Potential of Marine Biomolecules: Advances in Extraction and Applications of Proteins, Polysaccharides, and Antioxidant Compounds
Abstract
1. Introduction
2. Methodology
3. Marine Proteins
3.1. Collagen
3.2. Gelatine
3.3. Protein Extraction Methods
4. Marine Polysaccharides
4.1. Marine Animal Polysaccharides
4.1.1. Hyaluronic Acid
4.1.2. Glycogen
4.1.3. Chitin
4.1.4. Chitosan
4.2. Macro- and Microalgae Polysaccharides
4.2.1. Red Macroalgae
Carrageenan
Agar
Funori
4.2.2. Brown Macroalgae
Alginate
Fucoidan
4.2.3. Green Macroalgae
4.3. Polysaccharide Extraction Methods
5. Sources of Marine Antioxidants
5.1. Bacteria and Fungi
5.2. Invertebrates
5.3. Microalgae
5.4. Macroalgae
5.5. Extraction of Antioxidant Compounds from Marine Sources
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Veríssimo, N.V.; Mussagy, C.U.; Oshiro, A.A.; Mendonça, C.M.N.; Santos-Ebinuma, V.d.C.; Pessoa, A.; Oliveira, R.P.d.S.; Pereira, J.F.B. From Green to Blue Economy: Marine Biorefineries for a Sustainable Ocean-Based Economy. Green Chem. 2021, 23, 9377–9400. [Google Scholar] [CrossRef]
- Verdugo, P. Dynamics of Marine Biopolymer Networks. Polym. Bull. 2007, 58, 139–143. [Google Scholar] [CrossRef]
- Rudolph, T.B.; Ruckelshaus, M.; Swilling, M.; Allison, E.H.; Österblom, H.; Gelcich, S.; Mbatha, P. A Transition to Sustainable Ocean Governance. Nat. Commun. 2020, 11, 3600. [Google Scholar] [CrossRef] [PubMed]
- Samalens, F.; Thomas, M.; Claverie, M.; Castejon, N.; Zhang, Y.; Pigot, T.; Blanc, S.; Fernandes, S.C.M. Progresses and Future Prospects in Biodegradation of Marine Biopolymers and Emerging Biopolymer-Based Materials for Sustainable Marine Ecosystems. Green Chem. 2022, 24, 1762–1779. [Google Scholar] [CrossRef]
- Ribeiro, S.; Herz, M.; Burkett, M.; Mora, M.B.; Bueger, C.; Liebetrau, T.; Andrade, L.; Costa, C.R.; Santos, L.R. Shifts in World Geopolitics: Cooperation and Competition in the Atlantic; Instituto da Defesa Nacional: Lisboa, Portugal, 2022; pp. 1–62.
- Fróna, D.; Szenderák, J.; Harangi-Rákos, M. The Challenge of Feeding the World. Sustainability 2019, 11, 5816. [Google Scholar] [CrossRef]
- Roy, S.; Chawla, R.; Santhosh, R.; Thakur, R.; Sarkar, P.; Zhang, W. Agar-Based Edible Films and Food Packaging Application: A Comprehensive Review. Trends Food Sci. Technol. 2023, 141, 104198. [Google Scholar] [CrossRef]
- Lomartire, S.; Marques, J.C.; Gonçalves, A.M.M. An Overview of the Alternative Use of Seaweeds to Produce Safe and Sustainable Bio-Packaging. Appl. Sci. 2022, 12, 3123. [Google Scholar] [CrossRef]
- da Rocha, M.; Alemán, A.; Romani, V.P.; López-Caballero, M.E.; Gómez-Guillén, M.C.; Montero, P.; Prentice, C. Effects of Agar Films Incorporated with Fish Protein Hydrolysate or Clove Essential Oil on Flounder (Paralichthys Orbignyanus) Fillets Shelf-Life. Food Hydrocoll. 2018, 81, 351–363. [Google Scholar] [CrossRef]
- Rajan, R.; S.R, R.R. Seaweed Based Edible Films and Coatings for Fish Products Packaging: An Ecofriendly Solution to Pollution. In Emerging Trends and Innovative Packaging Technologies in Seafood Industrial Practices (ETSIP); National Institute of Agricultural Extension Management: Hyderabad, India, 2022; pp. 73–79. [Google Scholar]
- Mahmud, N.; Islam, J.; Tahergorabi, R. Marine Biopolymers: Applications in Food Packaging. Processes 2021, 9, 2245. [Google Scholar] [CrossRef]
- Eriksen, M.; Lebreton, L.C.M.; Carson, H.S.; Thiel, M.; Moore, C.J.; Borerro, J.C.; Galgani, F.; Ryan, P.G.; Reisser, J. Plastic Pollution in the World’s Oceans: More than 5 Trillion Plastic Pieces Weighing over 250,000 Tons Afloat at Sea. PLoS ONE 2014, 9, e111913. [Google Scholar] [CrossRef] [PubMed]
- Thushari, G.G.N.; Senevirathna, J.D.M. Plastic Pollution in the Marine Environment. Heliyon 2020, 6, e04709. [Google Scholar] [CrossRef] [PubMed]
- Corinaldesi, C.; Canensi, S.; Dell’Anno, A.; Tangherlini, M.; Capua, I.D.; Varrella, S.; Willis, T.J.; Cerrano, C.; Danovaro, R. Multiple Impacts of Microplastics Can Threaten Marine Habitat-Forming Species. Commun. Biol. 2021, 4, 431. [Google Scholar] [CrossRef] [PubMed]
- Wabnitz, C.; Nichols, W. Editorial: Plastic Pollution: An Ocean Emergency. Mar. Turt. News Lett. 2010, 129, 1. [Google Scholar]
- Vital, S.A.; Cardoso, C.; Avio, C.; Pittura, L.; Regoli, F.; Bebianno, M.J. Do Microplastic Contaminated Seafood Consumption Pose a Potential Risk to Human Health? Mar. Pollut. Bull. 2021, 171, 112769. [Google Scholar] [CrossRef] [PubMed]
- Barracosa, H.; de los Santos, C.B.; Martins, M.; Freitas, C.; Santos, R. Ocean Literacy to Mainstream Ecosystem Services Concept in Formal and Informal Education: The Example of Coastal Ecosystems of Southern Portugal. Front. Mar. Sci. 2019, 6, 626. [Google Scholar] [CrossRef]
- Nekvapil, F.; Aluas, M.; Barbu-Tudoran, L.; Suciu, M.; Bortnic, R.-A.; Glamuzina, B.; Pinzaru, S.C. From Blue Bioeconomy toward Circular Economy through High-Sensitivity Analytical Research on Waste Blue Crab Shells. ACS Sustain. Chem. Eng. 2019, 7, 16820–16827. [Google Scholar] [CrossRef]
- Rayner, R.; Jolly, C.; Gouldman, C. Ocean Observing and the Blue Economy. Front. Mar. Sci. 2019, 6, 330. [Google Scholar] [CrossRef]
- Sumaila, U.R.; Walsh, M.; Hoareau, K.; Cox, A.; Teh, L.; Abdallah, P.; Akpalu, W.; Anna, Z.; Benzaken, D.; Crona, B.; et al. Financing a Sustainable Ocean Economy. Nat. Commun. 2021, 12, 3259. [Google Scholar] [CrossRef] [PubMed]
- Bennett, N.J.; Blythe, J.; White, C.S.; Campero, C. Blue Growth and Blue Justice: Ten Risks and Solutions for the Ocean Economy. Mar. Policy 2021, 125, 104387. [Google Scholar] [CrossRef]
- Prabhu, M.S.; Israel, A.; Palatnik, R.R.; Zilberman, D.; Golberg, A. Integrated Biorefinery Process for Sustainable Fractionation of Ulva Ohnoi (Chlorophyta): Process Optimization and Revenue Analysis. J. Appl. Phycol. 2020, 32, 2271–2282. [Google Scholar] [CrossRef]
- Marinho, B.; Coelho, C.; Hanson, H.; Tussupova, K. Coastal Management in Portugal: Practices for Reflection and Learning. Ocean Coast. Manag. 2019, 181, 104874. [Google Scholar] [CrossRef]
- Ebarvia, M.C. Economic Assessment of Oceans for Sustainable Blue Economy Development. J. Ocean Coast. Econ. 2016, 2, 7. [Google Scholar] [CrossRef]
- Avena-Bustillos, R.J.; Olsen, C.W.; Olson, D.A.; Chiou, B.; Yee, E.; Bechtel, P.J.; McHugh, T.H. Water Vapor Permeability of Mammalian and Fish Gelatin Films. J. Food Sci. 2006, 71, E202–E207. [Google Scholar] [CrossRef]
- Huang, S.; Yu, B.; Wang, B.; Soladoye, O.P.; Benjakul, S.; Zhang, Y.; Fu, Y. Revalorization of Fish Viscera as a Sustainable Source of Proteins, Lipids and Polysaccharides in the Food Industry. Crit. Rev. Food Sci. Nutr. 2024, 0, 1–27. [Google Scholar] [CrossRef]
