Storage Behavior and Response to Low-Cost Postharvest Technologies of the Underutilized Purple Yampee (Dioscorea trifida L.f.)
Abstract
1. Introduction
2. Materials and Methods
2.1. Biological Material and Storage Conditions
2.2. Preharvest Microbiological Assessments
2.3. Postharvest Study
2.3.1. First Stage: Characterization of the Postharvest Behavior
2.3.2. Second Stage: Postharvest Technologies
- (a)
- Cold storage was completed under a completely randomized design. Tubers were stored at 3, 12, and 20 ± 0.5 °C (84 ± 6% RH), with three biological replicates per treatment, using independent individuals as analytical units. These temperatures were selected to include a typical ambient condition (20 °C), a moderate low temperature critical to avoid chilling injury for most yams (12 °C), and the recommended refrigeration level for D. trifida based on previous reports [12].
- (b)
- Edible coatings were applied following a two-step approach: a calcium chloride (CaCl2) dip followed by an Aloe vera–sesame oil coating. The experiment followed a 2 × 3 factorial design (Table 1), with three biological replicates per treatment, using independent individuals as analytical units.
- (c)
- Hydrothermal treatments (HT) were applied by immersing whole tubers in drinking water at temperature–time combinations defined by a central composite rotatable design, 22 + star (Table 2), with three biological replicates per treatment, using independent individuals as analytical units.
2.4. Tuber Characterization
2.4.1. Lyophilization for Phytochemical Analysis
2.4.2. Key Nutritional Components and Metabolites
2.4.3. Physicochemical Traits and Antioxidant Analysis
2.4.4. Bioactive Compounds Assessment
2.5. Statistical Analysis
3. Results
3.1. Preharvest Defects in Purple D. trifida Tubers
- •
- Sprouting (31% w/w), indicating active growth, accompanied by visible sprouts (Supplementary Figure S1a,b).
- •
- Physical damage (30% w/w), which increases the risk of accelerated metabolic activity and microbial contamination. Damaged tubers were either broken into multiple pieces or showed clear splitting, typically at the ends, with healed and dry tissues.
- •
- Biological hazard (39% w/w), which may lead to rapid decay and threaten the safety of the entire lot. Affected tubers exhibited the following:
- -
- Dry rotting symptoms like discolored or necrotic tissue (Supplementary Figure S1c);
- -
- Fungal structures, appearing in localized clusters and velvety or cotton-like growths in white, yellow, or green, especially near the proximal end or at visible wounds (Supplementary Figure S1d);
- -
- Circular holes (1–3 mm diameter) leading to internal tunnels, sometimes containing insect eggs, larvae, or live ants (Supplementary Figure S1e–g).
3.2. Physicochemical, Quality, and Compositional Traits at Harvest and During Postharvest, at 20 °C
3.3. Effects of Postharvest Technologies on Tuber Characteristics Along Storage
3.3.1. Cold Storage
3.3.2. Coating Treatments
3.3.3. Hydrothermal Treatments
4. Discussion
4.1. Postharvest Behavior and Biochemicals Evolution at Ambient Conditions (20 °C)
4.2. Limitations and Benefits of Cold Storage in Neglected Yam Species
4.3. Coatings and Calcium: Enhanced Responses
4.4. Hydrothermal Treatment as a Promising Strategy for Quality Preservation
4.5. General Implications for Yam Postharvest Technology
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. FAOSTAT—Food and Agriculture Organization of the United Nations’ (FAO) Global Statistical Database—Section Crops and Livestock Products; FAO: Rome, Italy, 2022. [Google Scholar]
- Reina-Aranza, Y.C. Documentos de Trabajo Sobre Economía Regional y Urbana, No. 168; Banco de la República: Cartagena, Colombia, 2012. [Google Scholar]
- Martínez Reina, A.M.; Tordecilla Zumaqué, L.; Grandett Martínez, L.M.; Pérez Cantero, S.P.; Regino Hernández, S.M.; Luna Castellanos, L.L. Caracterización Socioeconómica y Tecnológica Del Cultivo de Ñame (Dioscorea spp.) En La Región Caribe Colombiana. Av. Investig. Agropecu. 2021, 25, 6–30. [Google Scholar]
- do Nascimento, W.F.; Siqueira, M.V.B.M.; Raz, L.; Veasey, E.A. Dioscorea Trifida L.f.: A Little Known South American Species. In Varieties and Landraces: Cultural Practices and Traditional Uses: Volume 2: Underground Starchy Crops of South American Origin: Production, Processing, Utilization and Economic Perspectives; Elsevier: Amsterdam, The Netherlands, 2023; Volume 2, pp. 55–68. ISBN 9780323900577. [Google Scholar]
