Effect of Technological Process and Temperature on Phospholipids in Buffalo Milk, Whey and Buttermilk
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Compositional Analyses
2.3. Phospholipids (PLs) Purification
2.4. Phospholipid Analysis by HPLC-ELSD
2.5. Statistical Analysis
3. Results and Discussion
3.1. Chemical Composition
3.2. Identification and Composition of Phospholipids
3.2.1. Influence of Temperature on PLs Profile
3.2.2. Influence of Technological Processes
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Venkat, M.; Chia, L.W.; Lambers, T.T. Milk Polar Lipids Composition and Functionality: A Systematic Review. Crit. Rev. Food Sci. Nutr. 2024, 64, 31–75. [Google Scholar] [CrossRef] [PubMed]
- Nie, C.; Zhao, Y.; Wang, X.; Li, Y.; Fang, B.; Wang, R.; Wang, X.; Liao, H.; Li, G.; Wang, P.; et al. Structure, Biological Functions, Separation, Properties, and Potential Applications of Milk Fat Globule Membrane (MFGM): A Review. Nutrients 2024, 16, 587. [Google Scholar] [CrossRef] [PubMed]
- Santamaria-Echart, A.; Fernandes, I.P.; Silva, S.C.; Rezende, S.C.; Colucci, G.; Dias, M.M.; Barreiro, M.F. New Trends in Natural Emulsifiers and Emulsion Technology for the Food Industry. In Natural Food Additives; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Vanderghem, C.; Bodson, P.; Danthine, S.; Paquot, M.; Deroanne, C.; Blecker, C. Milk Fat Globule Membrane and Buttermilks: From Composition to Valorization. Biotechnol. Agron. Soc. Environ. 2010, 14, 485–500. [Google Scholar]
- Pan, J.; Chen, M.; Li, N.; Han, R.; Yang, Y.; Zheng, N.; Zhao, S.; Zhang, Y. Bioactive Functions of Lipids in the Milk Fat Globule Membrane: A Comprehensive Review. Foods 2023, 12, 3755. [Google Scholar] [CrossRef]
- Huang, Y.; Wei, T.; Chen, F.; Tan, C.; Gong, Z.; Wang, F.; Deng, Z.; Li, J. Effects of Various Thermal Treatments on Interfacial Composition and Physical Properties of Bovine Milk Fat Globules. Food Res. Int. 2023, 167, 112580. [Google Scholar] [CrossRef]
- Argov-Argaman, N.; Glasser, T.; Muklada, H.; Hadaya, O.; Mesilati-Stahy, R.; Raz, C.; Landau, S.Y. Lipidome Changes, with a Focus on Phospholipids, Due to Feeding Systems and Processing in Goat Milk. Food Chem. 2021, 340, 127938. [Google Scholar] [CrossRef]
- Di Paolo, M.; Vuoso, V.; Ambrosio, R.L.; Balestrieri, A.; Bifulco, G.; Anastasio, A.; Marrone, R. Role of Feeding and Novel Ripening System to Enhance the Quality and Production Sustainability of Curd Buffalo Cheeses. Foods 2023, 12, 704. [Google Scholar] [CrossRef]
- FAO FAOSTAT (Food and Agriculture Organization of the United Nations Statistics Division). Comp. Data; FAO: Rome, Italy, 2014. [Google Scholar]
- Krakowska-Sieprawska, A.; Walczak-Skierska, J.; Ludwiczak, A.; Białczak, D.; Pomastowski, P. Compositional Dynamics of Lipid and Phospholipid Profiles during Milk Transport and Processing: Implications for Butter Quality and Stability. ACS Food Sci. Technol. 2025, 5, 1858–1868. [Google Scholar] [CrossRef]