- Albertos, I.; Martin-Diana, A.B.; Burón, M.; Rico, D. Development of Functional Bio-Based Seaweed (Himanthalia Elongata and Palmaria Palmata) Edible Films for Extending the Shelflife of Fresh Fish Burgers. Food Packag. Shelf Life 2019, 22, 100382. [Google Scholar] [CrossRef]
- Kumar, U.S.U.; Abdulmadjid, S.N.; Olaiya, N.G.; Amirul, A.A.; Rizal, S.; Rahman, A.A.; Alfatah, T.; Mistar, E.M.; Khalil, H.P.S.A. Extracted Compounds from Neem Leaves as Antimicrobial Agent on the Physico-Chemical Properties of Seaweed-Based Biopolymer Films. Polymers 2020, 12, 1119. [Google Scholar] [CrossRef]
- Li, B.; Song, K.; Meng, J.; Li, L.; Zhang, G. Integrated Application of Transcriptomics and Metabolomics Provides Insights into Glycogen Content Regulation in the Pacific Oyster Crassostrea Gigas. BMC Genomics 2017, 18, 713. [Google Scholar] [CrossRef] [PubMed]
- Dianratri, I.; Hadiyanto, H.; Khoironi, A.; Pratiwi, W.Z. The Influence of Polypropylene-and Polyethylene Microplastics on the Quality of Spirulina Sp. Harvests. Food Res. 2020, 4, 1739–1743. [Google Scholar] [CrossRef] [PubMed]
- Shiu, R.-F.; Vazquez, C.I.; Chiang, C.-Y.; Chiu, M.-H.; Chen, C.-S.; Ni, C.-W.; Gong, G.-C.; Quigg, A.; Santschi, P.H.; Chin, W.-C. Nano- and Microplastics Trigger Secretion of Protein-Rich Extracellular Polymeric Substances from Phytoplankton. Sci. Total Environ. 2020, 748, 141469. [Google Scholar] [CrossRef] [PubMed]
- Michalak, I.; Tiwari, R.; Dhawanc, M.; Alagawany, M.; Farag, M.R.; Sharun, K.; Emran, T.B.; Dham, K. Antioxidant Effects of Seaweeds and Their Active Compounds on Animal Health and Production—A Review. Vet. Q. 2022, 42, 48–67. [Google Scholar] [CrossRef] [PubMed]
- Ganesan, A.R.; Mohanram, M.S.G.; Balasubramanian, B.; Kim, I.H.; Seedevi, P.; Mohan, K.; Kanagasabai, S.; Arasu, M.V.; Al-Dhabi, N.A.; Ignacimuthu, S. Marine Invertebrates’ Proteins: A Recent Update on Functional Property. J. King Saud Univ. Sci. 2020, 32, 1496–1502. [Google Scholar] [CrossRef]
- Vladkova, T.; Georgieva, N.; Staneva, A.; Gospodinova, D. Recent Progress in Antioxidant Active Substances from Marine Biota. Antioxidants 2022, 11, 439. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Pei, H.; Xiang, W.; Li, T.; Lin, S.; Wu, J.; Chen, Z.; Wu, H.; Li, C.; Wu, H. Rapid Screening of Microalgae as Potential Sources of Natural Antioxidants. Foods 2023, 12, 2652. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.S.; Hong, S.H.; Park, J.-W. Evaluation of Microplastic Toxicity in Accordance with Different Sizes and Exposure Times in the Marine Copepod Tigriopus japonicus. Mar. Environ. Res. 2020, 153, 104838. [Google Scholar] [CrossRef] [PubMed]
- Coppola, D.; Oliviero, M.; Vitale, G.A.; Lauritano, C.; D’Ambra, I.; Iannace, S.; de Pascale, D. Marine Collagen from Alternative and Sustainable Sources: Extraction, Processing and Applications. Mar. Drugs 2020, 18, 214. [Google Scholar] [CrossRef] [PubMed]
- Silvipriya, K.; Kumar, K.; Bhat, A.; Kumar, B.; John, A.; Lakshmanan, P. Collagen: Animal Sources and Biomedical Application. J. Appl. Pharm. Sci. 2015, 5, 123–127. [Google Scholar] [CrossRef]
- Milovanovic, I.; Hayes, M. Marine Gelatine from Rest Raw Materials. Appl. Sci. 2018, 8, 2407. [Google Scholar] [CrossRef]
- Cherim, M.; Mustafa, A.; Cadar, E.; Lupa, N. Collagen Sources and Areas of Use. Eur. J. Med. Nat. Sci. 2019, 2, 8–13. [Google Scholar] [CrossRef]
- Gauza-Włodarczyk, M.; Kubisz, L.; Mielcarek, S.; Włodarczyk, D. Comparison of Thermal Properties of Fish Collagen and Bovine Collagen in the Temperature Range 298–670K. Mater. Sci. Eng. C 2017, 80, 468–471. [Google Scholar] [CrossRef] [PubMed]
- Trigo, M.; Nozal, P.; Miranda, J.M.; Aubourg, S.P.; Barros-Velázquez, J. Antimicrobial and Antioxidant Effect of Lyophilized Fucus Spiralis Addition on Gelatin Film during Refrigerated Storage of Mackerel. Food Control 2022, 131, 108416. [Google Scholar] [CrossRef]
- Crizel, T.d.M.; Rios, A.d.O.; Alves, V.D.; Bandarra, N.; Moldão-Martins, M.; Flôres, S.H. Biodegradable Films Based on Gelatin and Papaya Peel Microparticles with Antioxidant Properties. Food Bioprocess Technol. 2018, 11, 536–550. [Google Scholar] [CrossRef]
- Islam, J.; Solval, K.E.M. Recent Advancements in Marine Collagen: Exploring New Sources, Processing Approaches, and Nutritional Applications. Mar. Drugs 2025, 23, 190. [Google Scholar] [CrossRef] [PubMed]
- Farooq, S.; Ahmad, M.I.; Zheng, S.; Ali, U.; Li, Y.; Shixiu, C.; Zhang, H. A Review on Marine Collagen: Sources, Extraction Methods, Colloids Properties, and Food Applications. Collagen Leather 2024, 6, 11. [Google Scholar] [CrossRef]
- Ahmed, R.; Haq, M.; Chun, B.-S. Characterization of Marine Derived Collagen Extracted from the By-Products of Bigeye Tuna (Thunnus Obesus). Int. J. Biol. Macromol. 2019, 135, 668–676. [Google Scholar] [CrossRef] [PubMed]
- Ampitiya, A.G.D.M.; Gonapinuwala, S.T.; Fernando, C.A.N.; de Croos, M.D.S.T. Extraction and Characterisation of Type I Collagen from the Skin Offcuts Generated at the Commercial Fish Processing Centres. J. Food Sci. Technol. 2023, 60, 484–493. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Wang, L.; Cai, P.; Li, P.; Zhang, M.; Sun, Z.; Sun, C.; Xu, W.; Wang, D. Effect of Ultrasound Assisted Extraction on the Physicochemical and Functional Properties of Collagen from Soft-Shelled Turtle Calipash. Int. J. Biol. Macromol. 2017, 105, 1602–1610. [Google Scholar] [CrossRef] [PubMed]
- Pozzolini, M.; Scarfi, S.; Gallus, L.; Castellano, M.; Vicini, S.; Cortese, K.; Gagliani, M.C.; Bertolino, M.; Costa, G.; Giovine, M. Production, Characterization and Biocompatibility Evaluation of Collagen Membranes Derived from Marine Sponge Chondrosia Reniformis Nardo, 1847. Mar. Drugs 2018, 16, 111. [Google Scholar] [CrossRef] [PubMed]
- Liang, Q.; Wang, L.; Sun, W.; Wang, Z.; Xu, J.; Ma, H. Isolation and Characterization of Collagen from the Cartilage of Amur Sturgeon (Acipenser Schrenckii). Process Biochem. 2014, 49, 318–323. [Google Scholar] [CrossRef]
- Ismail, N.; Abdullah, H.Z. The Extraction of Gelatin from Black Tilapia Fish Skins with Different Acid Concentration. J. Phys. Conf. Ser. 2019, 1150, 012041. [Google Scholar] [CrossRef]
- Jiang, L. Preparation of Fish-Scale Gelatins by Mild Hydrolysis and Their Characterization. J. Polym. Environ. 2013, 21, 564–567. [Google Scholar] [CrossRef]