- Pérez, E.; Gibert, O.; Rolland-Sabaté, A.; Jiménez, Y.; Sánchez, T.; Giraldo, A.; Pontoire, B.; Guilois, S.; Lahon, M.C.; Reynes, M.; et al. Physicochemical, Functional, and Macromolecular Properties of Waxy Yam Starches Discovered from “Mapuey” (Dioscorea trifida) Genotypes in the Venezuelan Amazon. J. Agric. Food Chem. 2011, 59, 263–273. [Google Scholar] [CrossRef] [PubMed]
- Adomėnienė, A.; Venskutonis, P.R. Dioscorea spp.: Comprehensive Review of Antioxidant Properties and Their Relation to Phytochemicals and Health Benefits. Molecules 2022, 27, 2530. [Google Scholar] [CrossRef]
- Medina-López, S.V.; Molina García, C.; Lizarazo-Aparicio, M.C.; Hernández-Gómez, M.S.; Fernández-Trujillo, J.P. Purple Yampee Derivatives and Byproduct Characterization for Food Applications. Foods 2024, 13, 4148. [Google Scholar] [CrossRef]
- Mollica, J.Q.; Cara, D.C.; D’Auriol, M.; Oliveira, V.B.; Cesar, I.C.; Brandão, M.G.L. Anti-Inflammatory Activity of American Yam Dioscorea Trifida L.f. in Food Allergy Induced by Ovalbumin in Mice. J. Funct. Foods 2013, 5, 1975–1984. [Google Scholar] [CrossRef]
- Teixeira, A.; Oliveira, I.; Lima, E.; Matsuura, T. The Use of Purple Yam (Dioscorea trifida) as a Health-Promoting Ingredient in Bread Making. J. Res. Biol. 2013, 3, 747–758. [Google Scholar]
- Tuisima-Coral, L.L.; Huachua, W.F.G. Genetic Variability of Yam (Dioscorea trifida) Genotypes in the Ucayali Region, Peru. Agron. Colomb. 2022, 40, 114–123. [Google Scholar] [CrossRef]
- Solano, X.; Navarro, J.R.; Leihner, D.E.; Hilger, T.H. Practices to Prolong the Storage Life of Dioscorea Trifida L. Planting Material. J. Clin. Biochem. Nutr. 1996, 21, 215–217. [Google Scholar]
- More, S.J.; Ravi, V.; Raju, S. 33. Tropical Tuber Crops. In Postharvest Physiological Disorders in Fruits and Vegetables; Tonetto de Freitas, S., Pareek, S., Eds.; CRC Press: Boca Raton, FL, USA, 2019; pp. 719–758. [Google Scholar]
- Martin, F.W.; Degras, L. Tropical Yams and Their Potential Part 5. Dioscorea trifida; United States Department of Agriculture (USDA), Science and Education Administration: Washington, DC, USA, 1978. [Google Scholar]
- Sugri, I.; Maalekuu, B.K.; Gaveh, E.; Kusi, F.; Lamini, S. Assessment of Low-Cost Postharvest Techniques to Reduce Storage Losses in Sweet Potato. Sustain. Agric. Res. 2020, 9, 17. [Google Scholar] [CrossRef]
- Medina-López, S.V.; Fernández-Trujillo, J.P.; Hernández-Gómez, M.S. Evolución de características físicas y químicas en el almacenamiento de ñampín morado (Dioscorea trífida). In Proceedings of the Workshop en Investigación Agroalimentaria Para Jóvenes Investigadores, WiA, Cartagena, Spain; Universidad Politécnica de Cartagena: Cartagena, Spain, 2024; Volume 22, pp. 842–856, ISBN 978-84-17853-91-4. [Google Scholar] [CrossRef]
- Teoh, L.S.; Lasekan, O.; Adzahan, N.M.; Hashim, N. The Effect of Combinations of UV-C Exposure with Ascorbate and Calcium Chloride Dips on the Enzymatic Activities and Total Phenolic Content of Minimally Processed Yam Slices. Postharvest Biol. Technol. 2016, 120, 138–144. [Google Scholar] [CrossRef]
- Sunmola, A.I.; Bukoye, O.O. Biochemical Response of Sweet Potato to Bemul-Wax Coating Combined with Calcium Chloride Treatment during Ambient Storage. Afr. J. Biotechnol. 2011, 10, 2724–2732. [Google Scholar] [CrossRef]
- Qamar, J.; Ejaz, S.; Anjum, M.A.; Nawaz, A.; Hussain, S.; Ali, S.; Saleem, S. Effect of Aloe Vera Gel, Chitosan and Sodium Alginate Based Edible Coatings on Postharvest Quality of Refrigerated Strawberry Fruits of Cv. Chandler. J. Hortic. Sci. Technol. 2018, 1, 8–16. [Google Scholar]
- Adetunji, C.O.; Arowora, K.A.; Ogundele, B.A. Improving Carrot (Daucus carota L.) Fruit Storability by Edible Coating Containing Aloe Vera Gel and Essential Oil from Sesame Seed. In Proceedings of the Tropentag—Management of Land Use Systems for Enhanced Food Security: Conflicts, Controversies and Resolutions, Berlin, Germany, 16 September 2015. [Google Scholar]
- Farina, V.; Passafiume, R.; Tinebra, I.; Palazzolo, E.; Sortino, G. Use of Aloe Vera Gel-Based Edible Coating with Natural Anti-Browning and Anti-Oxidant Additives to Improve Post-Harvest Quality of Fresh-Cut “Fuji” Apple. Agronomy 2020, 10, 515. [Google Scholar] [CrossRef]
- Farina, V.; Passafiume, R.; Tinebra, I.; Scuderi, D.; Saletta, F.; Gugliuzza, G.; Gallotta, A.; Sortino, G. Postharvest Application of Aloe Vera Gel-Based Edible Coating to Improve the Quality and Storage Stability of Fresh-Cut Papaya. J. Food Qual. 2020, 2020, 8303140. [Google Scholar] [CrossRef]
- Suhaizan, L.; Nursuraya, M.A.; Faziha, N. Effect of Hot Water Treatment on Postharvest Disease Development and Postharvest Quality of Sweet Potato (Ipomoea batatas). Malays. Appl. Biol. 2019, 48, 61–66. [Google Scholar]
