Pregelatinized Starch-Based Edible Films as Effective Carriers for Bacillus coagulans: Influence of Starch Type on Film Properties and Probiotic Viability
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Film Preparation
2.3. Fourier-Transform Infrared Spectroscopy (FTIR)
2.4. Microstructures
2.5. Light Transmission
2.6. Mechanical Properties
2.7. Surface Hydrophobicity
2.8. Water Vapor Permeability
2.9. Water Solubility
2.10. Viability of Probiotic Before and After Drying Process
2.11. Survivability of Probiotic During Storage
2.12. Statistical Analysis
3. Results and Discussion
3.1. Fourier-Transform Infrared Spectroscopy (FTIR)
3.2. Microstructures
3.3. Light Transmittance
3.4. Mechanical Properties
3.5. Surface Hydrophobicity
3.6. Water Solubility
3.7. Water Vapor Permeability
3.8. Viability of B. coagulans Before and After Drying Process
3.9. Survivability of B. coagulans During Storage
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Z.; Mhaske, P.; Farahnaky, A.; Kasapis, S.; Majzoobi, M. Cassava starch: Chemical modification and its impact on functional properties and digestibility, a review. Food Hydrocoll. 2022, 129, 107542. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, Z.; Yang, C.; Huang, A.; Hu, H.; Gong, Z.; Sun, G.; Huang, K. Material properties of partially pregelatinized cassava starch prepared by mechanical activation. Starch Stärke 2013, 65, 461–468. [Google Scholar] [CrossRef]
- Wongphan, P.; Harnkarnsujarit, N. Characterization of starch, agar and maltodextrin blends for controlled dissolution of edible films. Int. J. Biol. Macromol. 2020, 156, 80–93. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Chen, J.; Luo, S.; Li, C.; Ye, J.; Liu, C.; Gilbert, R.G. Physicochemical and structural properties of pregelatinized starch prepared by improved extrusion cooking technology. Carbohydr. Polym. 2017, 175, 265–272. [Google Scholar] [CrossRef]
- Rosa, D.S.; Guedes, C.G.F.; Pedroso, A.G.; Calil, M.R. The influence of starch gelatinization on the rheological, thermal, and morphological properties of poly(ε-caprolactone) with corn starch blends. Mater. Sci. Eng. C 2004, 24, 663–670. [Google Scholar] [CrossRef]
- Ma, H.; Liu, M.; Liang, Y.; Zheng, X.; Sun, L.; Dang, W.; Li, J.; Li, L.; Liu, C. Research progress on properties of pre-gelatinized starch and its application in wheat flour products. Grain Oil Sci. Technol. 2022, 5, 87–97. [Google Scholar] [CrossRef]
- Sáez-Orviz, S.; Rendueles, M.; Díaz, M. Impact of adding prebiotics and probiotics on the characteristics of edible films and coatings—A review. Food Res. Int. 2023, 164, 112381. [Google Scholar] [CrossRef]
- Gholam-Zhiyan, A.; Amiri, S.; Rezazadeh-Bari, M.; Pirsa, S. Stability of Bacillus coagulans IBRC-M 10807 and Lactobacillus plantarum PTCC 1058 in Milk Proteins Concentrate (MPC)-Based Edible Film. J. Packag. Technol. Res. 2021, 5, 11–22. [Google Scholar] [CrossRef]
- Orozco-Parra, J.; Mejía, C.M.; Villa, C.C. Development of a bioactive synbiotic edible film based on cassava starch, inulin, and Lactobacillus casei. Food Hydrocoll. 2020, 104, 105754. [Google Scholar] [CrossRef]
- Mohamed, S.; Elmohamady, M.N.; Abdelrahman, S.; Amer, M.M.; Abdelhamid, A.G. Antibacterial effects of antibiotics and cell-free preparations of probiotics against Staphylococcus aureus and Staphylococcus epidermidis associated with conjunctivitis. Saudi Pharm. J. 2020, 28, 1558–1565. [Google Scholar] [CrossRef]
- Misra, S.; Pandey, P.; Mishra, H.N. Novel approaches for co-encapsulation of probiotic bacteria with bioactive compounds, their health benefits and functional food product development: A review. Trends Food Sci. Technol. 2021, 109, 340–351. [Google Scholar] [CrossRef]
