Ultrasound-Assisted Enhancement of Gel Properties in Hypomesus olidus Surimi
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Preparation of Surimi Gels
2.2.2. Whiteness
2.2.3. Water-Holding Capacity (WHC)
2.2.4. Gel Strength
2.2.5. Texture Profile Analysis (TPA)
2.2.6. Low-Field Nuclear Magnetic Resonance (LF-NMR)
2.2.7. Scanning Electron Microscopy (SEM)
2.2.8. Dynamic Rheological Determination
2.2.9. Statistical Analysis
3. Results
3.1. Effect of Ultrasonic Treatment on the Whiteness of Surimi Gel
3.2. Effect of Ultrasonic Treatment on Water-Holding Capacity of Surimi Gels
3.3. Effect of Ultrasonic Treatment on Gel Strength of Surimi Gels
3.4. Effect of Ultrasound Treatment on the Textural Properties of Surimi Gels
3.5. Effect of Ultrasonic Treatment on the Moisture Distribution of Surimi Gels
3.6. Effects of Ultrasonic Treatment on the Microstructure of Surimi Gels
3.7. Effects of Ultrasonic Treatment on the Dynamic Rheological Determination of Surimi Gels
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, J.; Han, L.; Yin, W. Research on the ecologicalization efficiency of mariculture industry in China and its influencing factors. Mar. Policy 2022, 137, 104935. [Google Scholar] [CrossRef]
- Yi, X.; Pei, Z.; Xia, G.; Liu, Z.; Shi, H.; Shen, X. Interaction between liposome and myofibrillar protein in surimi: Effect on gel structure and digestive characteristics. Int. J. Biol. Macromol. 2023, 253, 126731. [Google Scholar] [CrossRef]
- Jiao, X.; Yang, H.; Li, X.; Cao, H.; Zhang, N.; Yan, B.; Hu, B.; Huang, J.; Zhao, J.; Zhang, H.; et al. Green and sustainable microwave processing of surimi seafoods: A review of protein component interactions, mechanisms, and industrial applications. Trends Food Sci. Technol. 2023, 143, 104266. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, D.; Liu, J.; Yu, X. Effects of rice bran feruloyl oligosaccharides on gel properties and microstructure of grass carp surimi. Food Chem. 2023, 407, 135003. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, H.; Wang, X.; Li, P.; Zhao, L. Lipid oxidation-induced protein degradation in surimi gels: Effects of ultrasonic power and duration. Food Chem. 2023, 404, 134567. [Google Scholar]
- Zhao, K.; Liu, W.; Sun, T.; Zhang, Q.; Hu, F. Cryoprotectant-free surimi production: Ultrasound-assisted preservation of myofibrillar protein functionality in Hypomesus olidus. LWT-Food Sci. Technol. 2022, 154, 112765. [Google Scholar]