- Sheibani, E.; Kim, T.; Wang, D.S.; Silva, J.L.; Arancibia, R.; Matta, F.B.; Picha, D. Optimization of Hot Water Treatment for Sprout and Spoilage Inhibition of Cured Sweet Potato. J. Food Process Preserv. 2014, 38, 493–498. [Google Scholar] [CrossRef]
- Coyne, D.L.; Claudius-Cole, A.O.; Kenyon, L.; Baimey, H. Differential Effect of Hot Water Treatment on Whole Tubers versus Cut Sets of Yam (Dioscorea spp.). Pest. Manag. Sci. 2010, 66, 385–389. [Google Scholar] [CrossRef] [PubMed]
- AOAC International. Official Methods of Analysis of AOAC International, 19th ed.; AOAC International: Gaithersburg, MD, USA, 2012. [Google Scholar]
- Quintero-Mendoza, W.; Orduz, L.; Lozano, K.; Cardona, J.; Carrillo, M.; Hernández-Gómez, M.S. Natural Derived Ingredients Development from Amazonic Purple Yam (Dioscorea trifida L.f Var. morada). Acta Hortic. 2023, 1361, 83–91. [Google Scholar] [CrossRef]
- Cardona Jaramillo, E.J.C. Estudio de Metabolitos Fijos y Volátiles en Tres Morfotipos de Cocona (Solanum sessiliflorum Dunal) Procedentes del Departamento del Guaviare. Master’s Thesis, Universidad Nacional de Colombia, Bogotá, Colombia, 2011. [Google Scholar]
- Lizarazo-Peña, P.; Darghan, E.; Herrera, A. Effects of Gamma Radiation on the Quality of Hass Avocado Fruits (Persea americana Mill.). Radiat. Phys. Chem. 2022, 190, 109817. [Google Scholar] [CrossRef]
- Azhar Shapawi, Z.I.; Ariffin, S.H.; Shamsudin, R.; Mohamed Amin Tawakkal, I.S.; Gkatzionis, K. Modeling Respiration Rate of Fresh-Cut Sweet Potato (Anggun) Stored in Different Packaging Films. Food Packag. Shelf Life 2021, 28, 100657. [Google Scholar] [CrossRef]
- Huang, H.; Huang, C.; Yin, C.; Khan, R.U. Preparation and Characterization of β-Cyclodextrin–Oregano Essential Oil Microcapsule and Its Effect on Storage Behavior of Purple Yam. J. Sci. Food Agric. 2020, 100, 4849–4857. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.C.; Lin, C.; Chen, M.H.; Chiang, P.Y. Stability and Quality of Anthocyanin in Purple Sweet Potato Extracts. Foods 2019, 8, 393. [Google Scholar] [CrossRef]
- Mahmudatussa‘adah, A.; Patriasih, R.; Maulani, R.; Karpin, K. The Effect of Steaming on the Color and Amount of Anthocyanin of Purple Sweet Potato Flour. In Proceedings of the 7th Mathematics, Science, and Computer Science Education International Seminar, MSCEIS 2019, West Java, Indonesia, 12 October 2020. [Google Scholar]
- Slavu(Ursu), M.; Aprodu, I.; Milea, Ș.A.; Enachi, E.; Râpeanu, G.; Bahrim, G.E.; Stănciuc, N. Thermal Degradation Kinetics of Anthocyanins Extracted from Purple Maize Flour Extract and the Effect of Heating on Selected Biological Functionality. Foods 2020, 9, 1593. [Google Scholar] [CrossRef]
- Ochoa, S.; Durango-Zuleta, M.M.; Felipe Osorio-Tobón, J. Techno-Economic Evaluation of the Extraction of Anthocyanins from Purple Yam (Dioscorea alata) Using Ultrasound-Assisted Extraction and Conventional Extraction Processes. Food Bioprod. Process. 2020, 122, 111–123. [Google Scholar] [CrossRef]
- Srivichai, S.; Hongsprabhas, P. Profiling Anthocyanins in Thai Purple Yams (Dioscorea alata L.). Int. J. Food Sci. 2020, 2020, 1594291. [Google Scholar] [CrossRef]
- Ramos-Escudero, F.; Santos-Buelga, C.; Pérez-Alonso, J.J.; Yáñez, J.A.; Dueñas, M. HPLC-DAD-ESI/MS Identification of Anthocyanins in Dioscorea Trifida L. Yam Tubers (Purple Sachapapa). Eur. Food Res. Technol. 2010, 230, 745–752. [Google Scholar] [CrossRef]
- Yamauchi, M.; Kitamura, Y.; Nagano, H.; Kawatsu, J.; Gotoh, H. DPPH Measurements and Structure—Activity Relationship Studies on the Antioxidant Capacity of Phenols. Antioxidants 2024, 13, 309. [Google Scholar] [CrossRef]
- Vasco, C.; Ruales, J.; Kamal-Eldin, A. Total Phenolic Compounds and Antioxidant Capacities of Major Fruits from Ecuador. Food Chem. 2008, 111, 816–823. [Google Scholar] [CrossRef]
- Oliveira, I.; Baptista, P.; Malheiro, R.; Casal, S.; Bento, A.; Pereira, J.A. Influence of Strawberry Tree (Arbutus unedo L.) Fruit Ripening Stage on Chemical Composition and Antioxidant Activity. Food Res. Int. 2011, 44, 1401–1407. [Google Scholar] [CrossRef]
- Tang, Y.; Cai, W.; Xu, B. Profiles of Phenolics, Carotenoids and Antioxidative Capacities of Thermal Processed White, Yellow, Orange and Purple Sweet Potatoes Grown in Guilin, China. Food Sci. Hum. Wellness 2015, 4, 123–132. [Google Scholar] [CrossRef]
- Uy, R.J.; Kayamori, M.; Nakashima, C. Characterization of Penicillium Species Isolated from Dioscorea Polystachya in Hokkaido, Japan. Mycoscience 2023, 64, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Han, J.; Jing, Y.; Li, S.; Lan, B.; Zhang, Q.; Yin, K. Virulent Fusarium Isolates with Diverse Morphologies Show Similar Invasion and Colonization Strategies in Alfalfa. Front. Plant Sci. 2024, 15, 1390069. [Google Scholar] [CrossRef]
