Revealing the Response Mechanism of Pediococcus pentosaceus Under Acid and Alcohol Stresses via a Combined Transcriptomic and Metabolomic Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacterial Strain and Growth Conditions
2.2. Lactic Acid and Ethanol Stress Experiments
2.3. Membrane Fatty Acid Analysis
2.4. Scanning Electron Microscopy (SEM) Observation
2.5. Atomic Force Microscopy (AFM) Analysis
2.6. Transmission Electron Microscopy (TEM) Analysis
2.7. RNA Extraction, cDNA Synthesis, and Sequencing
2.8. Transcriptomics Date Processing and Analysis
2.9. Metabolites Extraction and Metabolomic Analysis
2.10. Statistical Analysis
3. Results and Discussion
3.1. Effects of Environmental Stresses on Bacterial Growth
3.2. Membrane Fatty Acid Composition Changes
3.3. Microscopic Analysis of Cell Morphological Properties
3.4. Overview of the Transcriptomic Analysis
3.5. Enrichment Analysis of DEGs
3.5.1. GO Enrichment Analysis
3.5.2. KEGG Enrichment Analysis
3.6. DEGs of P. pentosaceus During Environmental Stresses
3.6.1. DEGs Involved in Cell Wall Biosynthesis and Membrane Function
3.6.2. Adaptations in Genes Governing Carbon Utilization and Energy Production
3.6.3. DEGs in Two-Component Systems and Genetic Mechanisms in DNA Metabolism
3.7. Metabolomic Analysis of P. pentosaceus During Co-Stress
3.7.1. Overview of Metabolomic Analysis
3.7.2. Differential Metabolite Analysis of P. pentosaceus
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, W.H.; Liang, Z.; Qian, M.; Li, X.L.; Dong, H.; Bai, W.D.; Wei, Y.L.; He, S.G. Evolution of microbial communities during fermentation of Chi-flavor type Baijiu as determined by high-throughput sequencing. LWT-Food Sci. Technol. 2022, 170, 8. [Google Scholar] [CrossRef]
- Zhu, C.T.; Cheng, Y.X.; Shi, Q.L.; Ge, X.Y.; Yang, Y.; Huang, Y.G. Metagenomic analyses reveal microbial communities and functional differences between Daqu from seven provinces. Food Res. Int. 2023, 172, 113076. [Google Scholar] [CrossRef]
- Barros, R.R.; Carvalho, M.G.; Peralta, J.M.; Facklam, R.R.; Teixeira, L.M. Phenotypic and genotypic characterization of Pediococcus strains isolated from human clinical sources. J. Clin. Microbiol. 2001, 39, 1241–1246. [Google Scholar] [CrossRef]
- Danielsen, M.; Simpson, P.J.; O’Connor, E.B.; Ross, R.P.; Stanton, C. Susceptibility of Pediococcus spp. to antimicrobial agents. J. Appl. Microbiol. 2007, 102, 384–389. [Google Scholar] [CrossRef] [PubMed]
- Guerzoni, M.E.; Lanciotti, R.; Cocconcelli, P.S. Alteration in cellular fatty acid composition as a response to salt, acid, oxidative and thermal stresses in Lactobacillus helveticus. Microbiology-SGM 2001, 147, 2255–2264. [Google Scholar] [CrossRef]
- Sun, Y. F1F0-ATPase functions under markedly acidic conditions in bacteria. In Regulation of Ca2+-ATPases, V-ATPases and F-ATPases; Chakraborti, S., Dhalla, N.S., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 459–468. [Google Scholar] [CrossRef]
- Yang, H.; Wang, D.K.; Jin, Y.; Zhou, R.Q.; Huang, J.; Wu, C.D. Arginine deiminase pathway of Tetragenococcus halophilus contributes to improve the acid tolerance of lactic acid bacteria. Food Microbiol. 2023, 113, 104281. [Google Scholar] [CrossRef]
- Wang, D.K.; Mi, T.; Huang, J.; Zhou, R.Q.; Jin, Y.; Wu, C.D. Metabolomics analysis of salt tolerance of Zygosaccharomyces rouxii and guided exogenous fatty acid addition for improved salt tolerance. J. Sci. Food Agric. 2022, 102, 6263–6272. [Google Scholar] [CrossRef] [PubMed]
