Analog Rice Based on Sago and Corn with the Addition of Moringa Leaf (Moringa oleifera L.) Powder as a Nutritional Vehicle for Breastfeeding Women
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Analog Rice Production
2.3. Hedonic Sensory Evaluation
2.4. Evaluation of Physical Properties
2.5. Chemical Properties Evaluation
2.5.1. Proximate Contents
2.5.2. Iron Analysis
2.5.3. Sitosterol and Stigmasterol Analyses
2.5.4. Flavonoid Analysis
2.6. Statistical Analysis
3. Results and Discussion
3.1. Hedonic Sensory Evaluation
3.2. Physical Properties
3.3. Chemical Properties
3.3.1. Proximate Content
3.3.2. Iron Content
3.3.3. Sitosterol and Stigmasterol Content
3.3.4. Flavonoid Levels
3.4. Principal Component Analysis (PCA) of Physical and Chemical Characteristics of Analog Rice Formulations
4. Conclusions
5. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhandari, H.; Mishra, A.K. Impact of Demographic Transformation on Future Rice Farming in Asia. Outlook Agric. 2018, 47, 125–132. [Google Scholar] [CrossRef]
- Poosri, S.; Thilavech, T.; Pasukamonset, P.; Suparpprom, C.; Adisakwattana, S. Studies on Riceberry Rice (Oryza sativa L.) Extract on the Key Steps Related to Carbohydrate and Lipid Digestion and Absorption: A New Source of Natural Bioactive Substances. NFS J. 2019, 17, 17–23. [Google Scholar] [CrossRef]
- Dessie, A. Rice Breeding Achievements, Potential and Challenges in Ethiopia. Int. J. Res. Stud. Agric. Sci. 2020, 6, 35–42. [Google Scholar] [CrossRef]
- Khanh, T.D.; Duong, V.X.; Nguyen, P.C.; Xuan, T.D.; Trung, N.T.; Trung, K.H.; Gioi, D.H.; Hoang, N.H.; Tran, H.D.; Trung, D.M.; et al. Rice Breeding in Vietnam: Retrospects, Challenges and Prospects. Agriculture 2021, 11, 397. [Google Scholar] [CrossRef]
- Sumardiono, S.; Budiyono, B.; Kusumayanti, H.; Silvia, N.; Luthfiani, V.F.; Cahyono, H. Production and Physicochemical Characterization of Analog Rice Obtained from Sago Flour, Mung Bean Flour, and Corn Flour Using Hot Extrusion Technology. Foods 2021, 10, 3023. [Google Scholar] [CrossRef]
- Mahendradatta, M.; Assa, E.; Langkong, J.; Tawali, A.B.; Nadhifa, D.G. Development of Analog Rice Made from Cassava and Banana with the Addition of Katuk Leaf (Sauropus androgynous L. Merr.) and Soy Lecithin for Lactating Women. Foods 2024, 13, 1438. [Google Scholar] [CrossRef]
- Taylor, R.; Keane, D.; Borrego, P.; Arcaro, K. Effect of Maternal Diet on Maternal Milk and Breastfed Infant Gut Microbiomes: A Scoping Review. Nutrients 2023, 15, 1420. [Google Scholar] [CrossRef]
- UNICEF Nutrition Tackling the “Triple Burden” of Malnutrition in Indonesia. Available online: https://www.unicef.org/indonesia/nutrition#:~:text=Indonesia%20also%20has%20one%20of%20the%20highest,significantly%20higher%20mortality%20rates%20than%20well-nourished%20children (accessed on 29 November 2024).
- Ministry of Health of the Republic of Indonesia. Kementerian Kesehatan RI Laporan Tematik Survei Kesehatan Indonesia (SKI) Tahun 2023: Potret Indonesia Sehat; Ministry of Health of the Republic of Indonesia: Jakarta, Indonesia, 2024; ISBN 978-623-301-455-7.