- Wang, L.; Zhang, R.; Zhou, Y.; Chen, X. Time-dependent ultrasonic effects on surimi gel microstructure: A SEM and CLSM study. Food Res. Int. 2023, 163, 112289. [Google Scholar]
- Guo, R.; Wu, Z.; Shi, H.; Pan, Z. Synergistic effects of ultrasound and ε-polylysine on surimi gel strength: Focus on protein-water interactions. Ultrason. Sonochem. 2024, 102, 106741. [Google Scholar]
- Jia, R.; Feng, J.; Xue, Y.; Deng, S. Mathematical modeling of ultrasound-assisted surimi gelation: Kinetic analysis of temperature and power effects. J. Food Eng. 2022, 316, 110846. [Google Scholar]
- Cho, S.H.; Sohn, W.M.; Shin, S.S.; Song, H.J.; Choi, T.G. Infection status of pond smelts, Hypomesus olidus, and other freshwater fishes with trematode metacercariae in 6 large lakes. Korean J. Parasitol. 2006, 44, 243. [Google Scholar] [CrossRef]
- Fu, Y.; Liu, C.; Yan, X.; Jiang, G.; Dang, Q.; Wang, L.; Liu, X. Physicochemical and functional properties of the muscle protein fraction of Hypomesus olidus. Food Chem. X 2022, 16, 100484. [Google Scholar] [CrossRef]
- Li, K.; Fu, L.; Zhao, Y.Y.; Xue, S.W.; Wang, P.; Xu, X.L. Use of high-intensity ultrasound to improve emulsifying properties of chicken myofibrillar protein and enhance the rheological properties and stability of the emulsion. Food Hydrocoll. 2020, 98, 105275.1–105275.11. [Google Scholar] [CrossRef]
- Knorr, D.; Zenker, M.; Heinz, V.; Lee, D. Applications and potential of ultrasonics in food processing. Trends Food Sci. Technol. 2004, 15, 261–266. [Google Scholar] [CrossRef]
- McClements, D. Advances in the application of ultrasound in food analysis and processing. Trends Food Sci. Technol. 1995, 6, 293–299. [Google Scholar] [CrossRef]
- Soria, A.; Villamiel, M. Effect of ultrasound on the technological properties and bioactivity of food: A review. Trends Food Sci. Technol. 2010, 21, 323–331. [Google Scholar] [CrossRef]
- Bao, G.; Niu, J.; Li, S.; Zhang, L.; Luo, Y. Effects of ultrasound pretreatment on the quality, nutrients and volatile compounds of dry-cured yak meat. Ultrason. Sonochem. 2021, 82, 105864. [Google Scholar] [CrossRef]
- Cheng, Y.; Donkor, P.O.; Ren, X.; Wu, J.; Agyemang, K.; Ayim, I.; Ma, H. Effect of ultrasound pretreatment with mono-frequency and simultaneous dual frequency on the mechanical properties and microstructure of whey protein emulsion gels—Sciencedirect. Food Hydrocoll. 2019, 89, 434–442. [Google Scholar] [CrossRef]
- Gao, X.; Yongsawatdigul, J.; Wu, R.; You, J.; Xiong, S.; Du, H.; Liu, R. Effect of ultrasound pre-treatment modes on gelation properties of silver carp surimi. LWT-Food Sci. Technol. 2021, 150, 111945. [Google Scholar] [CrossRef]