- Paul, N.C.; Park, S.; Liu, H.; Lee, J.G.; Han, G.H.; Kim, H.; Sang, H. Fungi Associated with Postharvest Diseases of Sweet Potato Storage Roots and in Vitro Antagonistic Assay of Trichoderma Harzianum against the Diseases. J. Fungi 2021, 7, 927. [Google Scholar] [CrossRef]
- Arrieta-Guerra, J.J.; Díaz-Cabadiaz, A.T.; Pérez-Pazos, J.V.; Cadena-Torres, J.; Sánchez-López, D.B. Fungi Associated with Dry Rot Disease of Yam (Dioscorea rotundata Poir.) Tubers in Cordoba, Colombia. Agron. Mesoam. 2021, 32, 790–807. [Google Scholar] [CrossRef]
- Dania, V.O.; Fajemisin, A.O.; Azuh, V.O. Morphological and Molecular Characterization of Aspergillus Niger Causing Postharvest Rot of White Yam (Dioscorea rotundata Poir). Arch. Phytopathol. Plant Prot. 2021, 54, 2356–2374. [Google Scholar] [CrossRef]
- Borges García, M.; Sánchez Rodríguez, Y.; María, D.; Avalos, R. Respuesta de Tubérculos Comerciales de Ñame (Dioscorea spp.) En El Momento de La Cosecha y Almacenamiento Poscosecha. agriRxiv 2020. [Google Scholar] [CrossRef]
- Oladipo, A.S.; Fayose, F.T.; Omofunmi, O.E. A Review of the Performance of Made in Nigeria Yam Processing Machines. J. Res. For. Wildl. Environ. 2020, 12, 135–141. [Google Scholar]
- Nascimento, W.F.D. Wellington Ferreira do Nascimento Diversidade Genética de Inhame (Dioscorea trifida L.) Avaliada por Marcadores Morfológicos, SSR e ISSR. Ph.D. Thesis, Universidade de São Paulo, Piracicaba, Brazil, 2013. [Google Scholar]
- Ferreira, A.B.; Ming, L.C.; Chechetto, F.; Pinto, R.A. Dioscoreáceas cultivadas por agricultores da Baixada Cuiabana em Mato Grosso-Brasil. Raízes Amidos Trop. 2010, 6, 201–208. [Google Scholar]
- Pérez, E.; Jiménez, Y.; Emaldi, U.; Dufour, D. Atributos Físicos y Composición Proximal de Tres Variedades de Ñame Mapuey (Dioscorea trífida) Cultivados En El Estado Amazonas, Venezuela. In Proceedings of the CIBIA VII. Congreso Iberoamericano de Ingeniería en Alimentos, Bogotá, Colombia, 6–9 September 2009; Revista de la Asociación Colombiana de Ciencia y Tecnología de Alimentos - Alimentos Hoy, 2009; Volume 18, pp. 1–5. [Google Scholar]
- Costa Ribeiro, A.; de Souza Cardoso, A.A.; Simas dos Reis, E.P.E.; Costa Ribeiro, A. Production of Cará-Roxo (Dioscorea trifida L.f.) Cultivated under Different Doses of Organic and Phosphate Fertilization in the Municipality of Itacoatiara–AM. J. Agric. Sci. Res. 2024, 4, 1–6. [Google Scholar] [CrossRef]
- Ramírez-Sánchez, M.; Castro-Chinchilla, J.; Sáenz-Murillo, M.V.; Umaña-Rojas, G. Calidad poscosecha del ñame (Dioscorea alata L.) En Costa Rica: Factores que afectan durante el curado y almacenamiento del tubérculo. Agron. Costarric. 2024, 48, 95–110. [Google Scholar]
- Beyerlein, P.; Mendes, Â.M.S.; Pereira, H.S. Floral Phenology, Seed Germination and Hybrid Plants of the Amerindian Yam (Dioscorea trifida). Acta Amazon. 2019, 49, 167–172. [Google Scholar] [CrossRef]
- Frank, C.O.; Kingsley, C.A. Proximate Composition, Physiological changes during Storage, and Shelf Life of Some Nigerian of Yams (Dioscorea Species). J. Sci. Res. Rep. 2014, 553–562. [Google Scholar] [CrossRef]
- Holcroft, D. PEF White Paper No. 18-02; Postharvest Education Foundation—PEF: La Pine, OR, USA, 2018; pp. 1–37. [Google Scholar]
- Aguado, P.; Ayuga, F.; Berbert, P.A.; Cao, C.W.; Catalano, P.; de Sousa e Silva, J.; Di Renzo, G.C.; Garcia-Vaquero, E.; Hewett, E.W.; Hilton, D.J.; et al. CIGR Handbook of Agricultural Engineering Volume IV. Agro Processing Engineering; American Society of Agricultural Engineers: St. Joseph, MI, USA, 1999. [Google Scholar]
- Ravi, V.; Aked, J. Review on Tropical Root and Tuber Crops. II. Physiological Disorders in Freshly Stored Roots and Tubers. Crit. Rev. Food Sci. Nutr. 1996, 36, 711–731. [Google Scholar] [CrossRef] [PubMed]
- Henschel, J.M.; de Andrade, A.N.; dos Santos, J.B.L.; da Silva, R.R.; da Mata, D.A.; Souza, T.; Batista, D.S. Lipidomics in Plants under Abiotic Stress Conditions: An Overview. Agronomy 2024, 14, 1670. [Google Scholar] [CrossRef]
- Ferrari, M.C.; Ferrari, R.A. Transformation of Fresh Yams (Dioscorea trifida) into Flours and Starches: Sustainable Options for the Food Industry Contributing to the Development of This Production Chain. Sci. Agric. 2024, 82, e20230290. [Google Scholar] [CrossRef]
- Xu, M.; Li, J.; Yin, J.; Wu, M.; Zhou, W.; Yang, X.; Zhang, R.; He, J. Color and Nutritional Analysis of Ten Different Purple Sweet Potato Varieties Cultivated in China via Principal Component Analysis and Cluster Analysis. Foods 2024, 13, 904. [Google Scholar] [CrossRef]