- Kandasamy, S.; Yoo, J.; Yun, J.; Kang, H.-B.; Seol, K.-H.; Kim, H.-W.; Ham, J.-S. Application of Whey Protein-Based Edible Films and Coatings in Food Industries: An Updated Overview. Coatings 2021, 11, 1056. [Google Scholar] [CrossRef]
- Pavli, F.; Tassou, C.; Nychas, G.-J.E.; Chorianopoulos, N. Probiotic Incorporation in Edible Films and Coatings: Bioactive Solution for Functional Foods. Int. J. Mol. Sci. 2018, 19, 150. [Google Scholar] [PubMed]
- Karimi, N.; Alizadeh, A.; Almasi, H.; Hanifian, S. Preparation and characterization of whey protein isolate/polydextrose-based nanocomposite film incorporated with cellulose nanofiber and L. plantarum: A new probiotic active packaging system. LWT 2020, 121, 108978. [Google Scholar] [CrossRef]
- Oliveira-Alcântara, A.V.; Abreu, A.A.S.; Gonçalves, C.; Fuciños, P.; Cerqueira, M.A.; Gama, F.M.P.; Pastrana, L.M.; Rodrigues, S.; Azeredo, H.M.C. Bacterial cellulose/cashew gum films as probiotic carriers. LWT 2020, 130, 109699. [Google Scholar] [CrossRef]
- Medeiros, J.A.; Otoni, C.G.; Niro, C.M.; Sivieri, K.; Barud, H.S.; Guimarães, F.E.G.; Alonso, J.D.; Azeredo, H.M.C. Alginate films as carriers of probiotic bacteria and Pickering emulsion. Food Packag. Shelf Life 2022, 34, 100987. [Google Scholar] [CrossRef]
- Salimiraad, S.; Safaeian, S.; Basti, A.A.; Khanjari, A.; Nadoushan, R.M. Characterization of novel probiotic nanocomposite films based on nano chitosan/ nano cellulose/ gelatin for the preservation of fresh chicken fillets. LWT 2022, 162, 113429. [Google Scholar] [CrossRef]
- Wongphan, P.; Nerin, C.; Harnkarnsujarit, N. Modifying Cassava Starch via Extrusion with Phosphate, Erythorbate and Nitrite: Phosphorylation, Hydrolysis and Plasticization. Polym. 2024, 16, 2787. [Google Scholar] [CrossRef]
- ASTM D882-10; Standard Test Method for Tensile Properties of Thin Plastic Sheeting. ASTM International: West Conshohocken, PA, USA, 2018.
- Promhuad, K.; Ebel, L.; Harnkarnsujarit, N. Thermoplastic starch/poly(butylene adipate-co-terephthalate) blown film with maltol and ethyl maltol preserving cake quality: Morphology and antimicrobial function. Food Chem. 2025, 464, 141646. [Google Scholar] [CrossRef]
- ASTM E96-80; Standard Test Methods for Water Vapor Transmission of Materials. ASTM International: West Conshohocken, PA, USA, 2016.
- Sritham, E.; Gunasekaran, S. FTIR spectroscopic evaluation of sucrose-maltodextrin-sodium citrate bioglass. Food Hydrocoll. 2017, 70, 371–382. [Google Scholar] [CrossRef]
- Smits, A.L.M.; Ruhnau, F.C.; Vliegenthart, J.F.G.; van Soest, J.J.G. Ageing of Starch Based Systems as Observed with FT-IR and Solid State NMR Spectroscopy. Starch Stärke 1998, 50, 478–483. [Google Scholar] [CrossRef]
- Sevenou, O.; Hill, S.E.; Farhat, I.A.; Mitchell, J.R. Organisation of the external region of the starch granule as determined by infrared spectroscopy. Int. J. Biol. Macromol. 2002, 31, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Clark, Z.; Paterson, A.H.J.; Joe, R.; Mcleod, J.S. Amorphous lactose crystallisation kinetics. Int. Dairy J. 2016, 56, 22–28. [Google Scholar] [CrossRef]
- Gunaratne, A.; Corke, H. Functional Properties of Hydroxypropylated, Cross-Linked, and Hydroxypropylated Cross-Linked Tuber and Root Starches. Cereal Chem. 2007, 84, 30–37. [Google Scholar] [CrossRef]
- Hazarika, B.J.; Sit, N. Effect of dual modification with hydroxypropylation and cross-linking on physicochemical properties of taro starch. Carbohydr. Polym. 2016, 140, 269–278. [Google Scholar] [CrossRef]