- Li, J.; Dai, Z.; Chen, Z.; Hao, Y.; Wang, S.; Mao, X. Improved gelling and emulsifying properties of myofibrillar protein from frozen shrimp (Litopenaeus vannamei) by high-intensity ultrasound. Food Hydrocoll. 2022, 135, 108188. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, Y.; Wang, L. Ultrasonic modification of food proteins: Mechanisms, applications and challenges. Trends Food Sci. Technol. 2023, 131, 14–25. [Google Scholar]
- Li, J.; Wang, H.; Zhao, Y. Effects of ultrasound on the gel properties of aquatic proteins: A review. Food Chem. 2022, 372, 131234. [Google Scholar]
- Zhao, Y.; Li, J.; Wang, H. Advances in ultrasound processing of muscle foods: From mechanism to industrial application. Crit. Rev. Food Sci. Nutr. 2023, 63, 601–615. [Google Scholar]
- Liang, F.; Lin, L.; He, T.; Zhou, X.; Jiang, S.; Lu, J. Effect of transglutaminase on gel properties of surimi and precocious chinese mitten crab (Eriocheir sinensis) meat. Food Hydrocoll. 2020, 98, 105261.1–105261.8. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, X.; Wang, L. Mechanisms of ultrasound-improved gel properties for myofibrillar proteins from silver carp. Ultrason. Sonochem. 2021, 70, 105297. [Google Scholar]
- Wang, L.; Chen, X.; Zhang, Y. Optimization of ultrasound-assisted gelation for improved texture properties of fish protein gels. Food Hydrocoll. 2022, 124, 107298. [Google Scholar]
- Huang, J.; Ye, B.; Wang, W.; Li, J.; Mi, H. Incorporation effect of inulin and microbial transglutaminase on the gel properties of silver carp (Hypophthalmichthys molitrix) surimi. J. Food Meas. Charact. 2021, 15, 1–11. [Google Scholar] [CrossRef]
- Mi, H.; Li, Y.; Wang, C.; Yi, S.; Li, J. The interaction of starch-gums and their effect on gel properties and protein conformation of silver carp surimi. Food Hydrocoll. 2020, 112, 106290. [Google Scholar] [CrossRef]
- Chen, W.; Ma, H.; Wang, Y. Recent advances in modified food proteins by high intensity ultrasound for enhancing functionality: Potential mechanisms, combination with other methods, equipment innovations and future directions. Ultrason. Sonochem. 2022, 85, 105993. [Google Scholar] [CrossRef]
- Zhang, F. Effect of ultrasound-assisted immersion thawing on emulsifying and gelling properties of chicken myofibrillar protein. LWT-Food Sci. Technol. 2021, 142, 111016. [Google Scholar] [CrossRef]
- Sun, Y.; Ma, L.; Ma, M.; Zheng, H.; Zhang, X.; Cai, L. Texture characteristics of chilled prepared mandarin fish (Siniperca chuatsi) during storage. Int. J. Food Prop. 2018, 21, 242–254. [Google Scholar] [CrossRef]
