Dianthus superbus L. (QM) Extract-Assisted Silver Nanoparticle Gelatin Films with Antioxidant and Antimicrobial Properties for Fresh Fruit Preservation
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Preparation of the QM Extraction
2.3. Green Synthesis of AgNPs
2.4. Optimization of QM-AgNP Synthesis Conditions
2.4.1. Single-Factor Design
2.4.2. Box–Behnken Design for Optimization
2.5. Characterization of QM-AgNPs
2.6. Antioxidant Activity of QM-AgNPs
2.7. In Vitro Cytotoxicity
2.7.1. Cell Viability
2.7.2. Cell Apoptosis Detection
2.8. Antibacterial Properties of QM-AgNPs
2.8.1. Determination of the Inhibition Zone
2.8.2. Minimum Inhibitory Concentration (MIC)
2.8.3. Minimum Bactericidal Concentration (MBC)
2.8.4. Growth Dynamics Curve
2.8.5. Antibiofilm
2.8.6. Reactive Oxygen Species (ROS) Detection
2.8.7. Measurement of Intracellular Contents
2.8.8. AO/PI Staining
2.9. Application in Grape Packaging
2.9.1. Changes in Appearance
2.9.2. Weight Loss
2.9.3. Titratable Acidity
2.9.4. Total Sugar Content
2.9.5. Soluble Solids
2.9.6. Browning Degree
2.9.7. Spoilage Rate
2.9.8. Microbiological Evaluation
2.10. Statistical Analysis
3. Results
3.1. Optimization of Conditions for Green Synthesis
3.2. Analysis of Response Surface Results
3.3. Characterization Analysis of QM-AgNPs
3.4. Antioxidant Analysis of QM-AgNPs
3.5. Cytotoxicity Studies
3.5.1. Cytotoxicity Evaluation
3.5.2. Cell Apoptosis Analysis
3.6. Antibacterial Activity of QM-AgNPs
3.6.1. The Inhibition Zone
3.6.2. MIC and MBC
3.6.3. Growth Kinetic Analysis
3.6.4. Antibiofilm Analysis
3.6.5. ROS
3.6.6. Membrane Permeability Analysis
3.6.7. AO/PI
3.7. Fruit Preservation
3.7.1. Appearance Changes Analysis
3.7.2. Weight Loss Analysis
3.7.3. Analysis of Titratable Acidity
3.7.4. Total Sugar Content Analysis
3.7.5. Analysis of Soluble Solids
3.7.6. Browning Analysis
3.7.7. Spoilage Rate Analysis
3.7.8. Microbiological Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, J.Z.; Zhang, H.J.; Yan, L.Y.; Kerr, P.G.; Zhang, S.H.; Wu, Y.H. Electron transport, light energy conversion and proteomic responses of periphyton in photosynthesis under exposure to AgNPs. J. Hazard. Mater. 2021, 401, 123809. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Luo, C.; Pang, Z.Q.; Zhang, J.M.; Ruan, S.B.; Wu, M.Y.; Wang, L.; Sun, T.; Li, N.; Han, L.; et al. Advances of nanoparticles as drug delivery systems for disease diagnosis and treatment. Chin. Chem. Lett. 2023, 34, 107518. [Google Scholar] [CrossRef]
- Panda, P.K.; Kumari, P.; Patel, P.; Samal, S.K.; Mishra, S.; Tambuwala, M.M.; Autt, D.; Hilscherová, K.; Mishra, Y.K.; Varma, R.S. Molecular nanoinformatics approach assessing the biocompatibility of biogenic silver nanoparticles with channelized intrinsic steatosis and apoptosis. Green Chem. 2022, 24, 1190–1210. [Google Scholar] [CrossRef]
- Kareem, A.A.; Polu, A.R.; Rasheed, H.K.; Rasheed, T. Effect of silver nanoparticles on structural, thermal, electrical, and mechanical properties of poly (vinyl alcohol) polymer nanocomposites. Polym. Compos. 2023, 44, 3281–3287. [Google Scholar] [CrossRef]