- He, G.Q.; Wu, C.D.; Huang, J.; Zhou, R.Q. Effect of exogenous proline on metabolic response of Tetragenococcus halophilus under salt stress. J. Microbiol. Biotechnol. 2017, 27, 1681–1691. [Google Scholar] [CrossRef]
- Guan, N.; Liu, L. Microbial response to acid stress: Mechanisms and applications. Appl. Microbiol. Biotechnol. 2020, 104, 51–65. [Google Scholar] [CrossRef]
- He, M.; Ding, N.Z. Plant unsaturated fatty acids: Multiple roles in stress response. Front. Plant Sci. 2020, 11, 15. [Google Scholar] [CrossRef]
- Himawan, C.; Starov, V.M.; Stapley, A.G.F. Thermodynamic and kinetic aspects of fat crystallization. Adv. Colloid Interface Sci. 2006, 122, 3–33. [Google Scholar] [CrossRef] [PubMed]
- Vanegas, J.M.; Contreras, M.F.; Faller, R.; Longo, M.L. Role of unsaturated lipid and ergosterol in ethanol tolerance of model yeast biomembranes. Biophys. J. 2012, 102, 507–516. [Google Scholar] [CrossRef]
- Dyrda, G.; Boniewska-Bernacka, E.; Man, D.; Barchiewicz, K.; Slota, R. The effect of organic solvents on selected microorganisms and model liposome membrane. Mol. Biol. Rep. 2019, 46, 3225–3232. [Google Scholar] [CrossRef] [PubMed]
- Yao, S.J.; Zhou, R.Q.; Jin, Y.; Huang, J.; Qin, J.F.; Wu, C.D. Formation of biofilm changed the responses of Tetragenococcus halophilus to ethanol stress revealed by transcriptomic and proteomic analyses. Food Res. Int. 2022, 161, 111817. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, L.; Li, J.S.; Jin, Y.; Zou, J.P.; Huang, J.; Zhou, R.Q.; Huang, M.Q.; Wu, C.D. Cell surface properties and transcriptomic analysis of cross protection provided between heat adaptation and acid stress in Tetragenococcus halophilus. Food Res. Int. 2021, 140, 110005. [Google Scholar] [CrossRef] [PubMed]
- Rojas, E.R.; Billings, G.; Odermatt, P.D.; Auer, G.K.; Zhu, L.; Miguel, A.; Chang, F.; Weibel, D.B.; Theriot, J.A.; Huang, K.C. The outer membrane is an essential load-bearing element in Gram-negative bacteria. Nature 2018, 559, 617–621. [Google Scholar] [CrossRef]
- Matias, V.R.F.; Beveridge, T.J. Native cell wall organization shown by cryo-electron microscopy confirms the existence of a periplasmic space in Staphylococcus aureus. J. Bacteriol. 2006, 188, 1011–1021. [Google Scholar] [CrossRef]
- Beeby, M.; Gumbart, J.C.; Roux, B.; Jensen, G.J. Architecture and assembly of the Gram-positive cell wall. Mol. Microbiol. 2013, 88, 664–672. [Google Scholar] [CrossRef]
- van Heijenoort, J. Recent advances in the formation of the bacterial peptidoglycan monomer unit. Nat. Prod. Rep. 2001, 18, 503–519. [Google Scholar] [CrossRef]
- Garde, S.; Chodisetti, P.K.; Reddy, M. Peptidoglycan: Structure, synthesis, and regulation. EcoSal Plus 2021, 9, 1–35. [Google Scholar] [CrossRef]
- Macheboeuf, P.; Contreras-Martel, C.; Job, V.; Dideberg, O.; Dessen, A. Penicillin binding proteins: Key players in bacterial cell cycle and drug resistance processes. Fems Microbiol. Rev. 2006, 30, 673–691. [Google Scholar] [CrossRef] [PubMed]
- Cherkaoui, A.; Diene, S.M.; Fischer, A.; Leo, S.; François, P.; Schrenzel, J. Transcriptional modulation of penicillin-binding protein 1b, outer membrane protein P2 and efflux pump (AcrAB-TolC) during heat stress is correlated to enhanced bactericidal action of imipenem on non-typeable Haemophilus influenzae. Front. Microbiol. 2018, 8, 2676. [Google Scholar] [CrossRef] [PubMed]