- Zhu, D.; Damodaran, S. Dairy Lecithin from Cheese Whey Fat Globule Membrane: Its Extraction, Composition, Oxidative Stability, and Emulsifying Properties. JAOCS J. Am. Oil Chem. Soc. 2013, 90, 217–224. [Google Scholar] [CrossRef]
- Dash, K.K.; Fayaz, U.; Dar, A.H.; Shams, R.; Manzoor, S.; Sundarsingh, A.; Deka, P.; Khan, S.A. A Comprehensive Review on Heat Treatments and Related Impact on the Quality and Microbial Safety of Milk and Milk-Based Products. Food Chem. Adv. 2022, 1, 100041. [Google Scholar] [CrossRef]
- Fan, R.; Shi, R.; Ji, Z.; Du, Q.; Wang, J.; Jiang, H.; Han, R.; Yang, Y. Effects of Homogenization and Heat Treatment on Fatty Acids in Milk from Five Dairy Species. Food Qual. Saf. 2023, 7, fyac069. [Google Scholar] [CrossRef]
- Huang, Z.; Zheng, H.; Mohan, C.S.B.M.S.; Stipkovits, L.; Li, L.; Kulasiri, D. Production of Milk Phospholipid-Enriched Dairy Ingredients. Foods 2020, 9, 263. [Google Scholar] [CrossRef]
- Ubeyitogullari, A.; Rizvi, S.S.H. Production of High-Purity Phospholipid Concentrate from Buttermilk Powder Using Ethanol-Modified Supercritical Carbon Dioxide. J. Dairy Sci. 2020, 103, 8796–8807. [Google Scholar] [CrossRef] [PubMed]
- Kamchonemenukool, S.; Wongwaiwech, D.; Thongsook, T.; Weerawatanakorn, M. Extracting Phospholipids from Gum Using Liquified Dimethyl Ether versus Supercritical Fluid Carbon Dioxide. J. Agric. Food Res. 2025, 20, 101772. [Google Scholar] [CrossRef]
- Barry, K.M.; Dinan, T.G.; Kelly, P.M. Pilot Scale Production of a Phospholipid-Enriched Dairy Ingredient by Means of an Optimised Integrated Process Employing Enzymatic Hydrolysis, Ultrafiltration and Super-Critical Fluid Extraction. Innov. Food Sci. Emerg. Technol. 2017, 41, 301–306. [Google Scholar] [CrossRef]
- Krishnegowda, R.; Ravindra, M.R.; Sharma, M. Application of Supercritical Fluid Extraction for Extraction or Enrichment of Phospholipids in Egg and Dairy Products: A Review. J. Food Process Eng. 2021, 44, e13692. [Google Scholar] [CrossRef]
- Contarini, G.; Pelizzola, V.; Scurati, S.; Povolo, M. Polar Lipid of Donkey Milk Fat: Phospholipid, Ceramide and Cholesterol Composition. J. Food Compos. Anal. 2017, 57, 16–23. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Stanley, G.S. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar]
- Garau, V.; Manis, C.; Scano, P.; Caboni, P. Compositional Characteristics of Mediterranean Buffalo Milk and Whey. Dairy 2021, 2, 469–488. [Google Scholar] [CrossRef]
- Lee, H.; Padhi, E.; Hasegawa, Y.; Larke, J.; Parenti, M.; Wang, A.; Hernell, O.; Lönnerdal, B.; Slupsky, C. Compositional Dynamics of the Milk Fat Globule and Its Role in Infant Development. Front. Pediatr. 2018, 6, 313. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, F.; Fan, J.; Yu, W.; Yuan, Q.; Hou, H.; Du, Z. Quantitative Phospholipidomics and Screening for Significantly Different Phospholipids in Human Colostrum and Milk, and Dairy Animal Colostrum. Int. Dairy J. 2023, 146, 105741. [Google Scholar] [CrossRef]