- Estiasih, T.; Ginting, E.; Ahmadi, K.; Mutmainnah, S.F.; Wardani, N.A.K.; Ariestiningsih, A.D. Hypotensive Effect of Tuber Based Artificial Rice on Hypertension Rats. Int. J. PharmTech Res. 2016, 9, 373–380. [Google Scholar]
- Kusnandar, F.; Kharisma, T.; Yuliana, N.D.; Safrida, S.; Budijanto, S. Hypocholesterolemic Effect of Analogue Rice with the Addition of Rice Bran. Curr. Res. Nutr. Food Sci. J. 2022, 10, 183–194. [Google Scholar] [CrossRef]
- Kit Lim, L.W.; Chung, H.H.; Hussain, H.; Bujang, K. Sago Palm (Metroxylon sagu Rottb.): Now and Beyond. Pertanika J. Trop. Agric. Sci. 2019, 42, 100662. [Google Scholar]
- Udomrati, S.; Tungtrakul, P.; Lowithun, N.; Thirathumthavorn, D. The Effect of Concentration on Rheological Properties of Sago (Metroxylon sagu) Starch. Food Res. 2024, 8, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Nadhifa, D.G.; Mahendradatta, M.; Poespitasari, A.; Bastian, F.; Adhnitasari, A.Y. Characterization of Analog Rice Produced from Various Carbohydrate Sources and Their Functional Components: A Review. Discov. Food 2025, 5, 190. [Google Scholar] [CrossRef]
- Bathla, S.; Jaidka, M.; Kaur, R. Nutritive Value. In Maize—Production and Use; BoD–Books on Demand: Hamburg, Germany, 2020. [Google Scholar]
- Supadmi, S.; Kusrini, I.; Riyanto, S. Nutritional Content, Food Contamination, Sensory Test on Analog Rice Based on Local Food, Arrowroot Starch (Maranata arundinaceae Linn), Corn Flour (Zea mays), Soybean Flour (Glycine max (L) Merril). In Proceedings of the 1st International Conference for Health Research–BRIN (ICHR 2022), Jakarta, Indonesia, 23–24 November 2022. [Google Scholar]
- Karlinah, N. Effect of Morinaga Leaves (Morinaga oleifera) on Breast Milk Production in Post Partum Mothers. J. Midwifery 2021, 3, 76–79. [Google Scholar]
- Arifin, M.Z.; Maharani, S.; Widiaputri, S.I. Physicochemical Properties and Organoleptic Test of Yoghurt Ngeboon Panorama Indonesia. Edufortech 2020, 5, 69–78. [Google Scholar] [CrossRef]
- Chettri, S.; Sharma, N.; Mohite, A.M. Utilization of Lima Bean Starch as an Edible Coating Base Material for Sapota Fruit Shelf-Life Enhancement. J. Agric. Food Res. 2023, 12, 100615. [Google Scholar] [CrossRef]
- Rauf, R.; Sarbini, D. Daya Serap Air Sebagai Acuan Untuk Menentukan Volume Air Dalam Pe. J. Agritech. 2015, 35, 324. [Google Scholar] [CrossRef]
- Yudanti, R.Y.; Waluyo, S. Producing of Analog Rice Based on Banana Flour (Musa paradisiaca). J. Tek. Pertan. Lampung 2015, 4, 117–126. [Google Scholar]
- AOAC Association of Official Analytical Chemists. Official Methods of Analysis; Benjamin Franklin Station: Washington, DC, USA, 2005. [Google Scholar]
- FAO. Calculation of the Energy Content of Foods—Energy Conversion Factors. In Food Energy—Methods of Anlysis and Conversion Factors: Report of a Technical Workshop 2003; FAO: Rome, Italy, 2003. [Google Scholar]
- Krismaputri, M.E.; Hintono, A.; Pramono, Y.B. Kadar Vitamin A, Zat Besi (Fe) Dan Tingkat Kesukaan Nugget Ayam Yang Disubstitusi Dengan Hati Ayam Broiler. Anim. Agric. J. 2013, 2, 288–294. [Google Scholar]
- Indrayanto, G.; Studiawan, H.; Cholies, N. Isolation and Quantitation of Manogenin and Kammogenin from Callus Cultures of Agave Amaniensis. Phytochem. Anal. 1994, 5, 24–26. [Google Scholar] [CrossRef]