- Vijayaram, S.; Razafindralambo, H.; Sun, Y.-Z.; Vasantharaj, S.; Ghafarifarsani, H.; Hoseinifar, S.H.; Raeeszadeh, M. Applications of Green Synthesized Metal Nanoparticles—A Review. Biol. Trace Elem. Res. 2024, 202, 360–386. [Google Scholar] [CrossRef]
- Thiruvengadam, M.; Rajakumar, G.; Chung, I.-M. Nanotechnology: Current uses and future applications in the food industry. Biotech 2018, 8, 74. [Google Scholar] [CrossRef] [PubMed]
- Ying, N.; Liu, S.S.; Zhang, M.M.; Cheng, J.; Luo, L.H.; Jiang, J.Y.; Shi, G.F.; Wu, S.; Ji, J.; Su, H.Y. Nano delivery system for paclitaxel: Recent advances in cancer theranostics. Colloid Surf. B Biointerfaces 2023, 228, 113419. [Google Scholar] [CrossRef]
- Hashemitabar, G.; Aflakian, F.; Sabzevar, A.H. Assessment of antibacterial, antioxidant, and anticancer effects of biosynthesized silver nanoparticles using Teucrium polium extract. J. Mol. Struct. 2023, 1291, 136076. [Google Scholar] [CrossRef]
- Le, T.T.H.; Ngo, T.H.; Nguyen, T.H.; Hoang, V.H.; Nguyen, V.H.; Nguyen, P.H. Anti-cancer activity of green synthesized silver nanoparticles using Ardisia gigantifolia leaf extract against gastric cancer cells. Biochem. Biophys. Res. Commun. 2023, 661, 99–107. [Google Scholar] [CrossRef]
- Ghaseminezhad, S.M.; Hamedi, S.; Shojaosadati, S.A. Green synthesis of silver nanoparticles by a novel method: Comparative study of their properties. Carbohydr. Polym. 2012, 89, 467–472. [Google Scholar] [CrossRef]
- Lee, S.H.; Jun, B.-H. Silver Nanoparticles: Synthesis and Application for Nanomedicine. Int. J. Mol. Sci. 2019, 20, 865. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.H.A.; Mahmoud, A.H.M.; Hiroyuki, K.; Mahmoud, A.Y. Exploring the green synthesis of silver nanoparticles using natural extracts and their potential for cancer treatment. 3 Biotech 2024, 14, 274. [Google Scholar] [CrossRef]
- Azizi-Lalabadi, M.; Garavand, F.; Jafari, S.M. Incorporation of silver nanoparticles into active antimicrobial nanocomposites: Release behavior, analyzing techniques, applications and safety issues. Adv. Colloid Interfac. Sci. 2021, 293, 102440. [Google Scholar] [CrossRef] [PubMed]
- Beyene, H.D.; Werkneh, A.A.; Bezabh, H.K.; Ambaye, T.G. Synthesis paradigm and applications of silver nanoparticles (AgNPs), a review. Sustain. Mater. Technol. 2017, 13, 18–23. [Google Scholar] [CrossRef]
- Vadakkan, K.; Rumjit, N.P.; Ngangbam, A.K.; Vijayanand, S.; Nedumpillil, N.K. Novel advancements in the sustainable green synthesis approach of silver nanoparticles (AgNPs) for antibacterial therapeutic applications. Coord. Chem. Rev. 2024, 499, 215528. [Google Scholar] [CrossRef]
- Dogru, E.; Demirbas, A.; Altinsoy, B.; Duman, F.; Ocsoy, I. Formation of Matricaria chamomilla extract-incorporated Ag nanoparticles and size-dependent enhanced antimicrobial property. J. Photochem. Photobiol. B Biol. 2017, 174, 78–83. [Google Scholar] [CrossRef]
- Jemilugba, O.T.; Sakho, E.H.M.; Parani, S.; Mavumengwana, V.; Oluwafemi, O.S. Green synthesis of silver nanoparticles using Combretum erythrophyllum leaves and its antibacterial activities. Colloid Interfac Sci. Commun. 2019, 31, 100191. [Google Scholar] [CrossRef]