- Roy, P.; Tomassoni, D.; Nittari, G.; Traini, E.; Amenta, F. Effects of Choline Containing Phospholipids on the Neurovascular Unit: A Review. Front. Cell. Neurosci. 2022, 16, 988759. [Google Scholar] [CrossRef]
- Boldyreva, L.V.; Morozova, M.V.; Saydakova, S.S.; Kozhevnikova, E.N. Fat of the Gut: Epithelial Phospholipids in Inflammatory Bowel Diseases. Int. J. Mol. Sci. 2021, 22, 11682. [Google Scholar] [CrossRef]
- Rossi, M.; Khalifeh, M.; Fiori, F.; Parpinel, M.; Serraino, D.; Pelucchi, C.; Negri, E.; Giacosa, A.; Crispo, A.; Collatuzzo, G.; et al. Dietary Choline and Sphingomyelin Choline Moiety Intake and Risk of Colorectal Cancer: A Case-Control Study. Eur. J. Clin. Nutr. 2023, 77, 905–910. [Google Scholar] [CrossRef]
- Abbas, H.M.; Kassem, J.M.; Salama, M.; Abd Elhamid, L.B. Milk Bioactive Lipids As Potential Healthy Fractions: A Review. Egypt. J. Chem. 2022, 65, 1389–1408. [Google Scholar] [CrossRef]
- Thum, C.; Roy, N.C.; Everett, D.W.; McNabb, W.C. Variation in Milk Fat Globule Size and Composition: A Source of Bioactives for Human Health. Crit. Rev. Food Sci. Nutr. 2023, 63, 87–113. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Roos, Y.H.; Miao, S. A Review of Factors Affecting the Structure, Compositions, and the Techno-Functionalities of Bovine Milk Fat Globule and Membrane. Trends Food Sci. Technol. 2024, 150, 104570. [Google Scholar] [CrossRef]
- Ménard, O.; Ahmad, S.; Rousseau, F.; Briard-Bion, V.; Gaucheron, F.; Lopez, C. Buffalo vs. Cow Milk Fat Globules: Size Distribution, Zeta-Potential, Compositions in Total Fatty Acids and in Polar Lipids from the Milk Fat Globule Membrane. Food Chem. 2010, 120, 544–551. [Google Scholar] [CrossRef]
- Berlese, M.; Corazzin, M.; Bovolenta, S. Environmental Sustainability Assessment of Buffalo Mozzarella Cheese Production Chain: A Scenario Analysis. J. Clean. Prod. 2019, 238, 117922. [Google Scholar] [CrossRef]
- Bintsis, T.; Papademas, P. Sustainable Approaches in Whey Cheese Production: A Review. Dairy 2023, 4, 249–270. [Google Scholar] [CrossRef]
Fat% | Protein% | |||
---|---|---|---|---|
Buffalo milk | LOC | A | 7.60 ± 0.03 a,x | 4.45 ± 0.12 |
B | 7.95 ± 0.10 b | 4.47 ± 0.22 | ||
GDO | A | 7.40 ± 0.07 a,y | 4.39 ± 0.04 | |
B | 7.90 ± 0.12 b | 4.40 ± 0.09 | ||
Buffalo whey | LOC | A | 0.16 ± 0.04 | 1.28 ± 0.03 |
B | 0.14 ± 0.08 x | 1.23 ± 0.04 | ||
GDO | A | 0.22 ± 0.13 | 1.28 ± 0.01 | |
B | 0.22 ± 0.09 y | 1.06 ± 0.16 | ||
Buttermilk | - | - | 0.33 ± 0.09 | 0.82 ± 0.08 |
Concentration in Polar Lipid (mg/100 g of Fat) | |||||
---|---|---|---|---|---|
Buffalo Milk | Buffalo Whey | ||||
Items | Dairy | LOC | GDO | LOC | GDO |
PI | A | 6.34 ± 1.29 | 5.94 ± 0.09 | 224.77 ± 6.14 | 121.00 ± 8.53 |
B | 7.39 ± 1.33 | 8.43 ± 0.97 | 147.43 ± 10.77 | 99.99 ± 6.33 | |
PE | A | 33.06 ± 19.83 | 26.01 ± 6.99 | 836.93 ± 66.53 | 453.41 ± 16.50 |
B | 18.62 ± 0.64 | 27.13 ± 9.19 | 594.71 ± 122.40 | 341.51 ± 88.30 | |
PS | A | 7.62 ± 0.26 | 7.23 ± 0.04 | 362.60 ± 4.46 | 305.82 ± 2.54 |