- Chang, C.-C.; Yang, M.-H.; Wen, H.-M.; Chern, J.-C. Estimation of Total Flavonoid Content in Propolis by Two Complementary Colometric Methods. J. Food Drug Anal. 2002, 10, 3. [Google Scholar] [CrossRef]
- Maharani, P.T.; Putra, I.G.A.M.; Yusuf, F.M.; Kirana, M.K.P.; Abilita, S.A.P.S.; Saputra, I.W.M.A. Sensory Evaluation and Physical Characteristics of Ice Cream with The Comparison of Soy Whey and Moringa Leaves Puree. SEAS (Sustain. Environ. Agric. Sci.) 2024, 8, 52–59. [Google Scholar] [CrossRef]
- Wulandari, C.; Budaraga, I.K.; Wellyalina, W.; Liamnimitr, N. Proximate Test and Organoleptic Test on The Characteristics of The Moringa Layer Cake. Andalasian Int. J. Agric. Nat. Sci. 2020, 1, 9–17. [Google Scholar] [CrossRef]
- Trigo, C.; Castelló, M.L.; Ortolá, M.D. Potentiality of Moringa oleifera as a Nutritive Ingredient in Different Food Matrices. Plant Foods Hum. Nutr. 2023, 78, 25–37. [Google Scholar] [CrossRef] [PubMed]
- Sumardiono, S.; Cahyono, H.; Jos, B.; Pudjihastuti, I.; Yafiz, A.M.; Rachmasari, M. Physicochemical Properties of Sago Ozone Oxidation: The Effect of Reaction Time, Acidity, and Concentration of Starch. Foods 2021, 10, 1309. [Google Scholar] [CrossRef]
- Srimiati, M.; Agestika, L. The Substitution of Fresh Moringa Leaves and Moringa Leaves Powder on Organoleptic and Proximate Characteristics of Pudding. Amerta Nutr. 2022, 6, 164–172. [Google Scholar] [CrossRef]
- Somsen, D.; Capelle, A. Introduction to Production Yield Analysis—A New Tool for Improvement of Raw Material Yield. Trends Food Sci. Technol. 2002, 13, 136–145. [Google Scholar] [CrossRef]
- Budi, F.S.; Hariyadi, P.; Budijanto, S.; Syah, D. Kristalinitas Dan Kekerasan Beras Analog Yang Dihasilkan Dari Proses Ekstrusi Panas Tepung Jagung. J. Teknol. Dan. Ind. Pangan 2017, 28, 46–54. [Google Scholar] [CrossRef]
- Budi, F.S.; Hariyadi, P.; Budijanto, S.; Syah, D. Teknologi Proses Ekstrusi Untuk Membuat Beras Analog (Extrusion Process Technology of Analog Rice). J. Pangan 2013, 22, 263–274. [Google Scholar]
- Sukamto, S.; Patria, D.G. The Utilization of Flour Made of the Non-Milled Rice as Analog Rice Ingredients. Food Res. 2020, 4, 1427–1434. [Google Scholar] [CrossRef]
- Yulviatun, A.; Purnamasari, S.; Ariyantoro, A.R.; Atmaka, W. Physical, Chemical, and Organoleptic Characteristics of Rice Analog Made from Mocaf, Corn Flour (Zea mays L.), and Mung Bean Sprout Flour (Vigna radiata L.). J. Teknol. Has. Pertan. 2022, 15, 46. [Google Scholar] [CrossRef]
- Nirmagustina, D.E.; Wirawati, C.U.; Handayani, S.; Khoerunnisa, K.; Rani, H. The Effect of Soaking and Boiling on Physical and Chemical Properties of Read Kidney Beans Instant. In Proceedings of the 12th Applied Business and Engineering Conference, Bandar Lampung, Indonesia, 13–15 November 2024; Volume 12, pp. 354–362. [Google Scholar]
- Luo, H.; Dong, F.; Wang, Q.; Li, Y.; Xiong, Y. Construction of Porous Starch-Based Hydrogel via Regulating the Ratio of Amylopectin/Amylose for Enhanced Water-Retention. Molecules 2021, 26, 3999. [Google Scholar] [CrossRef] [PubMed]
- Shoukat, R.; Cappai, M.; Pilia, L.; Pia, G. Rice Starch Chemistry, Functional Properties, and Industrial Applications: A Review. Polymers 2025, 17, 110. [Google Scholar] [CrossRef]
- Beras SNI 01-6128-2008; Standar Nasional Indonesia 01-6128-2008. SNI: Jakarta, Indonesia, 2008.