- Moosavi-Nasab, M.; Yazdani-Dehnavi, M.; Mirzapour-Kouhdasht, A. The Effects of Enzymatically Aided Acid-Swelling Process on Gelatin Extracted from Fish by-Products. Food Sci. Nutr. 2020, 8, 5017–5025. [Google Scholar] [CrossRef] [PubMed]
- Tu, Z.; Huang, T.; Wang, H.; Sha, X.; Shi, Y.; Huang, X.; Man, Z.; Li, D. Physico-Chemical Properties of Gelatin from Bighead Carp (Hypophthalmichthys Nobilis) Scales by Ultrasound-Assisted Extraction. J. Food Sci. Technol. 2015, 52, 2166–2174. [Google Scholar] [CrossRef] [PubMed]
- Asih, I.D.; Kemala, T.; Nurilmala, M. Halal Gelatin Extraction from Patin Fish Bone (Pangasius Hypophthalmus) by-Product with Ultrasound-Assisted Extraction. IOP Conf. Ser. Earth Environ. Sci. 2019, 299, 012061. [Google Scholar] [CrossRef]
- Jami, M.S.; Jaswir, I.; Octavianti, F.; Yusof, N.; Jamal, P. Optimization of Process Condition for Extraction of Gelatin from Red Tilapia Skin (Oreochromis Niloticus) by High Pressure Processing (HPP). Int. Food Res. J. Malays. 2017, 24, S340–S347. [Google Scholar]
- Noor, N.Q.I.M.; Razali, R.S.; Ismail, N.K.; Ramli, R.A.; Razali, U.H.M.; Bahauddin, A.R.; Zaharudin, N.; Rozzamri, A.; Bakar, J.; Shaarani, S.M. Application of Green Technology in Gelatin Extraction: A Review. Processes 2021, 9, 2227. [Google Scholar] [CrossRef]
- Mirzapour-Kouhdasht, A.; Sabzipour, F.; Taghizadeh, M.S.; Moosavi-Nasab, M. Physicochemical, Rheological, and Molecular Characterization of Colloidal Gelatin Produced from Common Carp by-Products Using Microwave and Ultrasound-Assisted Extraction. J. Texture Stud. 2019, 50, 416–425. [Google Scholar] [CrossRef] [PubMed]
- Prajaputra, V.; Isnaini, N.; Maryam, S.; Ernawati, E.; Deliana, F.; Haridhi, H.A.; Fadli, N.; Karina, S.; Agustina, S.; Nurfadillah, N.; et al. Exploring Marine Collagen: Sustainable Sourcing, Extraction Methods, and Cosmetic Applications. S. Afr. J. Chem. Eng. 2024, 47, 197–211. [Google Scholar] [CrossRef]
- Suleria, H.A.R.; Gobe, G.; Masci, P.; Osborne, S.A. Marine Bioactive Compounds and Health Promoting Perspectives; Innovation Pathways for Drug Discovery. Trends Food Sci. Technol. 2016, 50, 44–55. [Google Scholar] [CrossRef]
- Mostafavi, F.S.; Zaeim, D. Agar-Based Edible Films for Food Packaging Applications—A Review. Int. J. Biol. Macromol. 2020, 159, 1165–1176. [Google Scholar] [CrossRef] [PubMed]
- Alabaraoye, E.; Achilonu, M.; Hester, R. Biopolymer (Chitin) from Various Marine Seashell Wastes: Isolation and Characterization. J. Polym. Environ. 2018, 26, 2207–2218. [Google Scholar] [CrossRef]
- Balti, R.; Ben Mansour, M.; Zayoud, N.; Le Balc’h, R.; Brodu, N.; Arhaliass, A.; Massé, A. Active Exopolysaccharides Based Edible Coatings Enriched with Red Seaweed (Gracilaria Gracilis) Extract to Improve Shrimp Preservation during Refrigerated Storage. Food Biosci. 2020, 34, 100522. [Google Scholar] [CrossRef]
- Polat, S.; Trif, M.; Rusu, A.; Šimat, V.; Čagalj, M.; Alak, G.; Meral, R.; Özogul, Y.; Polat, A.; Özogul, F. Full Article: Recent Advances in Industrial Applications of Seaweeds. Crit. Rev. Food Sci. Nutr. 2023, 63, 4979–5008. [Google Scholar] [CrossRef] [PubMed]
- Abatangelo, G.; Vindigni, V.; Avruscio, G.; Pandis, L.; Brun, P. Hyaluronic Acid: Redefining Its Role. Cells 2020, 9, 1743. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Marquez, C.D.; Arteaga-Marin, S.; Rivas-Sánchez, A.; Autrique-Hernández, R.; Castro-Muñoz, R. A Review on Current Strategies for Extraction and Purification of Hyaluronic Acid. Int. J. Mol. Sci. 2022, 23, 6038. [Google Scholar] [CrossRef] [PubMed]
- Adler, I.; Kotta, J.; Robal, M.; Humayun, S.; Vene, K.; Tuvikene, R. Valorization of Baltic Sea Farmed Blue Mussels: Chemical Profiling and Prebiotic Potential for Nutraceutical and Functional Food Development. Food Chem. X 2024, 23, 101736. [Google Scholar] [CrossRef] [PubMed]
- Li, W.-F.; Li, S.; Liu, J.; Wang, X.-F.; Chen, H.-Y.; Hao, H.; Wang, K.-J. Vital Carbohydrate and Lipid Metabolites in Serum Involved in Energy Metabolism during Pubertal Molt of Mud Crab (Scylla Paramamosain). Metabolites 2021, 11, 651. [Google Scholar] [CrossRef] [PubMed]
- Tikunov, A.P.; Johnson, C.B.; Lee, H.; Stoskopf, M.K.; Macdonald, J.M. Metabolomic Investigations of American Oysters Using 1H-NMR Spectroscopy. Mar. Drugs 2010, 8, 2578–2596. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.; Fan, X.; Zhang, L.; Zheng, H.; Zhang, C.; Yuan, J. Extraction, Purification, and Structure Characterization of Polysaccharides from Crassostrea Rivularis. Food Sci. Nutr. 2018, 6, 1621–1628. [Google Scholar] [CrossRef] [PubMed]
- Balaji, A.B.; Pakalapati, H.; Khalid, M.; Walvecar, R.; Siddiqui, H. Natural and Synthetic Biocompatible and Biodegradable Polymers. In Biodegradable and Biocompatible Polymer Composites; Woodhead Publishing: Cambridge, UK, 2018; pp. 3–32. ISBN 978-0-08-100970-3. [Google Scholar]
- Hayes, M. Chitin, Chitosan and Their Derivatives from Marine Rest Raw Materials: Potential Food and Pharmaceutical Applications. In Marine Bioactive Compounds: Sources, Characterization and Applications; Hayes, M., Ed.; Springer: Boston, MA, USA, 2012; pp. 115–128. ISBN 978-1-4614-1247-2. [Google Scholar]
- Mohan, K.; Ganesan, A.R.; Ezhilarasi, P.N.; Kondamareddy, K.K.; Rajan, D.K.; Sathishkumar, P.; Rajarajeswaran, J.; Conterno, L. Green and Eco-Friendly Approaches for the Extraction of Chitin and Chitosan: A Review. Carbohydr. Polym. 2022, 287, 119349. [Google Scholar] [CrossRef] [PubMed]
- Kurita, K. Chitin and Chitosan: Functional Biopolymers from Marine Crustaceans. Mar. Biotechnol. 2006, 8, 203–226. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Lim, P.N.; Tong, S.Y.; Thian, E.S. Development of Grapefruit Seed Extract-Loaded Poly(ε-Caprolactone)/Chitosan Films for Antimicrobial Food Packaging. Food Packag. Shelf Life 2019, 22, 100396. [Google Scholar] [CrossRef]
- Crizel, T.d.M.; Rios, A.d.O.; Alves, V.D.; Bandarra, N.; Moldão-Martins, M.; Hickmann Flôres, S. Active Food Packaging Prepared with Chitosan and Olive Pomace. Food Hydrocoll. 2018, 74, 139–150. [Google Scholar] [CrossRef]
- Pabast, M.; Shariatifar, N.; Beikzadeh, S.; Jahed, G. Effects of Chitosan Coatings Incorporating with Free or Nano-Encapsulated Satureja Plant Essential Oil on Quality Characteristics of Lamb Meat. Food Control 2018, 91, 185–192. [Google Scholar] [CrossRef]
- Bhatt, P.; Joshi, S.; Urper Bayram, G.M.; Khati, P.; Simsek, H. Developments and Application of Chitosan-Based Adsorbents for Wastewater Treatments. Environ. Res. 2023, 226, 115530. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, C.; Liu, H.; Su, J.; Lan, C.Q.; Zhong, M.; Hu, X. Production, Isolation and Bioactive Estimation of Extracellular Polysaccharides of Green Microalga Neochloris Oleoabundans. Algal Res. 2020, 48, 101883. [Google Scholar] [CrossRef]