- Ma, L.; Gu, Y.-C.; Luo, J.-G.; Wang, J.-S.; Huang, X.-F.; Kong, L.-Y. Correction to Triterpenoid Saponins from Dianthus versicolor. J. Nat. Prod. 2024, 87, 2908. [Google Scholar] [CrossRef]
- Kim, D.H.; Park, G.S.; Nile, A.S.; Kwon, Y.D.; Enkhtaivan, G.; Nile, S.H. Utilization of Dianthus superbus L. and its bioactive compounds for antioxidant, anti-influenza and toxicological effects. Food Chem. Toxicol. 2019, 125, 313–321. [Google Scholar] [CrossRef]
- Alghuthaymi, M.A.; Patil, S.; Rajkuberan, C.; Krishnan, M.; Krishnan, U.; Abd-Elsalam, K.A. Polianthes tuberosa-Mediated Silver Nanoparticles from Flower Extract and Assessment of Their Antibacterial and Anticancer Potential. Plants 2023, 12, 1261. [Google Scholar] [CrossRef]
- Otoni, C.G.; Avena-Bustillos, R.J.; Azeredo, H.M.; Lorevice, M.V.; Moura, M.R.; Mattoso, L.H.; Mchugh, T.H. Recent advances on edible films based on fruits and vegetables—A review. Compr. Rev. Food Sci. Food Saf. 2017, 16, 1151–1169. [Google Scholar] [CrossRef] [PubMed]
- Pandian, H.; Senthilkumar, K.; Naveenkumar, M.; Samraj, S. Azadirachta indica leaf extract mediated silver nanoparticles impregnated nano composite film (AgNP/MCC/starch/whey protein) for food packaging applications. Environ. Res. 2023, 216, 114641. [Google Scholar] [CrossRef] [PubMed]
- Ponnusamy, A.; Sr, R.R.; Rajan, R.; Ashraf, F. Chitosan silver nanoparticle inspired seaweed (Gracilaria crassa) biodegradable films for seafood packaging. Algal Res. 2024, 78, 103429. [Google Scholar] [CrossRef]
- Zhang, D.-Y.; Yang, J.-X.; Liu, E.-J.; Hu, R.-Z.; Yao, X.-H.; Chen, T.; Zhao, W.-G.; Liu, L.; Fu, Y.-J. Soft and elastic silver nanoparticle-cellulose sponge as fresh-keeping packaging to protect strawberries from physical damage and microbial invasion. Int. J. Biol. Macromol. 2022, 211, 470–480. [Google Scholar] [CrossRef] [PubMed]
- Alharbi, A.A.; Alghamdi, A.M.; Al-Goul, S.T.; Allohibi, A.; Baty, R.S.; Qahl, S.H.; Beyari, E.A. Valorizing pomegranate wastes by producing functional silver nanoparticles with antioxidant, anticancer, antiviral, and antimicrobial activities and its potential in food preservation. Saudi J. Biol. Sci. 2024, 31, 103880. [Google Scholar] [CrossRef]
- Lieu, M.D.; Dang, T.K.T.; Nguyen, T.H. Green synthesized silver nanoparticles, a sustainable approach for fruit and vegetable preservation: An overview. Food Chem. X 2024, 15, 101664. [Google Scholar] [CrossRef]
- Jagtiani, E. Advancements in nanotechnology for food science and industry. Food Front. 2022, 3, 56–82. [Google Scholar] [CrossRef]
- Goh, H.T.; Cheok, C.Y.; Yeap, S.P. Green synthesis of silver nanoparticles using banana peel extract and application on banana preservation. Food Front. 2023, 4, 283–288. [Google Scholar] [CrossRef]
- Nguyen, T.C.; Nguyen, T.T.T.; Do, Q.T.; Nguyen, D.B.; Tran, T.M.; Tran, L.C.; Tran, T.T.; Nguyen, T.A.; Thai, H. Optimizing the synthesis of hydrotalcite-silver nanoparticles-Allium tuberosum L. hybrid material and its application in chitosan membranes. Inorg. Chem. Commun. 2025, 178, 114535. [Google Scholar] [CrossRef]