B | 9.18 ± 1.79 | 13.77 ± 2.97 | 268.33 ± 42.55 | 275.34 ± 43.89 | |
PC | A | 17.62 ± 7.61 | 15.71 ± 4.82 | 727.91 ± 38.08 | 465.42 ± 15.66 |
B | 12.55 ± 3.34 | 16.99 ± 6.68 | 517.76 ± 97.55 | 340.67 ± 34.38 | |
SM | A | 13.95 ± 4.76 | 14.67 ± 6.43 | 434.81 ± 49.54 | 309.25 ± 14.45 |
B | 10.56 ± 5.40 | 14.66 ± 10.23 | 381.70 ± 22.79 | 253.54 ± 12.09 | |
Polar lipids | A | 78.59 ± 30.61 | 69.56 ± 18.11 | 2587.03 ± 155.83 | 1654.90 ± 52.62 |
B | 58.31 ± 17.37 | 80.98 ± 27.61 | 1909.95 ± 264.54 | 1311.04 ± 155.76 |
Relative Proportion of Polar Lipids (% of Polar Lipids) | |||||
---|---|---|---|---|---|
Buffalo Milk | Buffalo Whey | ||||
Items | Dairy | LOC | GDO | LOC | GDO |
PI | A | 8.58 ± 2.02 | 8.54 ± 2.44 | 9.07 ± 0.24 | 7.48 ± 0.53 |
B | 12.74 ± 0.84 | 10.95 ± 2.55 | 7.83 ± 1.64 | 7.67 ± 0.54 | |
PE | A | 39.75 ± 9.53 | 37.39 ± 0.32 | 33.79 ± 2.68 | 28.03 ± 1.02 |
B | 32.79 ± 6.95 | 33.51 ± 2.92 | 31.02 ± 1.58 | 25.76 ± 4.01 | |
PS | A | 11.03 ± 5.25 | 10.39 ± 2.86 | 14.64 ± 0.18 | 18.90 ± 0.16 |
B | 16.93 ± 1.22 | 17.77 ± 4.81 | 14.03 ± 0.28 | 21.07 ± 2.87 | |
PC | A | 22.08 ± 1.58 | 22.59 ± 1.09 | 29.39 ± 1.54 | 28.77 ± 0.97 |
B | 20.74 ± 1.48 | 20.80 ± 1.55 | 27.01 ± 1.36 | 26.03 ± 0.65 | |
SM | A | 18.57 ± 5.19 | 21.08 ± 3.89 | 17.56 ± 2.00 | 19.12 ± 0.89 |
B | 16.79 ± 3.39 | 16.97 ± 6.43 | 20.09 ± 1.59 | 19.47 ± 1.80 |
Concentration in Polar Lipid (mg/100 g of Fat) | |||
---|---|---|---|
Items | Whey A | Whey B | Buttermilk |
PI | 224.77 ± 6.14 | 147.43 ± 10.77 | 73.51 ± 8.63 |
PE | 836.93 ± 66.53 | 594.71 ± 122.40 | 412.26 ± 100.97 |
PS | 362.60 ± 4.46 | 268.33 ± 42.55 | 163.97 ± 47.69 |
PC | 727.91 ± 38.08 | 517.76 ± 97.55 | 309.56 ± 52.99 |
SM | 434.81 ± 49.54 | 381.70 ± 22.79 | 253.50 ± 44.38 |
Polar lipids | 2587.03 ± 155.83 | 1909.95 ± 264.54 | 1212.80 ± 232.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Paolo, M.; Pelizzola, V.; De Luca, L.; Casalino, L.; Polizzi, G.; Povolo, M.; Marrone, R. Effect of Technological Process and Temperature on Phospholipids in Buffalo Milk, Whey and Buttermilk. Foods 2025, 14, 2756. https://doi.org/10.3390/foods14152756
Di Paolo M, Pelizzola V, De Luca L, Casalino L, Polizzi G, Povolo M, Marrone R. Effect of Technological Process and Temperature on Phospholipids in Buffalo Milk, Whey and Buttermilk. Foods. 2025; 14(15):2756. https://doi.org/10.3390/foods14152756
Chicago/Turabian StyleDi Paolo, Marika, Valeria Pelizzola, Lucia De Luca, Loriana Casalino, Giulia Polizzi, Milena Povolo, and Raffaele Marrone. 2025. "Effect of Technological Process and Temperature on Phospholipids in Buffalo Milk, Whey and Buttermilk" Foods 14, no. 15: 2756. https://doi.org/10.3390/foods14152756
APA StyleDi Paolo, M., Pelizzola, V., De Luca, L., Casalino, L., Polizzi, G., Povolo, M., & Marrone, R. (2025). Effect of Technological Process and Temperature on Phospholipids in Buffalo Milk, Whey and Buttermilk. Foods, 14(15), 2756. https://doi.org/10.3390/foods14152756