- Costa, J.A.V.; Lucas, B.F.; Alvarenga, A.G.P.; Moreira, J.B.; de Morais, M.G. Microalgae Polysaccharides: An Overview of Production, Characterization, and Potential Applications. Polysaccharides 2021, 2, 759–772. [Google Scholar] [CrossRef]
- Morais, M.G.; Santos, T.D.; Moraes, L.; Vaz, B.S.; Morais, E.G.; Costa, J.A.V. Exopolysaccharides from Microalgae: Production in a Biorefinery Framework and Potential Applications. Bioresour. Technol. Rep. 2022, 18, 101006. [Google Scholar] [CrossRef]
- Lim, C.; Yusoff, S.; Ng, C.G.; Lim, P.E.; Ching, Y.C. Bioplastic Made from Seaweed Polysaccharides with Green Production Methods. J. Environ. Chem. Eng. 2021, 9, 105895. [Google Scholar] [CrossRef]
- Zia, K.M.; Tabasum, S.; Nasif, M.; Sultan, N.; Aslam, N.; Noreen, A.; Zuber, M. A Review on Synthesis, Properties and Applications of Natural Polymer Based Carrageenan Blends and Composites. Int. J. Biol. Macromol. 2017, 96, 282–301. [Google Scholar] [CrossRef] [PubMed]
- Lomartire, S.; Gonçalves, A.M.M. Novel Technologies for Seaweed Polysaccharides Extraction and Their Use in Food with Therapeutically Applications—A Review. Foods 2022, 11, 2654. [Google Scholar] [CrossRef] [PubMed]
- Perera, K.Y.; Sharma, S.; Pradhan, D.; Jaiswal, A.K.; Jaiswal, S. Seaweed Polysaccharide in Food Contact Materials (Active Packaging, Intelligent Packaging, Edible Films, and Coatings). Foods 2021, 10, 2088. [Google Scholar] [CrossRef] [PubMed]
- Abdul Khalil, H.P.S.; Tye, Y.Y.; Ismail, Z.; Leong, J.Y.; Saurabh, C.K.; Lai, T.K.; Chong, E.W.N.; Aditiawati, P.; Tahir, P.M.; Dungani, R. Oil Palm Shell Nanofiller in Seaweed-Based Composite Film: Mechanical, Physical, and Morphological Properties. BioResources 2017, 12, 5996–6010. [Google Scholar] [CrossRef]
- Cikoš, A.-M.; Čož-Rakovac, R.; Šubarić, D.; Jerković, I.; Ačkar, Đ.; Jokić, S. Macroalgae in the Food Industry—Opportunities and Challenges. Eng. Power Bull. Croat. Acad. Eng. 2020, 15, 14–19. [Google Scholar]
- Premarathna, A.D.; Ahmed, T.A.E.; Kulshreshtha, G.; Humayun, S.; Shormeh Darko, C.N.; Rjabovs, V.; Hammami, R.; Critchley, A.T.; Tuvikene, R.; Hincke, M.T. Polysaccharides from Red Seaweeds: Effect of Extraction Methods on Physicochemical Characteristics and Antioxidant Activities. Food Hydrocoll. 2024, 147, 109307. [Google Scholar] [CrossRef]
- Tavassoli-Kafrani, E.; Shekarchizadeh, H.; Masoudpour-Behabadi, M. Development of Edible Films and Coatings from Alginates and Carrageenans. Carbohydr. Polym. 2016, 137, 360–374. [Google Scholar] [CrossRef] [PubMed]
- Gomez, L.P.; Alvarez, C.; Zhao, M.; Tiwari, U.; Curtin, C.; Garcia-Vaquero, M.; Tiwari, B.K. Innovative Processing Strategies and Technologies to Obtain Hydrocolloids from Macroalgae for Food Applications. Carbohydr. Polym. 2020, 248, 116784. [Google Scholar] [CrossRef] [PubMed]
- Catenazzi, K. Evaluation of the Use of Funori for Consolidation of Powdering Paint Layers in Wall Paintings. Stud. Conserv. 2017, 62, 96–103. [Google Scholar] [CrossRef]
- Swider, J.R.; Smith, M. Funori: Overview of a 300-Year-Old Consolidant. J. Am. Inst. Conserv. 2005, 44, 117–126. [Google Scholar] [CrossRef]
- Harrold, J.; Wyszomirska-Noga, Z. Funori: The Use of a Traditional Japanese Adhesive in the Preservation and Conservation Treatment of Western Objects. In Proceedings of the International Conference of the Icon Book & Paper Group, London, UK, 8–10 April 2015; pp. 8–10. [Google Scholar]
- Ha, N.T.; Ha, C.H.; Hayakawa, N.; Chujo, R.; Kawahara, S. Relationship between Structure and Some Physico-Chemical Properties of Funori from Red Seaweed Gloiopeltis. J. Cult. Herit. 2021, 51, 14–20. [Google Scholar] [CrossRef]
- Hayakawa, N.; Kida, K.; Ohmura, T.; Yamamoto, N.; Kusunoki, K.; Kawanobe, W. Characterisation of Funori as a Conservation Material: Influence of Seaweed Species and Extraction Temperature. Stud. Conserv. 2014, 59, S230–S231. [Google Scholar] [CrossRef]
- Saeed, M.; Arain, M.A.; Ali Fazlani, S.; Marghazani, I.B.; Umar, M.; Soomro, J.; Bhutto, Z.A.; Soomro, F.; Noreldin, A.E.; Abd El-Hack, M.E.; et al. A Comprehensive Review on the Health Benefits and Nutritional Significance of Fucoidan Polysaccharide Derived from Brown Seaweeds in Human, Animals and Aquatic Organisms. Aquac. Nutr. 2021, 27, 633–654. [Google Scholar] [CrossRef]
- Sarojini, A.; Gajendra; Vijayarahavan, V. Seaweed Based Edible Packaging Materials for Food. Biot. Res. Today 2023, 3, 1103–1105. [Google Scholar]
- Haggag, Y.A.; Abd Elrahman, A.A.; Ulber, R.; Zayed, A. Fucoidan in Pharmaceutical Formulations: A Comprehensive Review for Smart Drug Delivery Systems. Mar. Drugs 2023, 21, 112. [Google Scholar] [CrossRef] [PubMed]
- El-Sheekh, M.; Alwaleed, E.A.; Kassem, W.M.A.; Saber, H. Optimizing the Fucoidan Extraction Using Box-Behnken Design and Its Potential Bioactivity. Int. J. Biol. Macromol. 2024, 277, 134490. [Google Scholar] [CrossRef] [PubMed]
- Abbas, M.F.; Karim, D.K.; Kareem, H.R.; Kamil, M.M.; Al-Musawi, M.H.; Asker, M.H.; Ghanami, M.; Shahriari-Khalaji, M.; Sattar, M.; Mirhaj, M.; et al. Fucoidan and Its Derivatives: From Extraction to Cutting-Edge Biomedical Applications. Carbohydr. Polym. 2025, 357, 123468. [Google Scholar] [CrossRef] [PubMed]
- Jayawardena, T.U.; Nagahawatta, D.P.; Fernando, I.P.S.; Kim, Y.-T.; Kim, J.-S.; Kim, W.-S.; Lee, J.S.; Jeon, Y.-J. A Review on Fucoidan Structure, Extraction Techniques, and Its Role as an Immunomodulatory Agent. Mar. Drugs 2022, 20, 755. [Google Scholar] [CrossRef] [PubMed]
- Carpintero, M.; Marcet, I.; Rendueles, M.; Díaz, M. Algae as an Additive to Improve the Functional and Mechanical Properties of Protein and Polysaccharide-Based Films and Coatings. A Review of Recent Studies. Food Packag. Shelf Life 2023, 38, 101128. [Google Scholar] [CrossRef]
- Zayed, A.; El-Aasr, M.; Ibrahim, A.-R.S.; Ulber, R. Fucoidan Characterization: Determination of Purity and Physicochemical and Chemical Properties. Mar. Drugs 2020, 18, 571. [Google Scholar] [CrossRef] [PubMed]
- Du, B.; Zhao, Q.; Cheng, C.; Wang, H.; Liu, Y.; Zhu, F.; Yang, Y. A Critical Review on Extraction, Characteristics, Physicochemical Activities, Potential Health Benefits, and Industrial Applications of Fucoidan. eFood 2022, 3, e19. [Google Scholar] [CrossRef]