- Sajjaanantakul, T.; Likitwattanasade, T.; Idhipong, S.; Sakuanrungsirikul, S.; Hongsprabhas, P. Effect of Storage Conditions on Phenolic Compounds and Antioxidant Capacity of Thai Yam (Dioscorea alata L.) Tubers. In Proceedings of the 52nd Kasetsart University Annual Conference, Bangkok, Thailand, 4–7 February 2014; 2014. [Google Scholar]
- Nurfarhana, S.; Rosnah, S.; Zuhair, M.N.; Norhashila, H.; Azman, H. Effect of Storage Duration on the Color Value of Sweet Potatoes (Ipomoea batatas). In Proceedings of the Konvensyen Kebangsaan Kejuruteraan Pertanian dan Makanan 2019, Wisma Tani, Kementerian Pertanian & Industri Asas Tani, Putrajaya, Malaysia, 21 March 2019; p. 111. [Google Scholar]
- Tortoe, C.; Dowuona, S.; Dziedzoave, N.T.; Rees, D. Effect of Curing Treatments on Seven Key Farmers’ Yams (Dioscorea spp.) in Ghana. Agric. Sci. 2014, 5, 1119–1128. [Google Scholar] [CrossRef]
- Njoh Ellong, E.; Billard, C.; Pétro, D.; Adenet, S.; Rochefort, K. Physicochemical, Nutritional and Sensorial Qualities of Boutou Yam (Dioscorea alata) Varieties. J. Exp. Biol. Agric. Sci. 2015, 3, 138–150. [Google Scholar] [CrossRef]
- Akissoe, N.; Mestres, C.; Handschin, S.; Gibert, O.; Hounhouigan, J.; Nago, M. Microstructure and Physico-Chemical Bases of Textural Quality of Yam Products. LWT 2011, 44, 321–329. [Google Scholar] [CrossRef]
- Dje, K.M.; Abrogoua, U.N.; Simplice, T.; Guéhi, S.; Patrice, K.; Dje, M.K.; Dabonne, S.; Guehi, S.T.; Kouame, L.P. Effects of Postharvest Storage on Some Biochemical Parameters of Different Parts of Two Yams Species (Dioscorea spp.). Afr. J. Food Sci. Technol. 2010, 1, 1–9. [Google Scholar]
- Otegbayo, B.O.; Asiedu, R.; Bokanga, M. Effects of Storage on the Chemical Composition and Food Quality of Yam. J. Food Process Preserv. 2012, 36, 438–445. [Google Scholar] [CrossRef]
- Priecina, L.; Karklina, D. Composition of Major Organic Acids in Vegetables and Spices. CBU Int. Conf. Proc. 2015, 3, 447–454. [Google Scholar] [CrossRef]
- Lai, Y.C.; Huang, C.L.; Chan, C.F.; Lien, C.Y.; Liao, W.C. Studies of Sugar Composition and Starch Morphology of Baked Sweet Potatoes (Ipomoea batatas (L.) Lam). J. Food Sci. Technol. 2013, 50, 1193–1199. [Google Scholar] [CrossRef]
- Makanjuola, O.M.; Osinfade, B.G. Determination of Sugars in Yams under Storage during the Dry Season. IOSR J. Environ. Sci. 2017, 11, 24–27. [Google Scholar] [CrossRef]
- Boakye, I.; Essuman, E.K. Effects of Storage Conditions and Time on the Physicochemical Properties of Dioscorea Rotundata (ASOBAYERE). Int. J. Res. Agric. Sci. 2016, 3, 273–278. [Google Scholar]
- Espitia, J.; Salcedo, J.G.; Garcia, C. Funtional Properties of Starch Yam (Dioscorea bulbífera, Dioscorea trífida y Dioscorea esculenta). Rev. Téc. Ing. Univ. Zulia 2016, 39, 31–36. [Google Scholar]
- Santos, S.d.J.L.; Canto, H.K.F.; da Silva, L.H.M.; Rodrigues, A.M.D.C. Characterization and Properties of Purple Yam (Dioscorea trifida) Powder Obtained by Refractance Window Drying. Dry. Technol. 2020, 40, 1103–1113. [Google Scholar] [CrossRef]
- Larief, R.; Dirpan, A. Theresia Purple Yam Flour (Dioscorea alata L.) Processing Effect on Anthocyanin and Antioxidant Capacity in Traditional Cake “Bolu Cukke” Making. IOP Conf. Ser. Earth Environ. Sci. 2018, 207, 012043. [Google Scholar] [CrossRef]
- Adomėnienė, A.; Venskutonis, P.R. Enzyme Inhibitory Activity of Dioscorea Nipponica Makito Hydroethanolic Extracts of Leaves and Tubers in Relation to Their Major Secondary Metabolites. Food Biosci. 2022, 50, 102059. [Google Scholar] [CrossRef]
- Zayed, A.; Adly, G.M.; Farag, M.A. Management Strategies for the Anti-Nutrient Oxalic Acid in Foods: A Comprehensive Overview of Its Dietary Sources, Roles, Metabolism, and Processing. Food Bioproc Tech. 2025, 18, 4280–4300. [Google Scholar] [CrossRef]
- Brunnschweiler, J. Structure and Texture of Yam (Dioscorea spp.) and Processed Yam Products. Ph.D. Thesis, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland, 2004. [Google Scholar]
- Opara, L.U. YAMS Post-Harvest Operations. In INPhO–Post-Harvest Compendium; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2003. [Google Scholar]
- Cui, P.; Li, Y.; Cui, C.; Huo, Y.; Lu, G.; Yang, H. Proteomic and Metabolic Profile Analysis of Low-Temperature Storage Responses in Ipomoea Batata Lam. Tuberous Roots. BMC Plant Biol. 2020, 20, 435. [Google Scholar]
- Maddipatla, R.; Panja, P.; Krishna Thakur, P.; Kumari, R.; Satish Kuchi, V.; Mitra, S.; Payel Panja, C. Performance of Some Purple-Fleshed Sweet Potatoes (Ipomoea batatas L.) as Influenced by Different Storage Conditions. J. Pharmacogn. Phytochem. 2017, 6, 2313–2317. Available online: https://www.phytojournal.com/archives/2017/vol6issue6/PartAF/6-6-90-319.pdf (accessed on 1 July 2025).