- Mutalib, M.A.; Rahman, M.A.; Othman, M.H.D.; Ismail, A.F.; Jaafar, J. Scanning Electron Microscopy (SEM) and Energy-Dispersive X-Ray (EDX) Spectroscopy. In Membrane Characterization; Elsevier: Amsterdam, The Netherlands, 2017; pp. 161–179. [Google Scholar] [CrossRef]
- Khan, H.; Yerramilli, A.S.; D’oliveira, A.; Alford, T.L.; Boffito, D.C.; Patience, G.S. Experimental methods in chemical engineering: X-ray diffraction spectroscopy—XRD. Can. J. Chem. Eng. 2020, 98, 1255–1266. [Google Scholar] [CrossRef]
- Jia, Z.X.; Li, J.T.; Gao, L.; Yang, D.Z.; Kanaev, A. Dynamic light scattering: A powerful tool for in situ nanoparticle sizing. Colloids Interfaces 2023, 7, 15. [Google Scholar] [CrossRef]
- Sharifi-Rad, M.; Elshafie, H.S.; Pohl, P. Green synthesis of silver nanoparticles (AgNPs) by Lallemantia royleana leaf Extract: Their Bio-Pharmaceutical and catalytic properties. J. Photochem. Photobiol. A Chem. 2024, 448, 115318. [Google Scholar] [CrossRef]
- Khan, S.S.; Ullah, I.; Ullah, S.; An, R.P.; Xu, H.J.; Nie, K.L.; Liu, C.Y.; Liu, L. Recent advances in the surface functionalization of nanomaterials for antimicrobial applications. Materials 2021, 14, 6932. [Google Scholar] [CrossRef] [PubMed]
- Protima, R.; Siim, K.; Stanislav, F.; Erwan, R. A Review on the Green Synthesis of Silver Nanoparticles and Their Morphologies Studied via TEM. Adv. Mater. Sci. Eng. 2015, 9, 682749. [Google Scholar] [CrossRef]
- Mei, J.; Xu, D.; Wang, L.; Kong, L.; Liu, Q.; Li, Q.; Zhang, X.; Su, Z.; Hu, X.; Zhu, W.; et al. Biofilm microenvironment-responsive self-assembly nanoreactors for all-stage biofilm associated infection through bacterial cuproptosis-like death and macrophage Re-rousing. Adv. Mater. 2023, 35, 2303432. [Google Scholar] [CrossRef]
- Oparka, M.; Walczak, J.; Malinska, D.; Oppen, L.M.P.E.; Szczepanowska, J.; Koopman, W.J.H.; Wieckowski, M.R. Quantifying ROS levels using CM-H2DCFDA and HyPer. Methods 2016, 109, 3–11. [Google Scholar] [CrossRef]
- Shi, Y.; Bian, L.; Zhu, Y.; Zhang, R.; Shao, S.; Wu, Y.; Chen, Y.; Dang, Y.; Ding, Y.; Sun, H. Multifunctional alkyl ferulate esters as potential food additives: Antibacterial activity and mode of action against Listeria monocytogenes and its application on American sturgeon caviar preservation. Food Control 2019, 96, 390–402. [Google Scholar] [CrossRef]
- Ong, K.S.; Cheow, Y.L.; Lee, S.M. The role of reactive oxygen species in the antimicrobial activity of pyochelin. J. Adv. Res. 2017, 8, 393–398. [Google Scholar] [CrossRef]
- Bizymis, A.P.; Kalantzi, S.; Mamma, D.; Tzia, C. Addition of Silver Nanoparticles to Composite Edible Films and Coatings to Enhance Their Antimicrobial Activity and Application to Cherry Preservation. Foods 2023, 12, 4295. [Google Scholar] [CrossRef]
- Zhang, Z.; Jiang, Q.; Yang, G.; Zhang, X.; Jiang, X.; He, B.; Chen, J. TEMPO-oxidized nanocellulose immobilized AgNPs modified chitosan composite film with durable antibacterial and preservative properties for fruits and vegetables package. Ind. Crops Prod. 2023, 205, 117430. [Google Scholar] [CrossRef]