- Afonso, C.; Cardoso, C.; Ripol, A.; Varela, J.; Quental-Ferreira, H.; Pousão-Ferreira, P.; Ventura, M.S.; Delgado, I.M.; Coelho, I.; Castanheira, I.; et al. Composition and Bioaccessibility of Elements in Green Seaweeds from Fish Pond Aquaculture. Food Res. Int. 2018, 105, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Moreira, A.; Cruz, S.; Marques, R.; Cartaxana, P. The Underexplored Potential of Green Macroalgae in Aquaculture. Rev. Aquac. 2021, 14, 5–26. [Google Scholar] [CrossRef]
- Tran, V.H.N.; Mikkelsen, M.D.; Truong, H.B.; Vo, H.N.M.; Pham, T.D.; Cao, H.T.T.; Nguyen, T.T.; Meyer, A.S.; Thanh, T.T.T.; Van, T.T.T. Structural Characterization and Cytotoxic Activity Evaluation of Ulvan Polysaccharides Extracted from the Green Algae Ulva Papenfussii. Mar. Drugs 2023, 21, 556. [Google Scholar] [CrossRef] [PubMed]
- Sacramento, M.M.A.; Borges, J.; Correia, F.J.S.; Calado, R.; Rodrigues, J.M.M.; Patrício, S.G.; Mano, J.F. Green Approaches for Extraction, Chemical Modification and Processing of Marine Polysaccharides for Biomedical Applications. Front. Bioeng. Biotechnol. 2022, 10, 1041102. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.-Y.; Huang, X.; Cheong, K.-L. Recent Advances in Marine Algae Polysaccharides: Isolation, Structure, and Activities. Mar. Drugs 2017, 15, 388. [Google Scholar] [CrossRef] [PubMed]
- Murado, M.A.; Montemayor, M.I.; Cabo, M.L.; Vázquez, J.A.; González, M.P. Optimization of Extraction and Purification Process of Hyaluronic Acid from Fish Eyeball. Food Bioprod. Process. 2012, 90, 491–498. [Google Scholar] [CrossRef]
- Espíndola-Cortés, A.; Moreno-Tovar, R.; Bucio, L.; Gimeno, M.; Ruvalcaba-Sil, J.L.; Shirai, K. Hydroxyapatite Crystallization in Shrimp Cephalothorax Wastes during Subcritical Water Treatment for Chitin Extraction. Carbohydr. Polym. 2017, 172, 332–341. [Google Scholar] [CrossRef] [PubMed]
- Hongkulsup, C.; Khutoryanskiy, V.V.; Niranjan, K. Enzyme Assisted Extraction of Chitin from Shrimp Shells (Litopenaeus Vannamei). J. Chem. Technol. Biotechnol. 2016, 91, 1250–1256. [Google Scholar] [CrossRef]
- Varun, T.K.; Senani, W.; Kumar, N.; Gautam, M.; Gupta, R.; Gupta, M. Extraction and Characterization of Chitin, Chitosan and Chitooligosaccharides from Crab Shell Waste. Indian J. Anim. Res. 2017, 51, 1066–1072. [Google Scholar] [CrossRef]
- Danarto, Y.C.; Distantina, S. Optimizing Deacetylation Process for Chitosan Production from Green Mussel (Perna Viridis) Shell. AIP Conf. Proc. 2016, 1710, 030028. [Google Scholar] [CrossRef]
- Huo, S.; Wang, H.; Chen, J.; Hu, X.; Zan, X.; Zhang, C.; Qian, J.; Zhu, F.; Ma, H.; Elshobary, M. A Preliminary Study on Polysaccharide Extraction, Purification, and Antioxidant Properties of Sugar-Rich Filamentous Microalgae Tribonema Minus. J. Appl. Phycol. 2022, 34, 2755–2767. [Google Scholar] [CrossRef]
- Firdayanti, L.; Yanti, R.; Rahayu, E.S.; Hidayat, C. Carrageenan Extraction from Red Seaweed (Kappaphycopsis Cottonii) Using the Bead Mill Method. Algal Res. 2023, 69, 102906. [Google Scholar] [CrossRef]
- Youssouf, L.; Lallemand, L.; Giraud, P.; Soulé, F.; Bhaw-Luximon, A.; Meilhac, O.; D’Hellencourt, C.L.; Jhurry, D.; Couprie, J. Ultrasound-Assisted Extraction and Structural Characterization by NMR of Alginates and Carrageenans from Seaweeds. Carbohydr. Polym. 2017, 166, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Gereniu, C.R.N.; Saravana, P.S.; Chun, B.-S. Recovery of Carrageenan from Solomon Islands Red Seaweed Using Ionic Liquid-Assisted Subcritical Water Extraction. Sep. Purif. Technol. 2018, 196, 309–317. [Google Scholar] [CrossRef]
- Belattmania, Z.; Bhaby, S.; Nadri, A.; Khaya, K.; Bentiss, F.; Jama, C.; Reani, A.; Vasconcelos, V.; Sabour, B. Gracilaria Gracilis (Gracilariales, Rhodophyta) from Dakhla (Southern Moroccan Atlantic Coast) as Source of Agar: Content, Chemical Characteristics, and Gelling Properties. Mar. Drugs 2021, 19, 672. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhao, M.; Gomez, L.P.; Senthamaraikannan, R.; Padamati, R.B.; O’Donnell, C.P.; Tiwari, B.K. Investigation of Enzyme-Assisted Methods Combined with Ultrasonication under a Controlled Alkali Pretreatment for Agar Extraction from Gelidium sesquipedale. Food Hydrocoll. 2021, 120, 106905. [Google Scholar] [CrossRef]
- Atya, M.E.; Yang, X.; Tashiro, Y.; Tuvikene, R.; Matsukawa, S. Structural and Physicochemical Characterization of Funoran Extracted from Gloiopeltis Furcata by Different Methods. Algal Res. 2023, 76, 103334. [Google Scholar] [CrossRef]
- Latifah, R.N.; Rahmania, S.; Rohmah, B.L. The Effect of Extraction Time on the Quality of Brown Seaweed Na-Alginate Sargassum Polycisteum as the Base Material for SBK Edible Film. J. Phys. Conf. Ser. 2022, 2190, 012001. [Google Scholar] [CrossRef]
- Anjana, K.; Arunkumar, K. Brown Algae Biomass for Fucoxanthin, Fucoidan and Alginate; Update Review on Structure, Biosynthesis, Biological Activities and Extraction Valorisation. Int. J. Biol. Macromol. 2024, 280, 135632. [Google Scholar] [CrossRef] [PubMed]
- Nøkling-Eide, K.; Langeng, A.-M.; Åslund, A.; Aachmann, F.L.; Sletta, H.; Arlov, Ø. An Assessment of Physical and Chemical Conditions in Alginate Extraction from Two Cultivated Brown Algal Species in Norway: Alaria esculenta and Saccharina latissima. Algal Res. 2023, 69, 102951. [Google Scholar] [CrossRef]
- Rhein-Knudsen, N.; Reyes-Weiss, D.; Horn, S.J. Extraction of High Purity Fucoidans from Brown Seaweeds Using Cellulases and Alginate Lyases. Int. J. Biol. Macromol. 2023, 229, 199–209. [Google Scholar] [CrossRef] [PubMed]
- Saravana, P.S.; Cho, Y.-N.; Woo, H.-C.; Chun, B.-S. Green and Efficient Extraction of Polysaccharides from Brown Seaweed by Adding Deep Eutectic Solvent in Subcritical Water Hydrolysis. J. Clean. Prod. 2018, 198, 1474–1484. [Google Scholar] [CrossRef]
- Baba, B.M.; Mustapha, W.A.W.; Joe, L.S. Effect of Extraction Methods on the Yield, Fucose Content and Purity of Fucoidan from Sargassum Sp. Obtained from Pulau Langkawi, Malaysia. Malays. J. Anal. Sci. 2018, 22, 87–94. [Google Scholar] [CrossRef]
- Okolie, C.L.; Mason, B.; Mohan, A.; Pitts, N.; Udenigwe, C.C. The Comparative Influence of Novel Extraction Technologies on in Vitro Prebiotic-Inducing Chemical Properties of Fucoidan Extracts from Ascophyllum nodosum. Food Hydrocoll. 2019, 90, 462–471. [Google Scholar] [CrossRef]
- Rodriguez-Jasso, R.M.; Mussatto, S.I.; Pastrana, L.; Aguilar, C.N.; Teixeira, J.A. Microwave-Assisted Extraction of Sulfated Polysaccharides (Fucoidan) from Brown Seaweed. Carbohydr. Polym. 2011, 86, 1137–1144. [Google Scholar] [CrossRef]
- Shevchenko, N.M.; Anastyuk, S.D.; Gerasimenko, N.I.; Dmitrenok, P.S.; Isakov, V.V.; Zvyagintseva, T.N. Polysaccharide and Lipid Composition of the Brown Seaweed Laminaria Gurjanovae. Russ. J. Bioorg. Chem. 2007, 33, 88–98. [Google Scholar] [CrossRef] [PubMed]