- Jimenez-Munoz, L.; Quintanilla, M.; Filomena, A. Managing the lionfish: Influence of high intensity ultrasound and binders on textural and sensory properties of lionfish (Pterois volitans) surimi patties. J. Food Sci. Technol. 2019, 56, 2167–2174. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, K.; Zhao, M. Comparative study of ultrasonic effects on textural properties of cod and carp surimi gels. J. Food Eng. 2023, 337, 111245. [Google Scholar]
- Zhao, M.; Jiang, H.; Chen, Q. Hydrogen bond stability in ultrasonicated Pangasius surimi gels. Food Res. Int. 2023, 163, 112289. [Google Scholar]
- Chen, X.; Zhang, Y.; Wang, L. Species-specific effects of ultrasonication on myofibrillar protein denaturation kinetics. Food Chem. 2023, 405, 134812. [Google Scholar]
- Jiang, H.; Wang, X.; Chen, Q. Microstructure-texture relationships in protein gels: A quantitative SEM-NMR approach. Food Hydrocolloids 2022, 125, 107423. [Google Scholar]
- He, Z.; Liu, J.; Li, Y. Protein denaturation window hypothesis in ultrasonic processing of aquatic proteins. Ultrason. Sonochem. 2021, 73, 105537. [Google Scholar]
- Bertram, H.; Kristensen, M.; Andersen, H. Functionality of myofibrillar proteins as affected by ph, ionic strength and heat treatment—A low-field nmr study. Meat Sci. 2004, 68, 249–256. [Google Scholar] [CrossRef]
- Liu, R.; Wu, L.; Zhang, Y.; Zhang, H.; Zhang, B.; Huang, B.; Wei, Y. Water state and distribution in noodle dough using low-field nuclear magnetic resonance and differential scanning calorimetric. Trans. Chin. Soc. Agric. Eng. 2015, 31, 288–294. [Google Scholar]
- Shi, H.; Zhang, X.; Chen, X.; Fang, R.; Zou, Y.; Wang, D. How ultrasound combined with potassium alginate marination tenderizes old chicken breast meat: Possible mechanisms from tissue to protein. Food Chem. 2020, 328, 127144. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, L.; Chen, X. Emerging ultrasonic applications in muscle food processing: Mechanisms and optimization. Trends Food Sci. Technol. 2023, 131, 14–25. [Google Scholar]
- Chen, X.; Zhang, Y.; Li, J. Multiscale analysis of ultrasonic effects on protein-water interactions in surimi gels. Ultrason. Sonochem. 2023, 95, 106391. [Google Scholar]
- Cao, Y.; Xia, T.; Zhou, G.; Xu, X. The mechanism of high pressure-induced gels of rabbit myosin. Innov. Food Sci. Emerg. Technol. 2012, 16, 41–46. [Google Scholar] [CrossRef]