- Qi, Z.; Xie, P.; Yang, C.; Xue, X.; Chen, H.; Zhou, H.; Yuan, H.; Yang, G.; Wang, C. Developing fisetin-AgNPs incorporated in reinforced chitosan/pullulan composite-film and its application of postharvest storage in litchi fruit. Food Chem. 2023, 407, 135122. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Zhang, Y.; Zhang, F.; Mi, S.; Yu, W.; Sang, Y.; Wang, X. Preparation of chitosan/polyvinyl alcohol antibacterial indicator composite film loaded with AgNPs and purple sweet potato anthocyanins and its application in strawberry preservation. Food Chem. 2025, 463, 141442. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.X.; Li, J.Y.; Mu, D.S.; Zhang, H.; Liu, Q.X.; Chen, G.J. Green synthesis and characterizations of silver nanoparticles with enhanced antibacterial properties by secondary metabolites of Bacillus subtilis (SDUM301120). Green Chem. Lett. Rev. 2021, 14, 190–203. [Google Scholar] [CrossRef]
- Erenler, R.; Chaoui, R.; Yildiz, I.; Genc, N.; Gecer, E.N.; Temiz, C.; Akkal, S. Biosynthesis, Characterisation, and Antioxidant Activity of Silver Nanoparticles using Schinus molle L. Trends Sci. 2023, 20, 6105. [Google Scholar] [CrossRef]
- Tran, N.D.N.; Bui, T.H.; Nguyen, A.P.; Nguyen, T.; Nguyen, V.M.; Duong, N.L.; Nguyen, T. The ability of silver-biochar green-synthesized from Citrus maxima peel to adsorb pollutant organic compounds and antibacterial activity. Green Chem. Lett. Rev. 2022, 15, 18–27. [Google Scholar] [CrossRef]
- Mohammed, W.A.; Edbey, K.; Farhat, H.E.; Shah, P.; Shamsi, S.S.; Bhattarai, A. Facile green synthesis of novel AgNPs using Hyoscyamus leaf extract as capping agent: Characterization and their potential antibacterial activities. Inorg. Chem. Commun. 2025, 173, 113893. [Google Scholar] [CrossRef]
- Raghupathy, S.; Sivalinga, A.M.; Brahma, N.; Alex, A. Phytochemical Analysis of Silver Nanoparticles of Psidium guajava Leaf Extract and Evaluation for Its Antibacterial Property. J. Pharm. BioAllied Sci. 2024, 16 (Suppl. S2), S1256–S1262. [Google Scholar] [CrossRef]
- Bedlovičová, Z.; Strapáč, I.; Baláž, M.; Salayová, A. A brief overview on antioxidant activity determination of silver nanoparticles. Molecules 2020, 25, 3191. [Google Scholar] [CrossRef]
- Palithya, S.; Gaddam, S.A.; Kotakadi, V.S.; Penchalaneni, J.; Challagundla, V.N. Biosynthesis of silver nanoparticles using leaf extract of Decaschistia crotonifolia and its antibacterial, antioxidant, and catalytic applications. Green Chem. Lett. Rev. 2021, 14, 137–152. [Google Scholar] [CrossRef]
- Magdum, A.B.; Waghmode, R.S.; Shinde, K.V.; Mane, M.P.; Kamble, M.V.; Kamble, R.S.; Jangam, A.; Pawar, K.; Sonawane, K.D.; Patil, P. Biogenic synthesis of silver nanoparticles from leaves extract of Decaschistia trilobata an endemic shrub and its application as antioxidant, antibacterial, anti-inflammatory and dye reduction. Catal. Commun. 2024, 187, 106865. [Google Scholar] [CrossRef]
- Salih, R.; Bajou, K.; Shaker, B.; Elgamouz, A. Antitumor effect of algae silver nanoparticles on human triple negative breast cancer cells. Biomed. Pharmacother. 2023, 168, 115532. [Google Scholar] [CrossRef] [PubMed]