- Abraham, R.E.; Su, P.; Puri, M.; Raston, C.L.; Zhang, W. Optimisation of Biorefinery Production of Alginate, Fucoidan and Laminarin from Brown Seaweed Durvillaea potatorum. Algal Res. 2019, 38, 101389. [Google Scholar] [CrossRef]
- Cheong, K.-L.; Sabir, A.; Wang, M.; Zhong, S.; Tan, K. Advancements in the Extraction, Characterization, and Bioactive Potential of Laminaran: A Review. Foods 2025, 14, 1683. [Google Scholar] [CrossRef] [PubMed]
- Kadam, S.U.; Tiwari, B.K.; O’Donnell, C.P. Extraction, Structure and Biofunctional Activities of Laminarin from Brown Algae. Int. J. Food Sci. Technol. 2015, 50, 24–31. [Google Scholar] [CrossRef]
- Yaich, H.; Garna, H.; Besbes, S.; Paquot, M.; Blecker, C.; Attia, H. Effect of Extraction Conditions on the Yield and Purity of Ulvan Extracted from Ulva lactuca. Food Hydrocoll. 2013, 31, 375–382. [Google Scholar] [CrossRef]
- Alboofetileh, M.; Jeddi, S.; Subi, T.M.; Vasanthi, H.R. Sulfated Polysaccharides from Ulva Rigida as Antioxidant and Antibacterial Enhancers in Chicken Sausages. Algal Res. 2025, 86, 103940. [Google Scholar] [CrossRef]
- Wang, W.; Li, J.; Lu, F.; Liu, F. Ultrasound-Assisted Multi-Enzyme Extraction for Highly Efficient Extraction of Polysaccharides from Ulva Lactuca. Foods 2024, 13, 891. [Google Scholar] [CrossRef] [PubMed]
- Okeke, E.S.; Okagu, I.U.; Chukwudozie, K.; Ezike, T.C.; Ezeorba, T.P.C. Marine-Derived Bioactive Proteins and Peptides: A Review of Current Knowledge on Anticancer Potentials, Clinical Trials, and Future Prospects. Nat. Prod. Commun. 2024, 19, 1–19. [Google Scholar] [CrossRef]
- Tziveleka, L.-A.; Tammam, M.A.; Tzakou, O.; Roussis, V.; Ioannou, E. Metabolites with Antioxidant Activity from Marine Macroalgae. Antioxidants 2021, 10, 1431. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Sarkar, T.; Pati, S.; Kari, Z.A.; Edinur, H.A.; Chakraborty, R. Novel Bioactive Compounds From Marine Sources as a Tool for Functional Food Development. Front. Mar. Sci. 2022, 9, 832957. [Google Scholar] [CrossRef]
- Cadar, E.; Pesterau, A.-M.; Prasacu, I.; Ionescu, A.-M.; Pascale, C.; Dragan, A.-M.L.; Sirbu, R.; Tomescu, C.L. Marine Antioxidants from Marine Collagen and Collagen Peptides with Nutraceuticals Applications: A Review. Antioxidants 2024, 13, 919. [Google Scholar] [CrossRef] [PubMed]
- Cunha, S.A.; Pintado, M.E. Bioactive Peptides Derived from Marine Sources: Biological and Functional Properties. Trends Food Sci. Technol. 2022, 119, 348–370. [Google Scholar] [CrossRef]
- Ebrahimi, B.; Baroutian, S.; Li, J.; Zhang, B.; Ying, T.; Lu, J. Combination of Marine Bioactive Compounds and Extracts for the Prevention and Treatment of Chronic Diseases. Front. Nutr. 2023, 9, 1047026. [Google Scholar] [CrossRef] [PubMed]
- Nishida, Y.; Kumagai, Y.; Michiba, S.; Yasui, H.; Kishimura, H. Efficient Extraction and Antioxidant Capacity of Mycosporine-Like Amino Acids from Red Alga Dulse Palmaria Palmata in Japan. Mar. Drugs 2020, 18, 502. [Google Scholar] [CrossRef] [PubMed]
- Carreira-Casais, A.; Otero, P.; Garcia-Perez, P.; Garcia-Oliveira, P.; Pereira, A.G.; Carpena, M.; Soria-Lopez, A.; Simal-Gandara, J.; Prieto, M.A. Benefits and Drawbacks of Ultrasound-Assisted Extraction for the Recovery of Bioactive Compounds from Marine Algae. Int. J. Environ. Res. Public. Health 2021, 18, 9153. [Google Scholar] [CrossRef] [PubMed]
- Coulombier, N.; Jauffrais, T.; Lebouvier, N. Antioxidant Compounds from Microalgae: A Review. Mar. Drugs 2021, 19, 549. [Google Scholar] [CrossRef] [PubMed]
- Gunathilake, T.; Akanbi, T.O.; Suleria, H.A.R.; Nalder, T.D.; Francis, D.S.; Barrow, C.J. Seaweed Phenolics as Natural Antioxidants, Aquafeed Additives, Veterinary Treatments and Cross-Linkers for Microencapsulation. Mar. Drugs 2022, 20, 445. [Google Scholar] [CrossRef] [PubMed]
- Vitale, G.A.; Coppola, D.; Esposito, F.P.; Buonocore, C.; Ausuri, J.; Tortorella, E.; de Pascale, D. Antioxidant Molecules from Marine Fungi: Methodologies and Perspectives. Antioxidants 2020, 9, 1183. [Google Scholar] [CrossRef] [PubMed]
- Macedo, M.W.F.S.; da Cunha, N.B.; Carneiro, J.A.; da Costa, R.A.; de Alencar, S.A.; Cardoso, M.H.; Franco, O.L.; Dias, S.C. Marine Organisms as a Rich Source of Biologically Active Peptides. Front. Mar. Sci. 2021, 8, 667764. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, C.; Zhang, X.; Tan, K.; Zhang, H.; Cheng, D.; Ye, T.; Li, S.; Ma, H.; Zheng, H. A Novel Carotenoids-Producing Marine Bacterium from Noble Scallop Chlamys Nobilis and Antioxidant Activities of Its Carotenoid Compositions. Food Chem. 2020, 320, 126629. [Google Scholar] [CrossRef] [PubMed]
- Abdelhamid, S.A.; Mohamed, S.S.; Selim, M.S. Medical Application of Exopolymers Produced by Marine Bacteria. Bull. Natl. Res. Cent. 2020, 44, 69. [Google Scholar] [CrossRef]
- Zhong, Q.; Wei, B.; Wang, S.; Ke, S.; Chen, J.; Zhang, H.; Wang, H. The Antioxidant Activity of Polysaccharides Derived from Marine Organisms: An Overview. Mar. Drugs 2019, 17, 674. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.-L.; Rodrigues, M.J.; Pereira, C.G.; Engrola, S.; Colen, R.; Mansinhos, I.; Romano, A.; Andrade, P.B.; Fernandes, F.; Custódio, L. Exploring the Biotechnological Value of Marine Invertebrates: A Closer Look at the Biochemical and Antioxidant Properties of Sabella Spallanzanii and Microcosmus Squamiger. Animals 2021, 11, 3557. [Google Scholar] [CrossRef] [PubMed]
- Rivai, B.; Umar, A.K. Neuroprotective Compounds from Marine Invertebrates. Beni-Suef Univ. J. Basic Appl. Sci. 2023, 12, 71. [Google Scholar] [CrossRef]
- Hossain, A.; Dave, D.; Shahidi, F. Antioxidant Potential of Sea Cucumbers and Their Beneficial Effects on Human Health. Mar. Drugs 2022, 20, 521. [Google Scholar] [CrossRef] [PubMed]
- Ngo, D.-H.; Wijesekara, I.; Vo, T.-S.; Van Ta, Q.; Kim, S.-K. Marine Food-Derived Functional Ingredients as Potential Antioxidants in the Food Industry: An Overview. Food Res. Int. 2011, 44, 523–529. [Google Scholar] [CrossRef]
- Olatunde, O.O.; Benjakul, S. Antioxidants from Crustaceans: A Panacea for Lipid Oxidation in Marine-Based Foods. Food Rev. Int. 2022, 38, 1–31. [Google Scholar] [CrossRef]
- Cretton, M.; Malanga, G.; Sobczuk, T.M.; Mazzuca, M. Marine Lipids as a Source of High-Quality Fatty Acids and Antioxidants. Food Rev. Int. 2023, 39, 4941–4964. [Google Scholar] [CrossRef]