- Feng, X.; Bansal, N.; Yang, H. Fish gelatin combined with chitosan coating inhibits myofibril degradation of golden pomfret (Trachinotus blochii) fillet during cold storage. Food Chem. 2016, 200, 283–292. [Google Scholar] [CrossRef] [PubMed]
- Gouda, M.; Shisi, Z.; Yuanyuan, L.; Sheng, L.; Ma, M. Effects of four natural antioxidant phenyl terpenes on emulsifying and rheological properties of egg yolk. LWT-Food Sci. Technol. 2017, 83, 59–67. [Google Scholar] [CrossRef]
- Erturk, Y.; Bonilla, C.; Kokini, J. Relationship of non-linear rheological properties and quantitative network analysis parameters as a function of increasingly large amplitude deformations in non-fat, low-fat and high-fat yogurt products. Food Hydrocoll. 2021, 111, 106194. [Google Scholar] [CrossRef]
- Long, S.; Peishan, L.; Huiqing, W.; Yuanyuan, L.; Ke, H.; Mostafa, G. Tapioca starch-pullulan interaction during gelation and retrogradation. LWT-Food Sci. Technol. 2018, 96, 432–438. [Google Scholar]
- Wen, Y.; Yao, T.; Xu, Y.; Corke, H.; Sui, Z. Pasting, thermal and rheological properties of octenylsuccinylate modified starches from diverse small granule starches differing in amylose content. J. Cereal Sci. 2020, 95, 103030. [Google Scholar] [CrossRef]
- Zhu, L.; Xu, Q.; Liu, X.; Xu, Y.; Yang, L.; Wang, S. Soy glycinin-soyasaponin mixtures at oil–water interface: Interfacial behavior and o/w emulsion stability. Food Chem. 2020, 327, 127062. [Google Scholar] [CrossRef]
UP | Whiteness | |||||
---|---|---|---|---|---|---|
UT | 0 W | 100 W | 200 W | 400 W | 800 W | |
0 min | 65.77 ± 0.40 aA | 65.77 ± 0.40 aA | 65.77 ± 0.40 aA | 65.77 ± 0.40 aA | 65.77 ± 0.40 aA | |
5 min | 65.77 ± 0.40 aA | 65.64 ± 0.77 aA | 65.81 ± 0.77 aA | 63.02 ± 1.66 bB | 64.36 ± 1.47 abAB | |
10 min | 65.77 ± 0.40 aA | 66.57 ± 0.95 aA | 66.82 ± 0.64 aA | 62.78 ± 0.96 bB | 65.23 ± 1.58 aA | |
15 min | 65.77 ± 0.40 aAB | 66.60 ± 0.42 aA | 65.05 ± 0.83 aB | 66.10 ± 0.21 aAB | 63.24 ± 1.00 abC | |
20 min | 65.77 ± 0.40 aA | 64.99 ± 1.52 aA | 64.59 ± 0.67 aA | 65.26 ± 0.87 aA | 62.55 ± 1.62 bB |
UP | Hardness (N) | |||||
---|---|---|---|---|---|---|
UT | 0 W | 100 W | 200 W | 400 W | 800 W | |
0 min | 20.4 ± 0.24 aA | 20.4 ± 0.24 cA | 20.4 ± 0.24 dA | 20.4 ± 0.24 dA | 20.4 ± 0.24 bA | |
5 min | 20.4 ± 0.24 aD | 27.9 ± 1.27 aBC | 44.5 ± 3.90 aA | 29.3 ± 4.75 cB | 23.7 ± 0.42 abCD | |
10 min | 20.4 ± 0.24 aD | 28.1 ± 1.37 aC | 45.7 ± 0.53 aA | 41.6 ± 1.79 aB | 20.7 ± 0.84 abD | |
15 min | 20.4 ± 0.24 aD | 24.1 ± 3.06 bC | 36.1 ± 1.05 bB | 44.2 ± 2.53 aA | 24.3 ± 0.21 aC | |