- Vera Zambrano, M.; Dutta, B.; Mercer, D.G.; MacLean, H.L.; Touchie, M.F. Assessment of Moisture Content Measurement Methods of Dried Food Products in Small-Scale Operations in Developing Countries: A Review. Trends Food Sci. Technol. 2019, 88, 484–496. [Google Scholar] [CrossRef]
- Standar Nasional Indonesia 01-7111.1-2005; Makanan Pendamping Air Susu Ibu (MP-ASI)-Bagian 1: Bubuk Instan. SNI: Jakarta, Indonesia, 2005.
- Gebreil, S.Y.; Ali, M.I.K.; Mousa, E.A.M. Utilization of Amaranth Flour in Preparation of High Nutritional Value Bakery Products. Food Nutr. Sci. 2020, 11, 336–354. [Google Scholar] [CrossRef]
- Wati, L.R.; Sargowo, D.; Nurseta, T.; Zuhriyah, L. The Role of Protein Intake on the Total Milk Protein in Lead-Exposed Lactating Mothers. Nutrients 2023, 15, 2584. [Google Scholar] [CrossRef]
- Patel, J.K.; Rouster, A.S. Infant Nutrition Requirements and Options; StatPearls Publishing: Treasure Island, FL, USA, 2020. [Google Scholar]
- Uthumporn, U.; Wahidah, N.; Karim, A.A. Physicochemical Properties of Starch from Sago (Metroxylon sagu) Palm Grown in Mineral Soil at Different Growth Stages. Proc. IOP Conf. Ser. Mater. Sci. Eng. 2014, 62, 012026. [Google Scholar] [CrossRef]
- Sitepu, M.R. Utilization of Corn in Making Flour as an Alternative Availability of Food Commodities in Restaurants in Sitinjo Village, Dairi District. Tour. Hosp. Cult. Insights J. 2022, 2, 93–103. [Google Scholar] [CrossRef]
- Sultana, S. Nutritional and Functional Properties of Moringa oleifera. Metab. Open 2020, 8, 100061. [Google Scholar] [CrossRef]
- Setiawan, B.; Fetriyuna, F.; Letsoin, S.M.A.; Purwestri, R.C.; Jati, I.R.A.P. A Sago Positive Character: A Literature Review. J. Ilm. Kedokt. Wijaya Kusuma 2022, 11, 145–155. [Google Scholar] [CrossRef]
- Tambo Tene, S.; Klang, J.M.; Ndomou Houketchang, S.C.; Teboukeu Boungo, G.; Womeni, H.M. Characterization of Corn, Cassava, and Commercial Flours: Use of Amylase-Rich Flours of Germinated Corn and Sweet Potato in the Reduction of the Consistency of the Gruels Made from These Flours—Influence on the Nutritional and Energy Value. Food Sci. Nutr. 2019, 7, 1190–1206. [Google Scholar] [CrossRef] [PubMed]
- Munteanu, C.; Schwartz, B. Interactions between Dietary Antioxidants, Dietary Fiber and the Gut Microbiome: Their Putative Role in Inflammation and Cancer. Int. J. Mol. Sci. 2024, 25, 8250. [Google Scholar] [CrossRef]
- Khalid, W.; Arshad, M.S.; Jabeen, A.; Muhammad Anjum, F.; Qaisrani, T.B.; Suleria, H.A.R. Fiber-Enriched Botanicals: A Therapeutic Tool against Certain Metabolic Ailments. Food Sci. Nutr. 2022, 10, 3203–3218. [Google Scholar] [CrossRef] [PubMed]
- Augustyn, G.H.; Tetelepta, G.; Abraham, I.R. Analisis Fisikokimia Beberapa Jenis Tepung Jagung (Zea mays L.) Asal Pulau Moa Kabupaten Maluku Barat Daya. AGRITEKNO J. Teknol. Pertan. 2019, 8, 58–63. [Google Scholar] [CrossRef]
- Lapui, A.R.; Nopriani, U.; Mongi, H. Analisis Kandungan Nutrisi Tepung Jagung (Zea mays Lam) Dari Desa Uedele Kecamatan Tojo Kabupaten Tojo Una-Una Untuk Pakan Ternak. J. Agropet 2021, 18, 42–46. [Google Scholar]
- Saragih, B.; Naibaho, N.M.; Saragih, B. Nutritional, Functional Properties, Glycemic Index and Glycemic Load of Indigenous Rice from North and East Borneo. Food Res. 2019, 3, 537–545. [Google Scholar] [CrossRef]
- Ministry of Health RI Permenkes RI No 75 Tahun 2013. Indonesia Dietary Guideline. Available online: https://peraturan.bpk.go.id/Details/139226/permenkes-no-75-tahun-2013 (accessed on 29 November 2024).
