDP-glucuronosyltransferases in drug resistance and cancer progression. Br. J. Cancer 2020, 122, 1277–1287. [Google Scholar] [CrossRef]
- Wang, F.; Wang, S.; Yang, K.; Liu, Y.-Z.; Yang, K.; Chen, Y.; Fang, Z.-Z. Inhibition of UDP-glucuronosyltransferases (UGTs) by bromophenols (BPs). Chemosphere 2020, 238, 124645. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef]
- Ren, G.; Qin, Z.; Yang, N.; Chen, H.; Fu, K.; Lu, C.; Lu, Y.; Li, N.; Zhang, Y.; Chen, X.; et al. Interactions between Oroxylin A with the solute carrier transporters and ATP-binding cassette transporters: Drug transporters profile for this flavonoid. Chem.-Biol. Interact. 2020, 324, 109097. [Google Scholar] [CrossRef]
- Islamoğlu, F. Molecular docking, bioactivity, ADME, toxicity risks, and quantum mechanical parameters of some 1, 2-dihydroquinoline derivatives were calculated theoretically for investigation of its use as a pharmaceutical active ingredient in the treatment of multiple sclerosis (MS). Prospect. Pharm. Sci. 2024, 22, 168–187. [Google Scholar]
- Chang, Y.; Gong, W.; Xu, J.; Gong, H.; Song, Q.; Xiao, S.; Yuan, D. Integration of semi-in vivo assays and multi-omics data reveals the effect of galloylated catechins on self-pollen tube inhibition in Camellia oleifera. Hortic. Res. 2023, 10, uhac248. [Google Scholar] [CrossRef]
- Clarke, J.D.; Judson, S.M.; Tian, D.; Kirby, T.O.; Tanna, R.S.; Matula-Péntek, A.; Horváth, M.; Layton, M.E.; White, J.R.; Cech, N.B.; et al. Co-consuming green tea with raloxifene decreases raloxifene systemic exposure in healthy adult participants. Clin. Transl. Sci. 2023, 16, 1779–1790. [Google Scholar] [CrossRef]
- Ji, S.-B.; Park, S.-Y.; Bae, S.; Seo, H.-J.; Kim, S.-E.; Lee, G.-M.; Wu, Z.; Liu, K.-H. Comprehensive Investigation of Stereoselective Food Drug Interaction Potential of Resveratrol on Nine P450 and Six UGT Isoforms in Human Liver Microsomes. Pharmaceutics 2021, 13, 1419. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhang, X.; Wang, C. Flavonoids and Organic Acids Affect Phase II Metabolism based on the Regulation of UGT1A1 Expression and Function. Curr. Comput.-Aided Drug Des. 2024, 21, 831–844. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Wu, Y.; Kim, E.; Pan, H.; He, P.; Li, B.; Chen, Y.C.; Tu, Y. Simultaneous Tests of Theaflavin-3,3′-digallate as an Anti-Diabetic Drug in Human Hepatoma G2 Cells and Zebrafish (Danio rerio). Nutrients 2021, 13, 4379. [Google Scholar] [CrossRef]
- Maiti, S.; Banerjee, A. Epigallocatechin gallate and theaflavin gallate interaction in SARS-CoV-2 spike-protein central channel with reference to the hydroxychloroquine interaction: Bioinformatics and molecular docking study. Drug Dev. Res. 2021, 82, 86–96. [Google Scholar] [CrossRef]