20 min | 20.4 ± 0.24 aC | 19.5 ± 1.16 cC | 31.0 ± 0.11 cB | 35.9 ± 0.53 bA | 20.7 ± 4.22 abC | |
Cohesiveness | ||||||
0 W | 100 W | 200 W | 400 W | 800 W | ||
0 min | 0.4 ± 0.04 aA | 0.4 ± 0.04 bA | 0.4 ± 0.04 bA | 0.4 ± 0.04 bA | 0.4 ± 0.04 aA | |
5 min | 0.4 ± 0.04 aA | 0.5 ± 0.05 aA | 0.5 ± 0.08 aA | 0.5 ± 0.06 aA | 0.4 ± 0.06 aA | |
10 min | 0.4 ± 0.04 aA | 0.5 ± 0.04 aA | 0.5 ± 0.06 aA | 0.5 ± 0.07 aA | 0.4 ± 0.10 aA | |
15 min | 0.4 ± 0.04 aA | 0.5 ± 0.02 aA | 0.5 ± 0.09 aA | 0.5 ± 0.05 aA | 0.4 ± 0.06 aA | |
20 min | 0.4 ± 0.04 aA | 0.5 ± 0.07 aA | 0.5 ± 0.09 aA | 0.5 ± 0.07 aA | 0.4 ± 0.05 aA | |
Springiness (mm) | ||||||
0 W | 100 W | 200 W | 400 W | 800 W | ||
0 min | 2.3 ± 0.15 aA | 2.3 ± 0.15 aA | 2.3 ± 0.15 aA | 2.3 ± 0.15 bA | 2.3 ± 0.15 aA | |
5 min | 2.3 ± 0.15 aA | 2.0 ± 0.11 bB | 2.0 ± 0.07 bB | 2.1 ± 0.12 cAB | 2.1 ± 0.16 abAB | |
10 min | 2.3 ± 0.15 aB | 2.3 ± 0.13 aB | 2.5 ± 0.02 aAB | 2.6 ± 0.10 aA | 2.0 ± 0.15 bC | |
15 min | 2.3 ± 0.15 aAB | 2.2 ± 0.15 abAB | 2.4 ± 0.11 aA | 1.9 ± 0.00 dC | 2.1 ± 0.17 abBC | |
20 min | 2.3 ± 0.15 aAB | 2.3 ± 0.14 aAB | 2.4 ± 0.25 aA | 2.1 ± 0.06 cB | 1.5 ± 0.09 cC | |
Gumminess (N) | ||||||
0 W | 100 W | 200 W | 400 W | 800 W | ||
0 min | 7.7 ± 0.29 aA | 7.7 ± 0.29 bA | 7.7 ± 0.29 cA | 7.7 ± 0.29 cA | 7.7 ± 0.29 bA | |
5 min | 7.7 ± 0.29 aD | 14.0 ± 2.16 aBC | 22.4 ± 1.56 aA | 14.5 ± 4.10 bB | 10.0 ± 1.20 abCD | |
10 min | 7.7 ± 0.29 aC | 14.6 ± 2.16 aB | 23.2 ± 2.57 aA | 20.6 ± 3.65 aA | 8.8 ± 1.67 abC | |
15 min | 7.7 ± 0.29 aD | 10.5 ± 0.87 bCD | 17.7 ± 2.61 bB | 23.2 ± 3.40 aA | 11.9 ± 1.59 aC | |
20 min | 7.7 ± 0.29 aC | 8.3 ± 0.87 bC | 15.0 ± 2.84 bB | 19.3 ± 2.15 abA | 9.5 ± 2.97 abC | |
Chewiness (mJ) | ||||||
0 W | 100 W | 200 W | 400 W | 800 W | ||
0 min | 19.3 ± 0.092 aA | 19.3 ± 0.092 cA | 19.3 ± 0.09 dA | 19.3 ± 0.09 dA | 19.3 ± 0.09 bA | |
5 min | 19.3 ± 0.092 aC | 27.4 ± 2.77 bB | 45.6 ± 1.64 aA | 29.6 ± 6.75 cB | 20.6 ± 0.94 bC | |
10 min | 19.3 ± 0.092 aC | 32.7 ± 3.02 aB | 55.6 ± 5.72 bA | 52.6 ± 7.32 aA | 17.6 ± 2.01 bC | |
15 min | 19.3 ± 0.092 aB | 22.6 ± 3.44 cB | 42.1 ± 4.27 bcA | 44.8 ± 6.49 abA | 24.3 ± 1.23 aB | |
20 min | 19.3 ± 0.092 aB | 18.7 ± 0.80 cBC | 36.8 ± 3.31 cA | 40.0 ± 3.31 bA | 14.0 ± 3.52 cC |
UP | T2b/ms | |||||
---|---|---|---|---|---|---|
UT | 0 W | 100 W | 200 W | 400 W | 800 W | |
0 min | 0.19 ± 0.01 aA | 0.19 ± 0.01 eA | 0.19 ± 0.01 cA | 0.19 ± 0.01 dA | 0.19 ± 0.01 dA | |
5 min | 0.19 ± 0.01 aC | 0.57 ± 0.01 dA | 0.00 ± 0.00 dD | 0.00 ± 0.00 eD | 0.43 ± 0.00 cB | |
10 min | 0.19 ± 0.01 aE | 0.87 ± 0.02 aA | 0.29 ± 0.01 bD | 0.50 ± 0.01 cC | 0.57 ± 0.01 bB | |