- Krochmal-Marczak, B.; Sawicka, B.; Krzysztofik, B.; Danilčenko, H.; Jariene, E. The Effects of Temperature on the Quality and Storage Stalibity of Sweet Potato (Ipomoea batatas L. [Lam]) Grown in Central Europe. Agronomy 2020, 10, 1665. [Google Scholar] [CrossRef]
- Gull, M.; Pasek, M.A. The Role of Glycerol and Its Derivatives in the Biochemistry of Living Organisms, and Their Prebiotic Origin and Significance in the Evolution of Life. Catalysts 2021, 11, 86. [Google Scholar] [CrossRef]
- Sanyal, R.; Kumar, S.; Pattanayak, A.; Kar, A.; Bishi, S.K. Optimizing Raffinose Family Oligosaccharides Content in Plants: A Tightrope Walk. Front. Plant Sci. 2023, 14, 1134754. [Google Scholar] [CrossRef]
- Keller, I.; Müdsam, C.; Rodrigues, C.M.; Kischka, D.; Zierer, W.; Sonnewald, U.; Harms, K.; Czarnecki, O.; Fiedler-Wiechers, K.; Koch, W.; et al. Cold-Triggered Induction of ROS- and Raffinose Metabolism in Freezing-Sensitive Taproot Tissue of Sugar Beet. Front. Plant Sci. 2021, 12, 715767. [Google Scholar] [CrossRef]
- Dongzhen, F.; Xilin, L.; Xiaorong, C.; Wenwu, Y.; Yunlu, H.; Yi, C.; Jia, C.; Zhimin, L.; Litao, G.; Tuhong, W.; et al. Fusarium Species and Fusarium Oxysporum Species Complex Genotypes Associated With Yam Wilt in South-Central China. Front. Microbiol. 2020, 11, 1964. [Google Scholar] [CrossRef]
- Ezebo, R.O.; Okigbo, R.N. Biological Control of Post-Harvest Rot in Water Yam (Dioscorea alata L.) Using Antagonistic Fungi. Int. J. Pathog. Res. 2024, 13, 101–116. [Google Scholar] [CrossRef]
- Obidiegwu, J.E.; Lyons, J.B.; Chilaka, C.A. The Dioscorea Genus (Yam) An Appraisal of Nutritional and Therapeutic Potentials. Foods 2020, 9, 1304. [Google Scholar] [CrossRef]
- Chidimma, O.N.; Ikechukwu, I.A. Proximate Composition of Dioscorea dumetorum (K.) and Dioscorea bulbifera (L.) Tubers during Storage. Newport Int. J. Biol. Appl. Sci. 2024, 5, 20–27. [Google Scholar] [CrossRef]
- Rached, L.B.; De Vizcarrondo, C.A.; Rincón, A.M.; Padilla, F. Evaluación de Harinas y Almidones de Mapuey (Dioscorea trifida), Variedades Blanco y Morado. Arch. Latinoam. Nutr. 2006, 56, 375–383. [Google Scholar]
- Datir, S.; Kumbhar, R.; Kumatkar, P. Understanding Physiological and Biochemical Mechanisms Associated with Post-Harvest Storage of Yam Tuber (Dioscorea Sp.). Technol. Hortic. 2024, 4, e004. [Google Scholar] [CrossRef]
- Padhan, B.; Biswas, M.; Dhal, N.K.; Panda, D. Evaluation of Mineral Bioavailability and Heavy Metal Content in Indigenous Food Plant Wild Yams (Dioscorea spp.) from Koraput, India. J. Food Sci. Technol. 2018, 55, 4681–4686. [Google Scholar] [CrossRef]
- Caselato de Sousa, V.M.; Freitas dos Santos, E.; Sgarbieri, V.C. The Importance of Prebiotics in Functional Foods and Clinical Practice. Food Nutr. Sci. 2011, 2, 133–144. [Google Scholar] [CrossRef]
- Gaur, V.S.; Sood, S.; Guzmán, C.; Olsen, K.M. Molecular Insights on the Origin and Development of Waxy Genotypes in Major Crop Plants. Brief. Funct. Genom. 2024, 23, 193–213. [Google Scholar] [CrossRef]
- Lu, D.L.; Huan, Y.; Xin, S.; Wei Ping, L. Effects of High Temperature during Grain Filling on Physicochemical Properties of Waxy Maize Starch. J. Integr. Agric. 2016, 15, 309–316. [Google Scholar] [CrossRef]
- Donegá, M.A.; Tessmer, M.A.; Mooz, E.D.; Dall’Orto, L.T.; Sasaki, F.F.; Kluge, R.A. Fresh Cut Yam Stored under Different Temperatures. Hortic. Bras. 2013, 31, 248–254. [Google Scholar] [CrossRef]
- Simões, A.d.N.; Freire, C.S.; da Silva, E.F.; Barros Júnior, A.P.; Ferreira-Silva, S.L. Qualidade Do Inhame (Dioscorea Sp.) Minimamente Processado Conservado Em Duas Temperaturas. Rev. Caatinga 2016, 29, 25–36. [Google Scholar] [CrossRef]