- Sansone, C.; Brunet, C. Marine Algal Antioxidants. Antioxidants 2020, 9, 206. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.; Wu, C.; Liu, D.; Yang, X.; Huang, J.; Zhang, J.; Liao, B.; He, H.; Li, H. Overview of Antioxidant Peptides Derived from Marine Resources: The Sources, Characteristic, Purification, and Evaluation Methods. Appl. Biochem. Biotechnol. 2015, 176, 1815–1833. [Google Scholar] [CrossRef] [PubMed]
- Ibañez, E.; Herrero, M.; Mendiola, J.A.; Castro-Puyana, M. Extraction and Characterization of Bioactive Compounds with Health Benefits from Marine Resources: Macro and Micro Algae, Cyanobacteria, and Invertebrates. In Marine Bioactive Compounds: Sources, Characterization and Applications; Hayes, M., Ed.; Springer: Boston, MA, USA, 2012; pp. 55–98. ISBN 978-1-4614-1247-2. [Google Scholar]
- Fernando, I.P.S.; Kim, M.; Son, K.-T.; Jeong, Y.; Jeon, Y.-J. Antioxidant Activity of Marine Algal Polyphenolic Compounds: A Mechanistic Approach. J. Med. Food 2016, 19, 615–628. [Google Scholar] [CrossRef] [PubMed]
- Kumar, Y.; Tarafdar, A.; Badgujar, P.C. Seaweed as a Source of Natural Antioxidants: Therapeutic Activity and Food Applications. J. Food Qual. 2021, 2021, 1–17. [Google Scholar] [CrossRef]
Polymer | Marine Sources | Features/Structure | Extraction | Application | Advantages |
---|---|---|---|---|---|
Collagen | Fish by-products | Three peptide chains wounded in a triple helix | Extraction of acid- or pepsin-solubilized collagen at 4 °C; precipitation with NaCl | Tissue engineering; regenerative medicine; dental applications; wound dressing; | High biocompatibility; excellent biodegradability |
food additive; | |||||
cosmetics; drug delivery; clinical analysis | |||||
Gelatine | Marine collagen | One-chain structure; molecular weight: 2–200 kDa | Partial hydrolysis of collagen in acidic or alkaline environment; | Active packaging; gel-encapsulated drugs; refrigerated and frozen food systems | High versatility; coatings with good oxygen and oil barrier properties |
thermal treatment of the hydrolysed collagen |
Marine Protein | Extraction Method | Recovery Efficiency | Examples | References |
---|---|---|---|---|
Collagen | Salt-solubilization extraction | Low–moderate | 14.14% yield in Thunnus obesus; | [44] |
2.18% yield in Acipenser schrenckii cartilage | [45] | |||
Acid extraction | Moderate–high | 13.5% yield in Thunnus obesus skin; | [46] | |
61.26% yield in Thunnus albacares skin; | [47] | |||
27.04% yield in Acipenser schrenckii cartilage; | [45] | |||
43.62% yield in Pelodiscus sinensis | [48] | |||
Enzymatic extraction (Pepsin) | High | 19.2% yield in sponge (C. reniformis); | [49] | |
55.92% in Acipenser schrenckii cartilage | [45,50] | |||
Ultrasound-assisted extraction | High | 50.75% yield in Pelodiscus sinensis | [48] | |
Microwave-assisted extraction | High | [44] | ||
Gelatine | Acidic hydrolysis | High | 20.95% yield in black tilapia fish skins | [51] |
Alkaline hydrolysis | High | 48.1% yield in carp scales | [52] | |
Enzymatic hydrolysis | High | 50.89% yield in Cyprinus carpio scales | [53] | |
Ultrasound-assisted extraction | Low–high (need pre-treatment) | 46.7% yield in Hypophthalmichthys nobilis scales | [54] | |
5.33% yield in Pangasius hypophthalmus fish bon | [55] | |||
High-pressure processing | Low–high (need pre-treatment) | 32% yield in Oreochromis niloticus skin | [56,57] | |
Microwave-assisted extraction | Low (need pre-treatment) | 0.82% in common carp scales and fin | [58] |
Polymer | Marine Source | Features/Structure | Extraction | Application | Advantages |
---|---|---|---|---|---|
Hyaluronic acid | Cartilage and vitreous humour of fish | Non-sulphated polysaccharide; random coil structure | Hydrothermal extraction; precipitation with ethanol | Ophthalmology; tissue engineering; dermatology cosmetics; | Non-immunogenic nature; high biocompatibility biodegradable |
treatment of osteoarthritis | |||||
Glycogen | Molluscs, crustaceans, fish, bacteria, invertebrates | α-(1→4) D-linked glucose; varied branching degrees and molecular weight | Hydrothermal extraction or alkaline extraction; precipitation with ethanol | Functional foods; nutraceuticals | Anti-inflammatory |
Chitin | Arthropods, molluscs | Nitrogenous linear polysaccharide; insoluble in water and most organic solvents | Demineralization with HCl deproteinization with NaOH | Fabrication of polymers; purification of water; cosmetics; drug delivery; tissue engineering; soil conditioner | High biocompatibility; antimicrobial activity; biodegradable |
Chitosan | cationic polysaccharide; soluble in aqueous acids | Partial deacetylation of chitin in highly alkaline environments | Edible film production; food industry; water treatment and purification; pulps and paper industry; cosmetics; pharmaceutical industry | Antimicrobial activity; films with high mechanical strength |
Polymer | Marine Source | Features/Structure | Extraction | Application | Advantages |
---|---|---|---|---|---|
Exopolysaccharides | Microalgae | Heteropolysaccharides; composition varies with the species; fluid dynamic behavior | Precipitation with ethanol | Food industry; Biodegradable film production cosmetics | Antioxidant, anti-inflammatory, and antimicrobial activities |
Carrageenan | Red macroalgae | Linear sulphated galactan; high molecular weight; anionic, hydrophilic | Alkaline extraction Precipitation with ethanol | Pharmaceuticals, cosmetics, food industry, printing, painting, textile; coatings production | Anti-inflammatory, antithrombotic, anticoagulant, anti-viral, and antioxidant activities |
Agar | Red macroalgae | Unbranched polysaccharide with high molecular weight | Alkaline pre-treatment Hydrothermal extraction | Cosmetics, medicine, pharmaceuticals; coatings preparation microbiology food industry | Does not have environmental impact; biologically inert |
Funori | Red macroalgae | Heterogeneous polysaccharide; remains liquid even at room temperature; may gel in contact with some salts | Hydro-extraction Precipitation with acetone and diethyl ether | Food, medicine, cosmetics conservation material in artworks repair of silver and gold leaf and mica | Does not change the appearance or mechanical properties of the materials |
Alginate | Brown macroalgae | anionic linear polysaccharide; hydrosoluble | Acidic pre-treatment with HCl; extraction with Na2CO3; precipitation with ethanol | Textile printing; pharmaceutical industry; food industry; coatings production | Biodegradable, biocompatible, low toxicity, low extraction and purification costs |
Fucoidan | Brown macroalgae | Branched sulphated polysaccharide Heterogeneous chemical structures | Acidic extraction | Nanomedicine; pharmacology Cosmeceuticals nutraceuticals | Antioxidant, anti-inflammatory, and antimicrobial activities |