15 min | 0.19 ± 0.01 aD | 0.76 ± 0.00 bB | 0.69 ± 0.05 aC | 0.87 ± 0.03 aA | 0.66 ± 0.03 aC | |
20 min | 0.19 ± 0.01 aB | 0.66 ± 0.05 cA | 0.00 ± 0.00 dC | 0.66 ± 0.02 bA | 0.66 ± 0.03 aA | |
T21/ms | ||||||
0 W | 100 W | 200 W | 400 W | 800 W | ||
0 min | 0.00 ± 0.00 aA | 0.00 ± 0.00 dA | 0.00 ± 0.00 cA | 0.00 ± 0.00 cA | 0.00 ± 0.00 dA | |
5 min | 0.00 ± 0.00 aD | 3.05 ± 0.02 cA | 1.52 ± 0.01 aB | 1.15 ± 0.01 bC | 0.00 ± 0.00 dD | |
10 min | 0.00 ± 0.00 aB | 0.00 ± 0.00 dB | 0.00 ± 0.00 cB | 0.00 ± 0.00 cB | 2.31 ± 0.00 bA | |
15 min | 0.00 ± 0.00 aD | 8.11 ± 0.16 aA | 0.00 ± 0.00 cD | 2.66 ± 0.02 aB | 2.01 ± 0.02 cB | |
20 min | 0.00 ± 0.00 aD | 5.34 ± 0.09 bA | 1.32 ± 0.02 bC | 0.00 ± 0.00 cD | 2.66 ± 0.13 aB | |
T22/ms | ||||||
0 W | 100 W | 200 W | 400 W | 800 W | ||
0 min | 21.54 ± 0.15 aA | 21.54 ± 0.15 bA | 21.54 ± 0.15 bA | 21.54 ± 0.15 aA | 21.54 ± 0.15 aA | |
5 min | 21.54 ± 0.15 aA | 18.74 ± 0.17 cB | 18.74 ± 0.17 cB | 21.54 ± 0.15 aA | 18.74 ± 0.15 bB | |
10 min | 21.54 ± 0.15 aB | 28.48 ± 0.28 aA | 28.48 ± 0.28 aA | 16.30 ± 0.13 cC | 12.33 ± 0.12 dD | |
15 min | 21.54 ± 0.15 aA | 16.30 ± 0.13 dC | 16.30 ± 0.13 dC | 18.74 ± 0.17 bB | 14.18 ± 0.14 cD | |
20 min | 21.54 ± 0.15 aA | 18.74 ± 0.17 cB | 18.74 ± 0.17 cB | 21.54 ± 0.15 aA | 14.18 ± 0.14 cC | |
T23/ms | ||||||
0 W | 100 W | 200 W | 400 W | 800 W | ||
0 min | 174.75 ± 2.12 aA | 174.75 ± 2.12 bA | 174.75 ± 2.12 aA | 174.75 ± 2.12 aA | 174.75 ± 2.12 aA | |
5 min | 174.75 ± 2.12 aA | 132.19 ± 3.21 cC | 114.98 ± 1.14 cD | 151.99 ± 1.15 bB | 100.00 ± 0.00 cE | |
10 min | 174.75 ± 2.12 aB | 200.92 ± 2.12 aA | 100.00 ± 0.00 dD | 100.00 ± 0.00 cD | 114.98 ± 1.14 bC | |
15 min | 174.75 ± 2.12 aA | 132.19 ± 3.21 cB | 100.00 ± 0.00 dC | 100.00 ± 0.00 cC | 100.00 ± 0.00 cC | |
20 min | 174.75 ± 2.12 aA | 100.00 ± 0.00 dB | 132.19 ± 1.12 bC | 100.00 ± 0.00 cC | 100.00 ± 0.00 cC | |
UT | P2b/% | |||||
0 W | 100 W | 200 W | 400 W | 800 W | ||
0 min | 0.44 ± 0.01 aA | 0.44 ± 0.01 eA | 0.44 ± 0.01 cA | 0.44 ± 0.01 dA | 0.44 ± 0.01 eA | |
5 min | 0.44 ± 0.01 aC | 1.66 ± 0.02 dB | 0.00 ± 0.00 dD | 0.00 ± 0.00 eD | 2.51 ± 0.02 dA | |
10 min | 0.44 ± 0.01 aE | 3.12 ± 0.03 cC | 1.75 ± 0.02 bD | 3.53 ± 0.03 aB | 3.65 ± 0.03 aA | |
15 min | 0.44 ± 0.01 aD | 5.21 ± 0.09 aA | 2.69 ± 0.02 aC | 2.71 ± 0.02 cC | 2.80 ± 0.02 cB | |
20 min | 0.44 ± 0.01 aD | 4.21 ± 0.05 bA | 0.00 ± 0.00 dE | 2.89 ± 0.02 bC | 3.39 ± 0.03 bB | |
UT | P21/% | |||||
0 W | 100 W | 200 W | 400 W | 800 W | ||