- Singh, J.; Kaur, L.; McCarthy, O.J. Factors influencing the physico-chemical, morphological, thermal and rheological properties of some chemically modified starches for food applications—A review. Food Hydrocoll. 2007, 21, 1–22. [Google Scholar] [CrossRef]
- Wu, P.; Fu, Y.; Xu, J.; Gao, X.; Fu, X.; Wang, L. The preparation of edible water-soluble films comprising κ-carrageenan/carboxymethyl starch/gum ghatti and their application in instant coffee powder packaging. Int. J. Biol. Macromol. 2024, 277, 133574. [Google Scholar] [CrossRef]
- Nayak, B.; Jain, P.; Kumar, L.; Mishra, A.A.; Gaikwad, K.K. UV blocking edible films based on corn starch/moringa gum incorporated with pine cone extract for sustainable food packaging. Int. J. Biol. Macromol. 2024, 267, 131545. [Google Scholar] [CrossRef]
- Nagar, M.; Sharanagat, V.S.; Kumar, Y.; Singh, L.; Mani, S. Influence of xanthan and agar-agar on thermo-functional, morphological, pasting and rheological properties of elephant foot yam (Amorphophallus paeoniifolius) starch. Int. J. Biol. Macromol. 2019, 136, 831–838. [Google Scholar] [CrossRef]
- Tan, X.; Sun, A.; Cui, F.; Li, Q.; Wang, D.; Li, X.; Li, J. The physicochemical properties of Cassava Starch/Carboxymethyl cellulose sodium edible film incorporated of Bacillus and its application in salmon fillet packaging. Food Chem. X 2024, 23, 101537. [Google Scholar] [CrossRef]
- Farkhani, M.E.; Dadou, S.; Miz, Y.E.; Elyoussfi, A.; Miz, M.E.; Salhi, A.; Koudad, M.; Benchat, N. A review of the chemical modification and applications of starch. In Proceedings of Conference on Water, Agriculture, Environment and Energy (WA2EN2023), Fez, Morocco, 22–23 May 2023; Volume 109, p. 01020. [Google Scholar]
- Zhao, X.; Xu, X.; Jin, Y.; Xu, D.; Zhang, W.; Wu, F. Differences in Retrogradation Characteristics of Pregelatinized Rice Starch Prepared Using Different Water Content. Starch Stärke 2021, 73, 2000213. [Google Scholar] [CrossRef]
- Alcázar-Alay, S.C.; Meireles, M.A.A. Physicochemical properties, modifications and applications of starches from different botanical sources. Food Sci. Technol. 2015, 35, 215–236. [Google Scholar] [CrossRef]
- Thirathumthavorn, D.; Trisuth, T. Gelatinization and Retrogradation Properties of Native and Hydroxypropylated Crosslinked Tapioca Starches with Added Sucrose and Sodium Chloride. Int. J. Food Prop. 2008, 11, 858–864. [Google Scholar] [CrossRef]
- Li, S.; Ma, Y.; Ji, T.; Sameen, D.E.; Ahmed, S.; Qin, W.; Dai, J.; Li, S.; Liu, Y. Cassava starch/carboxymethylcellulose edible films embedded with lactic acid bacteria to extend the shelf life of banana. Carbohydr. Polym. 2020, 248, 116805. [Google Scholar] [CrossRef]
- Mason, W.R. Chapter 20—Starch Use in Foods. In Starch, 3rd ed.; BeMiller, J., Whistler, R., Eds.; Academic Press: San Diego, CA, USA, 2009; pp. 745–795. [Google Scholar]
- Shahrampour, D.; Khomeiri, M.; Razavi, S.M.A.; Kashiri, M. Development and characterization of alginate/pectin edible films containing Lactobacillus plantarum KMC 45. LWT 2020, 118, 108758. [Google Scholar] [CrossRef]
- Woggum, T.; Sirivongpaisal, P.; Wittaya, T. Properties and characteristics of dual-modified rice starch based biodegradable films. Int. J. Biol. Macromol. 2014, 67, 490–502. [Google Scholar] [CrossRef]
- Mehfooz, T.; Ali, T.M.; Shaikh, M.; Hasnain, A. Characterization of hydroxypropylated-distarch phosphate barley starch and its impact on rheological and sensory properties of soup. Int. J. Biol. Macromol. 2020, 144, 410–418. [Google Scholar] [CrossRef]