- Lee, S.G.; Cho, K.H.; Vo, D.K.; Chae, Y.J.; Maeng, H.J. Inhibitory effect of 20(S)-protopanaxadiol on cytochrome P450: Potential of its pharmacokinetic interactions in vivo. Biomed. Pharmacother. 2022, 153, 113514. [Google Scholar] [CrossRef]
- Liu, S.; Wang, Z.; Chan, E.; Zhao, Y.; Kang, J.; Zhang, X.; Tian, X. Inhibition of cytochrome P450 enzymes and uridine 5′-diphospho-glucuronosyltransferases by vicagrel in human liver microsomes: A prediction of potential drug-drug interactions. Chem.-Biol. Interact. 2022, 352, 109775. [Google Scholar] [CrossRef]
- Musial, C.; Kuban-Jankowska, A.; Gorska-Ponikowska, M. Beneficial Properties of Green Tea Catechins. Int. J. Mol. Sci. 2020, 21, 1744. [Google Scholar] [CrossRef]
- Asai, Y.; Nadai, M.; Katoh, M. The Effect of Single-Walled Carbon Nanotubes on UDP-Glucuronosyltransferase 1A Activity in Human Liver. Biol. Pharm. Bull. 2022, 45, 446–451. [Google Scholar] [CrossRef]
- Xiao, L.; Chi, D.; Sheng, G.; Li, W.; Lin, P.; Liang, S.; Zhu, L.; Dong, P. Inhibitory effects of UDP-glucuronosyltransferase (UGT) typical ligands against E. coli beta-glucuronidase (GUS). RSC Adv. 2020, 10, 22966–22971. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Wang, Z.; Wang, X.; Wang, S.; Liu, Y. Piceatannol exhibits potential food-drug interactions through the inhibition of human UDP-glucuronosyltransferase (UGT) in Vitro. Toxicol. Vitr. Int. J. Publ. Assoc. BIBRA 2020, 67, 104890. [Google Scholar] [CrossRef] [PubMed]
- Teschke, R.; Xuan, T.D. How can green tea polyphenols affect drug metabolism and should we be concerned? Expert Opin. Drug Metab. Toxicol. 2019, 15, 989–991. [Google Scholar] [CrossRef] [PubMed]
- Altea-Manzano, P.; Cuadros, A.M.; Broadfield, L.A.; Fendt, S. Nutrient metabolism and cancer in the in vivo context: A metabolic game of give and take. EMBO Rep. 2020, 21, e50635. [Google Scholar] [CrossRef]
- Bag, N.; Bag, A. Antimetastatic properties of tea polyphenols. Nutr. Cancer 2020, 72, 365–376. [Google Scholar] [CrossRef]
- Qiao, J.; Kong, X.; Kong, A.; Han, M. Pharmacokinetics and biotransformation of tea polyphenols. Curr. Drug Metab. 2014, 15, 30–36. [Google Scholar] [CrossRef]
- Pereira-Caro, G.; Moreno-Rojas, J.M.; Brindani, N.; Del Rio, D.; Lean, M.E.J.; Hara, Y.; Crozier, A. Bioavailability of Black Tea Theaflavins: Absorption, Metabolism, and Colonic Catabolism. J. Agric. Food Chem. 2017, 65, 5365–5374. [Google Scholar] [CrossRef]
- Eberhardt, J.; Santos-Martins, D.; Tillack, A.F.; Forli, S. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. J. Chem. Inf. Model. 2021, 61, 3891–3898. [Google Scholar] [CrossRef]
UGT Isoform | Probe Substrates (μM) | Inhibitor (μM) | Metabolites |
---|---|---|---|
UGT1A1 | beta-estradiol (10) | Silibinin (100) | Estradiol-3-glucuronide |
UGT1A3 | beta-estradiol (10) | Quindine (300) | Estradiol-3-glucuronide |
UGT1A4 | Trifluoperazine (20) | Hecogenin (30) | Trifluoperazine-glucuronide |