- Famiani, F.; Battistelli, A.; Moscatello, S.; Cruz-Castillo, J.G.; Walker, R.P. The Organic Acids That Are Accumulated in the Flesh of Fruits: Occurrence, Metabolism and Factors Affecting Their Contents–A Review. Rev. Chapingo Ser. Hortic. 2015, 21, 97–128. [Google Scholar] [CrossRef]
- Hannah, M.A.; Zuther, E.; Buchel, K.; Heyer, A.G. Transport and Metabolism of Raffinose Family Oligosaccharides in Transgenic Potato. J. Exp. Bot. 2006, 57, 3801–3811. [Google Scholar] [CrossRef] [PubMed]
- Ul Hasan, M.; Ullah Malik, A.; Anwar, R.; Sattar Khan, A.; Haider, M.W.; Riaz, R.; Ali, S.; Ur Rehman, R.N.; Ziaf, K. Postharvest Aloe Vera Gel Coating Application Maintains the Quality of Harvested Green Chilies during Cold Storage. J. Food Biochem. 2021, 45, e13682. [Google Scholar] [CrossRef]
- Hajebi Seyed, R.; Rastegar, S.; Faramarzi, S. Impact of Edible Coating Derived from a Combination of Aloe Vera Gel, Chitosan and Calcium Chloride on Maintain the Quality of Mango Fruit at Ambient Temperature. J. Food Meas. Charact. 2021, 15, 2932–2942. [Google Scholar] [CrossRef]
- Sarker, A.; Grift, T.E. Bioactive Properties and Potential Applications of Aloe Vera Gel Edible Coating on Fresh and Minimally Processed Fruits and Vegetables: A Review. J. Food Meas. Charact. 2021, 15, 2119–2134. [Google Scholar] [CrossRef]
- Elaibi, H.K.; Mutlag, F.F.; Al-Ebey, Z.K. A Comprehensive Review of Aloe Vera: Multifaceted Health Benefits and Anti-Diabetic Properties. J. Res. Chem. 2023, 4, 14–21. [Google Scholar]
- Jain, V.; Chawla, S.; Choudhary, P.; Jain, S. Post-Harvest Calcium Chloride Treatments Influence Fruit Firmness, Cell Wall Components and Cell Wall Hydrolyzing Enzymes of Ber (Ziziphus mauritiana Lamk.) Fruits during Storage. J. Food Sci. Technol. 2019, 56, 4535–4542. [Google Scholar] [CrossRef] [PubMed]
- Jaime-Guerrero, M.; Álvarez-Herrera, J.G.; Fischer, G. Effect of Calcium on Fruit Quality: A Review. Agron. Colomb. 2024, 42, 1–42. [Google Scholar] [CrossRef]
- Boeckx, J.; Pols, S.; Hertog, M.L.A.T.M.; Nicolaï, B.M. Regulation of the Central Carbon Metabolism in Apple Fruit Exposed to Postharvest Low-Oxygen Stress. Front. Plant Sci. 2019, 10, 1384. [Google Scholar] [CrossRef]
- Rawyler, A.; Pavelic, D.; Gianinazzi, C.; Oberson, J.; Braendle, R. Membrane Lipid Integrity Relies on a Threshold of ATP Production Rate in Potato Cell Cultures Submitted to Anoxia. Plant Physiol. 1999, 120, 293–300. [Google Scholar] [CrossRef]
- Nishizawa, A.; Yabuta, Y.; Shigeoka, S. Galactinol and Raffinose Constitute a Novel Function to Protect Plants from Oxidative Damage. Plant Physiol. 2008, 147, 1251–1263. [Google Scholar] [CrossRef]
- Okelo, E.O.; Wainaina, I.; Duijsens, D.; Onyango, A.; Sila, D.; Grauwet, T.; Hendrickx, M.E.G. Targeted Hydrothermally Induced Cell Biopolymer Changes Explain the in Vitro Digestion of Starch and Proteins in Common Bean (Phaseolus vulgaris) Cotyledons. Food Funct. 2024, 15, 8848–8864. [Google Scholar] [CrossRef]
- Eze, S.O.O.; Chilaka, F.C.; Nwanguma, B.C. Studies on Thermodynamics and Kinetics of Thermo- Inactivation of Some Quality-Related Enzymes in White Yam (Dioscorea rotundata). J. Thermodyn. Catal. 2010, 1, 1–9. [Google Scholar] [CrossRef]
Treatment | I | II | III | IV | V | VI |
---|---|---|---|---|---|---|
CaCl2 (w/v) | 0% | 2% | 1% | 2% | 0% | 1% |
Coating | None | None | None | AV-O | AV-O | AV-O |
HydrothermalTreatment | HT1 | HT2 | HT3 | HT4 | HT5 | HT6 | HT7 | HT8 | HT9 | HT10 |
---|---|---|---|---|---|---|---|---|---|---|
Temperature (°C) | 20 | 26 | 26 | 40.5 | 40.5 | 40.5 | 40.5 | 55 | 55 | 61 |
Time (min) | 10 | 5 | 15 | 3 | 10 | 10 | 17 | 5 | 15 | 10 |
Compositional Traits (g per 100 g) z | Day 1 | Day 34 | Day 1 | Day 34 | |
---|---|---|---|---|---|
Moisture | 64.74 ± 2.2 a | 68.23 ± 6.0 b | Ca | 85.04 ± 2.0 a | 61.50 ± 0.7 b |