- Chen, X.; Cui, F.; Zi, H.; Zhou, Y.; Liu, H.; Xiao, J. Development and characterization of a hydroxypropyl starch/zein bilayer edible film. Int. J. Biol. Macromol. 2019, 141, 1175–1182. [Google Scholar] [CrossRef]
- Garcia, V.A.d.S.; Borges, J.G.; Osiro, D.; Vanin, F.M.; Carvalho, R.A.d. Orally disintegrating films based on gelatin and pregelatinized starch: New carriers of active compounds from acerola. Food Hydrocoll. 2020, 101, 105518. [Google Scholar] [CrossRef]
- Wang, K.; Wang, W.; Ye, R.; Liu, A.; Xiao, J.; Liu, Y.; Zhao, Y. Mechanical properties and solubility in water of corn starch-collagen composite films: Effect of starch type and concentrations. Food Chem. 2017, 216, 209–216. [Google Scholar] [CrossRef]
- Harnkarnsujarit, N.; Wongphan, P.; Chatkitanan, T.; Laorenza, Y.; Srisa, A. Bioplastic for Sustainable Food Packaging. In Sustainable Food Processing and Engineering Challenges; Academic Press: San Diego, CA, USA, 2021; pp. 203–277. [Google Scholar]
- Lavrentev, F.V.; Ashikhmina, M.S.; Ulasevich, S.A.; Morozova, O.V.; Orlova, O.Y.; Skorb, E.V.; Iakovchenko, N.V. Perspectives of Bacillus coagulans MTCC 5856 in the production of fermented dairy products. Lwt 2021, 148, 111623. [Google Scholar] [CrossRef]
- Vecchi, E.D.; Drago, L. Lactobacillus Sporogenes or Bacillus coagulans: Misidentification or Mislabelling? Int. J. Probiotics Prebiotics 2006, 1, 3–10. [Google Scholar]
Formulation | Bacillus coagulans in Film Solution (log CFU/g) | Bacillus coagulans in Edible Film (log CFU/g) | |||
---|---|---|---|---|---|
Day 0 | Day 15 | Day 30 | Day 90 | ||
PNS/BC0 | ND | ND | ND | ND | ND |
PNS/BC1 | 7.81 ± 0.03 b | 7.92 ± 0.02 eA | 7.89 ± 0.09 dA | 8.00 ± 0.07 dA | 8.01 ± 0.04 dA |
PNS/BC1.5 | 8.11 ± 0.04 a | 8.17 ± 0.02 dA | 8.19 ± 0.03 cA | 8.22 ± 0.05 cA | 8.20 ± 0.07 cA |
HDP/BC0 | ND | ND | ND | ND | ND |
HDP/BC1 | 7.81 ± 0.07 b | 8.31 ± 0.03 cA | 8.37 ± 0.03 bA | 8.39 ± 0.02 bA | 8.27 ± 0.03 bcB |
HDP/BC1.5 | 8.09 ± 0.06 a | 8.70 ± 0.07 bA | 8.75 ± 0.04 aA | 8.76 ± 0.05 aA | 8.79 ± 0.06 aA |
HS/BC0 | ND | ND | ND | ND | ND |
HS/BC1 | 7.81 ± 0.12 b | 8.32 ± 0.06 cA | 8.36± 0.04 bA | 8.33 ± 0.02 bcA | 8.37 ± 0.04 bA |
HS/BC1.5 | 8.06 ± 0.10 a | 8.80 ± 0.03 aA | 8.80± 0.05 aA | 8.89 ± 0.08 aA | 8.83 ± 0.02 aA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahma, L.D.; Srisa, A.; Wongphan, P.; Nakphaichit, M.; Sablani, S.S.; Harnkarnsujarit, N. Pregelatinized Starch-Based Edible Films as Effective Carriers for Bacillus coagulans: Influence of Starch Type on Film Properties and Probiotic Viability. Foods 2025, 14, 2424. https://doi.org/10.3390/foods14142424
Rahma LD, Srisa A, Wongphan P, Nakphaichit M, Sablani SS, Harnkarnsujarit N. Pregelatinized Starch-Based Edible Films as Effective Carriers for Bacillus coagulans: Influence of Starch Type on Film Properties and Probiotic Viability. Foods. 2025; 14(14):2424. https://doi.org/10.3390/foods14142424
Chicago/Turabian StyleRahma, Laily Dwi, Atcharawan Srisa, Phanwipa Wongphan, Massalin Nakphaichit, Shyam S. Sablani, and Nathdanai Harnkarnsujarit. 2025. "Pregelatinized Starch-Based Edible Films as Effective Carriers for Bacillus coagulans: Influence of Starch Type on Film Properties and Probiotic Viability" Foods 14, no. 14: 2424. https://doi.org/10.3390/foods14142424
APA StyleRahma, L. D., Srisa, A., Wongphan, P., Nakphaichit, M., Sablani, S. S., & Harnkarnsujarit, N. (2025). Pregelatinized Starch-Based Edible Films as Effective Carriers for Bacillus coagulans: Influence of Starch Type on Film Properties and Probiotic Viability. Foods, 14(14), 2424. https://doi.org/10.3390/foods14142424