- El Hajj, S.; Sepulveda-Rincon, T.; Paris, C.; Giraud, T.; Csire, G.; Stefan, L.; Selmeczi, K.; Girardet, J.M.; Desobry, S.; Bouhallab, S.; et al. Application in Nutrition: Mineral Binding. In Biologically Active Peptides: From Basic Science to Applications for Human Health; Academic Press: Cambridge, MA, USA, 2021. [Google Scholar]
- Bhattacharya, P.T.; Misra, S.R.; Hussain, M. Nutritional Aspects of Essential Trace Elements in Oral Health and Disease: An Extensive Review. Scientifica 2016, 2016, 5464373. [Google Scholar] [CrossRef]
- Rotella, R.; Soriano, J.M.; Llopis-González, A.; Morales-Suarez-Varela, M. The Impact of Moringa oleifera Supplementation on Anemia and Other Variables during Pregnancy and Breastfeeding: A Narrative Review. Nutrients 2023, 15, 2674. [Google Scholar] [CrossRef]
- Citation, N.L.M.; Database, L.; Health, C.; Development, H.; Url, B. Drugs and Lactation Database (LactMed®); National Institute of Child Health and Human Development: Bethesda, MD, USA, 2006. Available online: https://www.ncbi.nlm.nih.gov/books/NBK501922/ (accessed on 29 November 2024).
- Rissa, M. Impact of Iron Tablet and Moringa Leaf Capsule Supplementation on Hemoglobin Levels in Anemic Pregnant Women in Pariaman City, 2016. J. Evid.-Based Nurs. Public Health 2024, 1, 22–32. [Google Scholar] [CrossRef]
- Rebellato, A.P.; Klein, B.; Wagner, R.; Lima Pallone, J.A. Fortification Effects of Different Iron Compounds on Refined Wheat Flour Stability. J. Cereal Sci. 2018, 82, 1–7. [Google Scholar] [CrossRef]
- Prentice, A.M.; Mendoza, Y.A.; Pereira, D.; Cerami, C.; Wegmuller, R.; Constable, A.; Spieldenner, J. Dietary Strategies for Improving Iron Status: Balancing Safety and Efficacy. Nutr. Rev. 2017, 75, 49–60. [Google Scholar] [CrossRef] [PubMed]
- Lubaale, J.; Taylor, J.R.N.; Emmambux, M.N.; Duodu, K.G. Extrusion Cooking of Food-to-Food Fortified Wholegrain Sorghum-Based Porridges Enhances Caco-2 Ferritin Formation. Cereal Chem. 2023, 100, 371–383. [Google Scholar] [CrossRef]
- Hackl, L.; Speich, C.; Zeder, C.; Sánchez-Ferrer, A.; Adelmann, H.; de Pee, S.; Tay, F.; Zimmermann, M.B.; Moretti, D. Cold Extrusion but Not Coating Affects Iron Bioavailability from Fortified Rice in Young Women and Is Associated with Modifications in Starch Microstructure and Mineral Retention during Cooking. J. Nutr. 2017, 147, 2319–2325. [Google Scholar] [CrossRef] [PubMed]
- Ajita, T. Extrusion Cooking Technology: An Advance Skill for Manufacturing of Extrudate Food Products. In Extrusion of Metals, Polymers and Food Products; IntechOpen: London, UK, 2018. [Google Scholar]
- Asrifah, I.; Estiasih, T.; Sujuti, H. Potential Hypocholesterolemic Activity of Flour from Leaves of Moringa (Moringa oleifera L.). Malays. J. Nutr. 2017, 23, 449–460. [Google Scholar]