Crude protein | 5.68 ± 0.1 a | 5.30 ± 0.0 b | Mg | 74.46 ± 0.7 a | 63.50 ± 3.5 a |
Ash | 2.79 ± 0.0 a | 2.60 ± 0.0 b | K | 1110.90 ± 25.3 a | 793.50 ± 38.9 a |
Crude fat | 1.68 ± 0.0 a | 0.35 ± 0.0 b | Na | 30.98 ± 0.9 a | 12.00 ± 0.0 b |
Carbohydrates | 81.26 ± 0.1 a | 87.45 ± 0.2 b | Fe | 20.38 ± 0.4 a | 6.5 ± 0.4 b |
Dietary fiber | 8.70 ± 0.1 a | 9.65 ± 1.2 a | Zn | 1.26 ± 0.0 a | 1.20 ± 0.0 b |
Non-Destructive Physicochemical Characteristics | ||
---|---|---|
Respiration rates | mL∙kg−1∙h−1 of CO2 | 6.04 ± 3.09 |
Weight | g | 167 ± 3.50 |
External L* | - | 42.56 ± 2.76 |
External a* | - | 8.09 ± 0.20 |
External b* | - | 13.39 ± 0.55 |
External chroma | - | 15.64 ± 0.58 |
External hue | - | 1.03 ± 0.01 |
Destructive physicochemical characteristics | ||
Inner L* | - | 41.68 ± 1.35 |
Inner a* | - | 22.46 ± 1.05 |
Inner b* | - | −3.36 ± 0.52 |
Inner chroma | - | 22.72 ± 1.04 |
Inner hue | - | −0.15 ± 0.02 |
Firmness | Newtons | 26.62 ± 5.47 |
Dry matter | g·kg−1 | 352.6 ± 22.2 |
Total soluble solids (TSS) | °Brix | 6.97 ± 0.15 |
Organic acids | ||
Oxalic acid | mg/kg | 30.12 ± 0.34 |
Citric acid | mg/kg | 226.21 ± 4.61 |
Malic acid | mg/kg | 91.38 ± 1.45 |
Succinic acid | mg/kg | 871.63 ± 16.29 |
Acetic acid | mg/kg | 1772.4 ± 614.7 |
Carbohydrates | data | data |
Amylose | mg/g | 26.26 ± 0.82 |
Amylopectin | mg/g | 222.30 ± 8.33 |
Starch | mg/g | 248.57 ± 9.13 |
Raffinose | mg/kg | 143.96 ± 223.31 |
Ribose | mg/kg | 0.36 ± 0.32 |
Sucrose | mg/kg | 2216.57 ± 2467.10 |
Glucose | mg/kg | 137.12 ± 15.48 |
Fructose | mg/kg | 89.47 ± 31.73 |
Alcohols | ||
Glycerol | mg/kg | 12.74 ± 11.04 |
Antioxidant compounds and capacity | ||
FRAP | µmol Trolox/g | 13.33 ± 1.21 |
TEAC | µmol Trolox/g | 17.62 ± 1.28 |
DPPH | µmol Trolox/g | 80.99 ± 1.90 |
Folin–Ciocalteau | mg GAE/g DW | 4.88 ± 0.29 |
Total anthocyanin content | mg Cy3Gl/100 g DW | 2.38 ± 0.29 |
Objective | Recommended HT Treatment | Effects |
---|---|---|
Antioxidant preservation | HT4 (40.5 °C—3 min) | Highest DPPH value; likely stress-induced antioxidant response |
TSS minimization for frying (chips) | HT6 (40.5 °C—10 min) | Lower TSS; may prevent excessive browning during frying due to a lesser amount of reducing sugars |
Starch preservation for flour | HT2 (26 °C—5 min) | Lowest respiration rate; protected amylose, amylopectin, and starch content |
Enhanced sweetness for culinary uses | HT3 (26 °C—15 min) | High TSS; desirable for sweet preparations (concoctions, desserts) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Medina-López, S.V.; Jola Hernández, J.A.; Hernández-Gómez, M.S.; Fernández-Trujillo, J.P. Storage Behavior and Response to Low-Cost Postharvest Technologies of the Underutilized Purple Yampee (Dioscorea trifida L.f.). Foods 2025, 14, 2436. https://doi.org/10.3390/foods14142436
Medina-López SV, Jola Hernández JA, Hernández-Gómez MS, Fernández-Trujillo JP. Storage Behavior and Response to Low-Cost Postharvest Technologies of the Underutilized Purple Yampee (Dioscorea trifida L.f.). Foods. 2025; 14(14):2436. https://doi.org/10.3390/foods14142436
Chicago/Turabian StyleMedina-López, Sandra Viviana, Jorge Andrés Jola Hernández, Maria Soledad Hernández-Gómez, and Juan Pablo Fernández-Trujillo. 2025. "Storage Behavior and Response to Low-Cost Postharvest Technologies of the Underutilized Purple Yampee (Dioscorea trifida L.f.)" Foods 14, no. 14: 2436. https://doi.org/10.3390/foods14142436
APA StyleMedina-López, S. V., Jola Hernández, J. A., Hernández-Gómez, M. S., & Fernández-Trujillo, J. P. (2025). Storage Behavior and Response to Low-Cost Postharvest Technologies of the Underutilized Purple Yampee (Dioscorea trifida L.f.). Foods, 14(14), 2436. https://doi.org/10.3390/foods14142436