0 min | 0.00 ± 0.00 aA | 0.00 ± 0.00 dA | 0.00 ± 0.00 cA | 0.00 ± 0.00 cA | 0.00 ± 0.00 dA | |
5 min | 0.00 ± 0.00 aD | 2.30 ± 0.02 aC | 3.37 ± 0.03 bB | 3.76 ± 0.03 aA | 0.00 ± 0.00 dD | |
10 min | 0.00 ± 0.00 aB | 0.00 ± 0.00 dB | 0.00 ± 0.00 cB | 0.00 ± 0.00 cB | 0.97 ± 0.01 aA | |
15 min | 0.00 ± 0.00 aC | 0.20 ± 0.01 bD | 0.00 ± 0.00 cD | 0.70 ± 0.01 bA | 0.38 ± 0.01 cB | |
20 min | 0.00 ± 0.00 aD | 0.06 ± 0.00 cC | 3.56 ± 0.03 aA | 0.00 ± 0.00 cD | 0.42 ± 0.01 bB | |
UT | P22/% | |||||
0 W | 100 W | 200 W | 400 W | 800 W | ||
0 min | 69.26 ± 0.35 aA | 69.26 ± 0.35 bA | 69.26 ± 0.35 dA | 69.26 ± 0.35 bA | 69.26 ± 0.35 aA | |
5 min | 69.26 ± 0.35 aB | 69.37 ± 0.37 bB | 72.67 ± 1.67 abA | 66.32 ± 0.32 cC | 69.54 ± 0.66 aB | |
10 min | 69.26 ± 0.35 aC | 82.48 ± 1.07 aA | 74.51 ± 1.51 aB | 75.59 ± 1.59 aB | 63.08 ± 1.08 bD | |
15 min | 69.26 ± 0.35 aB | 69.86 ± 0.34 bB | 72.02 ± 1.02 bcA | 69.37 ± 1.37 bB | 58.14 ± 0.15 cC | |
20 min | 69.26 ± 0.35 aA | 66.07 ± 0.54 cC | 69.92 ± 0.92 cdA | 67.81 ± 0.82 bcB | 56.74 ± 0.34 dD | |
UT | P23/% | |||||
0 W | 100 W | 200 W | 400 W | 800 W | ||
0 min | 30.30 ± 0.03 aA | 30.30 ± 0.03 aA | 30.30 ± 0.13 aA | 30.30 ± 0.33 aA | 30.30 ± 0.33 cA | |
5 min | 30.30 ± 0.03 aA | 26.67 ± 0.22 cC | 23.96 ± 0.97 dD | 29.92 ± 0.22 abA | 27.95 ± 0.79 dB | |
10 min | 30.30 ± 0.03 aB | 14.39 ± 0.11 eE | 23.74 ± 0.87 dC | 20.88 ± 0.34 dD | 32.30 ± 1.22 bA | |
15 min | 30.30 ± 0.03 aB | 24.73 ± 0.20 dD | 25.29 ± 0.29 cD | 27.22 ± 0.56 cC | 38.68 ± 0.22 aA | |
20 min | 30.30 ± 0.03 aB | 29.66 ± 0.16 bBC | 26.53 ± 0.53 bD | 29.30 ± 0.34 bC | 39.45 ± 0.45 aA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, Y.; Jiang, G.; Sun, X.; Yang, S.; Yu, J.; Liu, X.; Wang, L.; Zhu, S. Ultrasound-Assisted Enhancement of Gel Properties in Hypomesus olidus Surimi. Foods 2025, 14, 2363. https://doi.org/10.3390/foods14132363
Fu Y, Jiang G, Sun X, Yang S, Yu J, Liu X, Wang L, Zhu S. Ultrasound-Assisted Enhancement of Gel Properties in Hypomesus olidus Surimi. Foods. 2025; 14(13):2363. https://doi.org/10.3390/foods14132363
Chicago/Turabian StyleFu, Yuan, Guochuan Jiang, Xing Sun, Shuibing Yang, Jiahang Yu, Xuejun Liu, Liyan Wang, and Shuangjie Zhu. 2025. "Ultrasound-Assisted Enhancement of Gel Properties in Hypomesus olidus Surimi" Foods 14, no. 13: 2363. https://doi.org/10.3390/foods14132363
APA StyleFu, Y., Jiang, G., Sun, X., Yang, S., Yu, J., Liu, X., Wang, L., & Zhu, S. (2025). Ultrasound-Assisted Enhancement of Gel Properties in Hypomesus olidus Surimi. Foods, 14(13), 2363. https://doi.org/10.3390/foods14132363