- Talreja, T.; Goswami, A. Phytosterols Production in Moringa oleifera in Vitro Cultures. Eur. J. Biotechnol. Biosci. 2016, 4, 66–69. [Google Scholar]
- Gopalakrishnan, L.; Doriya, K.; Kumar, D.S. Moringa oleifera: A Review on Nutritive Importance and Its Medicinal Application. Food Sci. Hum. Wellness 2016, 5, 49–56. [Google Scholar] [CrossRef]
- Fungtammasan, S.; Phupong, V. The Effect of Moringa oleifera Capsule in Increasing Breast Milk Volume in Early Postpartum Patients: A Double-Blind, Randomized Controlled Trial. Eur. J. Obs. Gynecol. Reprod. Biol. X 2022, 16, 100171. [Google Scholar] [CrossRef] [PubMed]
- Dinengsih, S.; Agnestiani, M.; Kundaryanti, R. Effect of Morinaga Leaves (Morinaga oleifera) on Breast Milk Production in Post Partum Mothers. J. Midwifery 2023, 3, 76–79. [Google Scholar]
- Sa’adah, A. Ovikariani Isolation of Moringa Leaf Flavonoids (Moringa oleifera L.) Using Column Chromatography. Sci. Community Pharm. J. 2023, 2, 85–90. [Google Scholar] [CrossRef]
- Lin, M.; Zhang, J.; Chen, X. Bioactive Flavonoids in Moringa oleifera and Their Health-Promoting Properties. J. Funct. Foods 2018, 47, 469–479. [Google Scholar] [CrossRef]
- Azizah, N.; Sakung, J.M. Analysis of Flavonoid Levels in Processed Moringa Leaf Products (Moringa oleifera Lam) as a Source of Chemistry Learning. Malays. J. Chem. 2023, 25, 63–68. [Google Scholar] [CrossRef]
- Kashyap, P.; Kumar, S.; Riar, C.S.; Jindal, N.; Baniwal, P.; Guiné, R.P.F.; Correia, P.M.R.; Mehra, R.; Kumar, H. Recent Advances in Drumstick (Moringa oleifera) Leaves Bioactive Compounds: Composition, Health Benefits, Bioaccessibility, and Dietary Applications. Antioxidants 2022, 11, 402. [Google Scholar] [CrossRef] [PubMed]
- Pujiastuti, R.S.E.; Salsabila, D.I.B.; Anwar, M.C. Potential of Moringa Leaf Cookies to Increast Breastmilk Production in Postpartum Mothers. Open Access Maced. J. Med. Sci. 2022, 10, 207–210. [Google Scholar] [CrossRef]
- Pratiwi, I.; Srimiati, M. Pengaruh Pemberian Puding Daun Kelor (Moringa oleifera) Terhadap Produksi Air Susu Ibu (ASI) Pada Ibu Menyusui Di Wilayah Kerja Puskesmas Kelurahan Cawang Jakarta Timur. J. Kesehat. Indones. (Indones. J. Health) 2020, 11, 53–57. [Google Scholar]
- Mahato, D.K.; Kargwal, R.; Kamle, M.; Sharma, B.; Pandhi, S.; Mishra, S.; Gupta, A.; Mahmud, M.M.C.; Gupta, M.K.; Singha, L.B.; et al. Ethnopharmacological Properties and Nutraceutical Potential of Moringa oleifera. Phytomedicine Plus 2022, 2, 100168. [Google Scholar] [CrossRef]
Sample Code | Sago Flour (%) | Corn Flour (%) | Moringa Leaf Powder (%) | Total (%) |
---|---|---|---|---|
A | 60 | 37 | 3 | 100 |
B | 70 | 25 | 5 | 100 |
C | 80 | 10 | 10 | 100 |