UGT1A6 | 4-trifluoromethyl-7-hydroxycoumarin (50) | Diclofenac (300) | 4-tri-fluoromethyl-7-hydroxycoumarin glucuronide |
UGT1A9 | 4-trifluoromethyl-7-hydroxycoumarin (10) | Diclofenac (500) | 4-tri-fluoromethyl-7-hydroxycoumarin glucuronide |
UGT2B7 | 4-trifluoromethyl-7-hydroxycoumarin (50) | Diclofenac (300) | 4-tri-fluoromethyl-7-hydroxycoumarin glucuronide |
UGT2B15 | 4-trifluoromethyl-7-hydroxycoumarin (50) | Midostaurin (50) | 4-tri-fluoromethyl-7-hydroxycoumarin glucuronide |
CYP450 Enzyme | Probe Substrates (μM) | Inhibitor (μM) | Metabolites |
---|---|---|---|
CYP1A2 | Phenacetin (30) | α- Naphthoflavone (30) | Acetaminophen |
CYP2B6 | Bupropion (100) | Thiotepa (50) | Hydroxybupropion |
CYP2C8 | Amodiaquine (1.5) | Montelukast (30) | N-Desethyl Amodiaquine |
CYP2C9 | Diclofenac (25) | Sulfaphenazole (10) | 4′-Hydroxydiclofenac |
CYP2C19 | S-Mephenytoin (50) | Ticlopidine (20) | S-4′-Hydroxymephenytoin |
CYP2D6 | Dextromethorphan (8) | Quinidine (1) | Dextrorphan |
CYP3A4 | Testosterone (100), Midazolam (4) | Ketoconazole (5) | 6β-hydroxytestosterone, Midazolam 1-hydroxylation |
Enzymes | Theaflavin | Binding Free Energy at Docking Conformation (kcal/mol) | |
---|---|---|---|
Competitive Inhibition | Non-Competitive Inhibition | ||
UGT1A1 | Theaflavin | −8.1 | −9.7 |
Theaflavin-3-gallate | −8.3 | −8.8 | |
Theaflavin-3′-gallate | −8.7 | −9.0 | |
Theaflavin-3-3′-gallate | −10.2 | −9.6 | |
UGT1A3 | Theaflavin-3-gallate | −9.3 | −7.0 |
Theaflavin-3′-gallate | −8.6 | −7.7 | |
Theaflavin-3-3′-gallate | −10.0 | −8.3 | |
UGT1A4 | Theaflavin-3-3′-gallate | −10.2 | −9.3 |
CYP1A2 | Theaflavin-3′-gallate | 20.8 | −7.6 |
CYP2C8 | Theaflavin-3-3′-gallate | 0.9 | −7.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, L.; Hu, Z.; Peng, J.; Hou, A.; Hao, Z.; Wu, Z.; Li, Y.; Li, K.; Li, Z.; Liu, Z.; et al. In Vitro Inhibitory Effects and Molecular Mechanism of Four Theaflavins on Isozymes of CYP450 and UGTs. Foods 2025, 14, 2822. https://doi.org/10.3390/foods14162822
Hu L, Hu Z, Peng J, Hou A, Hao Z, Wu Z, Li Y, Li K, Li Z, Liu Z, et al. In Vitro Inhibitory Effects and Molecular Mechanism of Four Theaflavins on Isozymes of CYP450 and UGTs. Foods. 2025; 14(16):2822. https://doi.org/10.3390/foods14162822
Chicago/Turabian StyleHu, Lin, Zhuohan Hu, Junying Peng, Aixiang Hou, Zhubing Hao, Zhongqin Wu, Yan Li, Ke Li, Zongjun Li, Zhonghua Liu, and et al. 2025. "In Vitro Inhibitory Effects and Molecular Mechanism of Four Theaflavins on Isozymes of CYP450 and UGTs" Foods 14, no. 16: 2822. https://doi.org/10.3390/foods14162822
APA StyleHu, L., Hu, Z., Peng, J., Hou, A., Hao, Z., Wu, Z., Li, Y., Li, K., Li, Z., Liu, Z., Xiao, Y., & Wang, Y. (2025). In Vitro Inhibitory Effects and Molecular Mechanism of Four Theaflavins on Isozymes of CYP450 and UGTs. Foods, 14(16), 2822. https://doi.org/10.3390/foods14162822