- Muduli, S.; Karmakar, S.; Mishra, S. The coordinated action of the enzymes in the L-lysine biosynthetic pathway and how to inhibit it for antibiotic targets. Biochim. Biophys. Acta-Gen. Subj. 2023, 1867, 130320. [Google Scholar] [CrossRef] [PubMed]
- Huffer, S.; Clark, M.E.; Ning, J.C.; Blanch, H.W.; Clark, D.S. Role of alcohols in growth, lipid composition, and membrane fluidity of yeasts, bacteria, and archaea. Appl. Environ. Microbiol. 2011, 77, 6400–6408. [Google Scholar] [CrossRef]
- Barker, C.; Park, S.F. Sensitization of Listeria monocytogenes to low pH, organic acids, and osmotic stress by ethanol. Appl. Environ. Microbiol. 2001, 67, 1594–1600. [Google Scholar] [CrossRef]
- Yadav, A.K.; Espaillat, A.; Cava, F. Bacterial strategies to preserve cell wall integrity against environmental threats. Front. Microbiol. 2018, 9, 2064. [Google Scholar] [CrossRef]
- Guan, X.; Okazaki, Y.; Lithio, A.; Li, L.; Zhao, X.F.; Jin, H.A.; Nettleton, D.; Saito, K.; Nikolau, B.J. Discovery and characterization of the 3-Hydroxyacyl-ACP dehydratase component of the plant mitochondrial fatty acid synthase system. Plant Physiol. 2017, 173, 2010–2028. [Google Scholar] [CrossRef]
- Rees, D.C.; Johnson, E.; Lewinson, O. ABC transporters: The power to change. Nat. Rev. Mol. Cell Biol. 2009, 10, 218–227. [Google Scholar] [CrossRef]
- Akhtar, A.A.; Turner, D.P.J. The role of bacterial ATP-binding cassette (ABC) transporters in pathogenesis and virulence: Therapeutic and vaccine potential. Microb. Pathog. 2022, 171, 105734. [Google Scholar] [CrossRef]
- Bruna, R.E.; Kendra, C.G.; Pontes, M.H. Coordination of phosphate and magnesium metabolism in bacteria. Adv. Exp. Med. Biol. 2022, 1362, 135–150. [Google Scholar] [CrossRef]
- Lin, J.T.; Liang, H.B.; Yan, J.W.; Luo, L.X. The molecular mechanism and post-transcriptional regulation characteristic of Tetragenococcus halophilus acclimation to osmotic stress revealed by quantitative proteomics. J. Proteom. 2017, 168, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Neuhaus, F.C.; Baddiley, J. A continuum of anionic charge: Structures and functions of D-alanyl-teichoic acids in gram-positive bacteria. Microbiol. Mol. Biol. Rev. 2003, 67, 686–723. [Google Scholar] [CrossRef]
- Yang, X.L.; Hu, T.Y.; Liang, J.X.; Xiong, Z.Q.; Lin, Z.L.; Zhao, Y.; Zhou, X.T.; Gao, Y.; Sun, S.; Yang, X.A.; et al. An oligopeptide permease, OppABCD, requires an iron-sulfur cluster domain for functionality. Nat. Struct. Mol. Biol. 2024, 31, 1072–1082. [Google Scholar] [CrossRef] [PubMed]
- Scheper, A.F.; Schofield, J.; Bohara, R.; Ritter, T.; Pandit, A. Understanding glycosylation: Regulation through the metabolic flux of precursor pathways. Biotechnol. Adv. 2023, 67, 108184. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.K.; Zhang, M.; Huang, J.; Zhou, R.Q.; Jin, Y.; Zhao, D.; Zheng, J.; Wu, C.D. Heat preadaptation improved the ability of Zygosaccharomyces rouxii to salt stress: A combined physiological and transcriptomic analysis. Appl. Microbiol. Biotechnol. 2021, 105, 259–270. [Google Scholar] [CrossRef]
- Boyer, P.D. The ATP synthase—A splendid molecular machine. Annu. Rev. Biochem. 1997, 66, 717–749. [Google Scholar] [CrossRef]
- Rai, R.; Singh, V.; Mathew, B.J.; Singh, A.K.; Chaurasiya, S.K. Mycobacterial response to an acidic environment: Protective mechanisms. Pathog. Dis. 2022, 80, 8. [Google Scholar] [CrossRef]