Laminaran | Brown macroalgae | Neutral linear polysaccharide with low molecular weight; soluble in aqueous media or organic solvents | Hydrothermal extraction | Nutraceuticals, pharmaceuticals, cosmeceuticals; drug delivery, tissue engineering; functional food | Antimicrobial, immune-modulatory, anti-inflammatory, anti-coagulant, and antioxidant properties |
Ulvan | Green macroalgae | Sulphated anionic heteropolysaccharide | Hydrothermal extraction; precipitation with ethanol | Wound-dressing, tissue engineering, drug delivery systems; animal feed; cosmeceuticals; coatings production | Antioxidant, anticoagulant, antimicrobial, anti-viral, and immune-modulatory activities |
Marine Animal Polysaccharide | Extraction Method | Recovery Efficiency | Examples | References |
---|---|---|---|---|
Hyaluronic acid | Hydrothermal extraction | Low | 6.35 mg/mL | [66,110] |
Glycogen | No available data was found | |||
Chitin | Chemical extraction | High | 35.07% yield in Pang scale | [62] |
35.03% yield in mussel shell | [62] | |||
60% yield in crab | [62] | |||
69.65% yield in oyster shell | [62] | |||
Subcritical water extraction | High | 82% yield in Cephalothorax | [111] | |
Enzymatic extraction | Low | 19.33% yield in Litopenaeus vannamei | [112] | |
Chitosan | Alkaline deacetylation | High | 10.54% yield in crab shell waste | [113] |
39.5% yield in green mussel shells | [114] | |||
Enzymatic deacetylation | Moderate | Not specified | [113] |
Marine Algae Polysaccharide | Extraction Method | Recovery Efficiency | Examples | References |
---|---|---|---|---|
Exopolysaccharides | Ethanol precipitation | Moderate | 27.25% yield in Tribonema minus | [115] |
Carrageenan | Chemical extraction | Moderate–high | 67.86% yield in Kappaphycopsis cottonii | [116] |
Ultrasound-assisted extraction | Moderate | 50–55% yield in Turbinaria ornata | [117] | |
Subcritical water extraction | High | 78.75% yield in Kappaphycus alvarezii | [118] | |
Agar | Chemical extraction | Moderate | 20.5% yield in Gracilaria gracilis | [119] |
UAE + EE | Moderate | 10.9–18.2% yield in Gelidium sesquipedale | [120] | |
Funori | Chemical extraction | High | 35% yield in Gloiopeltis furcata | [121] |
Alginate | Chemical extraction | High | 18.47–24.31% yield in Sargassum polycisteum | [122] |
22.5% yield in Saccharina latissima | [123,124] | |||
Ultrasound-assisted extraction | High | 28% yield in Sargassum binderi | [117] | |
Enzymatic extraction | Moderate | 8–12% yield in Saccharina latissimi | [123,125] | |
Subcritical water extraction | High | 27.21% yield in Saccharina japonica | [126] | |
Fucoidan | Chemical extraction | Moderate–high | 3.81% yield in Sargassum sp. | [127] |
11.9% yield in Ascophyllum nodosum | [123,128] | |||
Microwave-assisted extraction | Low -moderate | 18.22% yield in Fucus vesiculosus | [129] | |
5.71% yield in Ascophyllum nodosum | [123,128] | |||
Ultrasound-assisted extraction | Low–moderate | 4.56% yield in Ascophyllum nodosum | [123,128] | |
Enzymatic extraction | Low | 3.89% yield in Ascophyllum nodosum | [123,128] | |
Subcritical water extraction | High | 14.93% yield in Saccharina japonica | [126] | |
Laminaran | Chemical extraction | Moderate–high | 22% yield in Laminaria gurjanovae | [130] |
43.57% yield in Durvillaea potatorum | [131,132] | |||
Ultrasound-assisted extraction | Low–moderate | 5.82% yield in Ascophyllum nodosum | [132,133] | |
6.24%yield in Laminaria hyperborea | [132,133] | |||
Ulvan | Chemical extraction | High | 15% yield in Ulva papenfussii | [107] |
21.68–32.67% yield in Ulva lactuta | [134] | |||
19.8% yield in Ulva rigida | [135] | |||
UAE + EE | High | 30.14% yield in Ulva lactuta | [136] |
Antioxidant Compounds | Marine Source | Biological Activities | Antioxidant Mechanism of Action | Functional Properties | Applications | References |
---|---|---|---|---|---|---|
Peptides | Microalgae Macroalgae Fish by-products Invertebrates | Antioxidant Antimicrobial Anti-inflammatory | Free radical scavenging Metal ion chelating | Emulsifying Foaming | Food industry Cosmetic industry Pharmaceutical industry | [34,139,140,141,142] |
Amino acids | Macroalgae Cyanobacteria | Antioxidant Photoprotective capacity | Free radical scavenging | Cosmetic industry | [34,143] | |
Polysaccharides | Bacteria Fungi Invertebrates Microalgae Macroalgae | Antioxidant Antiviral Antibacterial Anti-inflammatory Immunomodulatory activity Anticoagulant | Free radical scavenging Proton donation Metal ion chelating | Thickening agents Emulsifying Gel forming capacity | Nutraceuticals Pharmaceuticals Functional foods | [34,109,138] |
Polyphenolic compounds (e.g., phenolic acids, flavonoids, anthraquinones) | Bacteria Fungi Invertebrates Microalgae Macroalgae | Antioxidant Antiviral Antibacterial Antifungal Anti-inflammatory Immunostimulant | Free radical scavenging Singlet oxygen scavenging Chelating agents Proton donation Electron transfer | Flavour compounds | Food and Feed industries Pharmaceuticals Functional foods | [34,144,145,146,147] |
Terpenoids (e.g., Carotenoids, tocopherol, terpenoids) | Bacteria Fungi Invertebrates Microalgae Macroalgae | Antioxidant Anti-inflammatory Immunostimulant | Free radical scavenging Singlet oxygen scavenging Chelating agents Proton donation Electron transfer | Natural pigments | Food industry Cosmetic industry Pharmaceutical industry | [34,139,145,147] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sousa, G.; Ferreira-Dias, S.; Tecelão, C.; Alves, V.D. Potential of Marine Biomolecules: Advances in Extraction and Applications of Proteins, Polysaccharides, and Antioxidant Compounds. Foods 2025, 14, 2555. https://doi.org/10.3390/foods14152555
Sousa G, Ferreira-Dias S, Tecelão C, Alves VD. Potential of Marine Biomolecules: Advances in Extraction and Applications of Proteins, Polysaccharides, and Antioxidant Compounds. Foods. 2025; 14(15):2555. https://doi.org/10.3390/foods14152555
Chicago/Turabian StyleSousa, Gabriela, Suzana Ferreira-Dias, Carla Tecelão, and Vítor D. Alves. 2025. "Potential of Marine Biomolecules: Advances in Extraction and Applications of Proteins, Polysaccharides, and Antioxidant Compounds" Foods 14, no. 15: 2555. https://doi.org/10.3390/foods14152555
APA StyleSousa, G., Ferreira-Dias, S., Tecelão, C., & Alves, V. D. (2025). Potential of Marine Biomolecules: Advances in Extraction and Applications of Proteins, Polysaccharides, and Antioxidant Compounds. Foods, 14(15), 2555. https://doi.org/10.3390/foods14152555