Analog Rice Formulation | Color | Aroma | Texture | Taste | Overall Acceptance |
---|---|---|---|---|---|
A | 2.51 ± 0.05 b | 2.53 ± 0.02 b | 2.48 ± 0.07 b | 2.49 ± 0.06 c | 2.50 ± 0.02 b |
B | 2.47 ± 0.10 b | 2.43 ± 0.06 b | 2.48 ± 0.08 b | 2.31 ± 0.06 b | 2.42 ± 0.08 b |
C | 2.07 ± 0.09 a | 2.12 ± 0.07 a | 2.17 ± 0.05 a | 1.91 ± 0.08 a | 2.07 ± 0.11 a |
% Sago Flour: Corn Flour: Moringa Leaf Powder | Yield (%) | Cooking Time (Minutes) | Bulk Density (g/mL) | Water Holding Capacity (%) | Swelling Power (%) |
---|---|---|---|---|---|
A (60:37:3) | 63.00 ± 12.60 a | 13.85 ± 0.30 a | 0.60 ± 0.01 a | 74.46 ± 0.98 a | 25.01 ± 3.01 a |
B (70:25:5) | 60.50 ± 16.89 a | 14.26 ± 0.17 a | 0.61 ± 0.01 ab | 75.08 ± 1.46 a | 29.10 ± 8.03 a |
C (80:10:10) | 61.08 ± 8.18 a | 14.06 ± 0.07 a | 0.63 ± 0.01 b | 73.21 ± 1.36 a | 27.03 ± 1.74 a |
% Sago Flour: Corn Flour: Moringa Leaf Powder | Moisture Level (%) | Ash Level (%) | Protein Level (%) | Fat Level (%) | Carbohydrate Level (%) | Crude Fiber Level (%) | Total Calories (Kcal) |
---|---|---|---|---|---|---|---|
A (60:37:3) | 6.22 ± 0.83 a | 1.04 ± 0.07 c | 4.08 ± 0.17 b | 0.46 ± 0.09 b | 88.21 ± 0.59 a | 3.42 ± 1.54 a | 382.62 ± 3.75 a |
B (70:25:5) | 6.80 ± 0.43 a | 0.70 ± 0.02 b | 3.53 ± 0.31 a | 0.27 ± 0.02 a | 88.71 ± 0.74 a | 3.04 ± 0.28 a | 380.67 ± 1.60 a |
C (80:10:10) | 7.06 ± 0.34 a | 0.50 ± 0.13 a | 3.72 ± 0.13 ab | 0.62 ± 0.02 c | 88.11 ± 0.51 a | 2.41 ± 0.51 a | 382.21 ± 1.56 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahendradatta, M.; Rombe, T.E.; Rahman, A.N.F.; Langkong, J.; Tawali, A.B.; Nadhifa, D.G. Analog Rice Based on Sago and Corn with the Addition of Moringa Leaf (Moringa oleifera L.) Powder as a Nutritional Vehicle for Breastfeeding Women. Foods 2025, 14, 2780. https://doi.org/10.3390/foods14162780
Mahendradatta M, Rombe TE, Rahman ANF, Langkong J, Tawali AB, Nadhifa DG. Analog Rice Based on Sago and Corn with the Addition of Moringa Leaf (Moringa oleifera L.) Powder as a Nutritional Vehicle for Breastfeeding Women. Foods. 2025; 14(16):2780. https://doi.org/10.3390/foods14162780
Chicago/Turabian StyleMahendradatta, Meta, Tri Ela Rombe, Andi Nur Faidah Rahman, Jumriah Langkong, Abu Bakar Tawali, and Dwi Ghina Nadhifa. 2025. "Analog Rice Based on Sago and Corn with the Addition of Moringa Leaf (Moringa oleifera L.) Powder as a Nutritional Vehicle for Breastfeeding Women" Foods 14, no. 16: 2780. https://doi.org/10.3390/foods14162780
APA StyleMahendradatta, M., Rombe, T. E., Rahman, A. N. F., Langkong, J., Tawali, A. B., & Nadhifa, D. G. (2025). Analog Rice Based on Sago and Corn with the Addition of Moringa Leaf (Moringa oleifera L.) Powder as a Nutritional Vehicle for Breastfeeding Women. Foods, 14(16), 2780. https://doi.org/10.3390/foods14162780