- Ren, Q.; Paulsen, I.T. Transport, Solute. In The Desk Encyclopedia of Microbiology; Schaechter, M., Ed.; Academic Press: Oxford, UK, 2009; pp. 1121–1136. [Google Scholar]
- Stock, A.M.; Robinson, V.L.; Goudreau, P.N. Two-Component signal transduction. Annu. Rev. Biochem. 2000, 69, 183–215. [Google Scholar] [CrossRef]
- Danson, A.E.; Jovanovic, M.; Buck, M.; Zhang, X.D. Mechanisms of σ54-Dependent transcription initiation and regulation. J. Mol. Biol. 2019, 431, 3960–3974. [Google Scholar] [CrossRef]
- Su, W.; Porter, S.; Kustu, S.; Echols, H. DNA-looping and enhancer activity: Association between DNA-bound NtrC activator and RNA polymerase at the bacterial glnA promoter. Proc. Natl. Acad. Sci. USA 1990, 87, 5504–5508. [Google Scholar] [CrossRef]
- Mars, R.A.T.; Nicolas, P.; Denham, E.L.; van Dijl, J.M. Regulatory RNAs in Bacillus subtilis: A Gram-positive perspective on bacterial RNA-mediated regulation of gene expression. Microbiol. Mol. Biol. Rev. 2016, 80, 1029–1057. [Google Scholar] [CrossRef] [PubMed]
- Guan, N.Z.; Li, J.H.; Shin, H.D.; Du, G.C.; Chen, J.; Liu, L. Microbial response to environmental stresses: From fundamental mechanisms to practical applications. Appl. Microbiol. Biotechnol. 2017, 101, 3991–4008. [Google Scholar] [CrossRef] [PubMed]
- Yao, S.J.; Zhou, R.Q.; Jin, Y.; Huang, J.; Wu, C.D. Effect of co-culture with Tetragenococcus halophilus on the physiological characterization and transcription profiling of Zygosaccharomyces rouxii. Food Res. Int. 2019, 121, 348–358. [Google Scholar] [CrossRef]
- Cheng-Guang, H.; Gualerzi, C.O. The ribosome as a switchboard for bacterial stress response. Front. Microbiol. 2021, 11, 15. [Google Scholar] [CrossRef]
- Chatterjee, N.; Walker, G.C. Mechanisms of DNA damage, repair, and mutagenesis. Environ. Mol. Mutagen. 2017, 58, 235–263. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.; Zhang, L.K.; Wu, M.; Jiang, D.H.; Li, Z.; Yang, Z.H. Repair of hypoxanthine in DNA revealed by DNA glycosylases and endonucleases from hyperthermophilic archaea. Front. Microbiol. 2021, 12, 8. [Google Scholar] [CrossRef]
- Yin, H.S.; Zhang, R.K.; Xia, M.L.; Bai, X.L.; Mou, J.; Zheng, Y.; Wang, M. Effect of aspartic acid and glutamate on metabolism and acid stress resistance of Acetobacter pasteurianus. Microb. Cell Factories 2017, 16, 14. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, P.; Yang, H.; Zhou, Y.; Zeng, S.; Zhou, R.; Wu, C. Revealing the Response Mechanism of Pediococcus pentosaceus Under Acid and Alcohol Stresses via a Combined Transcriptomic and Metabolomic Analysis. Foods 2025, 14, 2400. https://doi.org/10.3390/foods14132400
Huang P, Yang H, Zhou Y, Zeng S, Zhou R, Wu C. Revealing the Response Mechanism of Pediococcus pentosaceus Under Acid and Alcohol Stresses via a Combined Transcriptomic and Metabolomic Analysis. Foods. 2025; 14(13):2400. https://doi.org/10.3390/foods14132400
Chicago/Turabian StyleHuang, Pan, Huan Yang, Yiyang Zhou, Siyuan Zeng, Rongqing Zhou, and Chongde Wu. 2025. "Revealing the Response Mechanism of Pediococcus pentosaceus Under Acid and Alcohol Stresses via a Combined Transcriptomic and Metabolomic Analysis" Foods 14, no. 13: 2400. https://doi.org/10.3390/foods14132400
APA StyleHuang, P., Yang, H., Zhou, Y., Zeng, S., Zhou, R., & Wu, C. (2025). Revealing the Response Mechanism of Pediococcus pentosaceus Under Acid and Alcohol Stresses via a Combined Transcriptomic and Metabolomic Analysis. Foods, 14(13), 2400. https://doi.org/10.3390/foods14132400