- Thakkar, A.B.; Subramanian, R.; Thakkar, V.R.; Bhatt, S.V.; Chaki, S.; Vaidya, Y.H.; Patel, V.; Thakor, P. Apoptosis induction capability of silver nanoparticles capped with Acorus calamus L. and Dalbergia sissoo Roxb. Ex DC. against lung carcinoma cells. Heliyon 2024, 10, 26. [Google Scholar] [CrossRef] [PubMed]
- Venmani, S.; Kesavan, M.P.; Ayyanaar, S.; Muniyappan, N. Cymodocea serrulata-capped silver nanoparticles for battling human lung cancer, breast cancer, hepatic cancer: Optimization by full factorial design and in vitro cytotoxicity evaluation. Heliyon 2023, 9, 27. [Google Scholar] [CrossRef]
- Sanfelice, R.A.D.S.; Bortoleti, B.T.D.S.; Tomiotto-Pellissier, F.; Silva, T.F.; Bosqui, L.R.; Nakazato, G.; Castilho, P.M.; De, B.L.D.; Garcia, J.L.; Lazarin-Bidóia, D.; et al. Biogenic silver nanoparticles (AgNp-Bio) reduce Toxoplasma gondii infection and proliferation in HeLa cells, and induce autophagy and death of tachyzoites by apoptosis-like mechanism. Acta Trop. 2021, 222, 106070. [Google Scholar] [CrossRef]
- Ferdous, Z.; Nemmar, A. Health impact of silver nanoparticles: A review of the biodistribution and toxicity following various routes of exposure. Int. J. Mol. Sci. 2020, 21, 2375. [Google Scholar] [CrossRef]
- CLSI (Ed.) Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically, 11th ed.; CLSI Document M07; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
- Al-mehdhar, A.A.; Alarjani, K.M.; Aldosari, N.S.; Alghamdi, M.A. Antibacterial Efficacy of AgNPs synthesized from Aloe vera extract and Staphylococcus aureus Culture Supernatant. J. King Saud Univ. Sci. 2024, 36, 103464. [Google Scholar] [CrossRef]
- Farooq, M.A.; Hannan, F.; Islam, F.; Ayyaz, A.; Zhang, N.; Chen, W.-Q.; Zhang, K.N.; Huang, Q.; Xu, L.; Zhou, W.J. The potential of nanomaterials for sustainable modern agriculture: Present findings and future perspectives. Environ. Sci. Nano 2022, 9, 1926–1951. [Google Scholar] [CrossRef]
- Fadaka, A.O.; Sibuyi, N.R.S.; Madiehe, A.M.; Meyer, M. Nanotechnology-based delivery systems for antimicrobial peptides. Pharmaceutics 2021, 13, 1795. [Google Scholar] [CrossRef]
- Netala, V.R.; Hou, T.Y.; Sana, S.S.; Li, H.Z.; Zhang, Z.J. Rosmarinic Acid-Rich Perilla frutescens Extract-Derived Silver Nanoparticles: A Green Synthesis Approach for Multifunctional Biomedical Applications including Antibacterial, Antioxidant, and Anticancer Activities. Molecules 2024, 29, 1250. [Google Scholar] [CrossRef]
- Oh, S.-J.; Kim, H.; Liu, Y.Q.; Han, H.-K.; Kwon, K.; Chang, K.-H.; Park, K.; Kim, Y.; Shim, K.; An, S.S.A.; et al. Incompatibility of silver nanoparticles with lactate dehydrogenase leakage assay for cellular viability test is attributed to protein binding and reactive oxygen species generation. Toxicol. Lett. 2014, 225, 422–432. [Google Scholar] [CrossRef]
- Çiğdem, U.; Yılmaz, Ö.B.; Dağ, İ. Biosynthesis, Characterization and Optimization of Silver Nanoparticles with Strong Antibacterial Activity Using Cell Extracts of Cyanobacterial Chroococcus sp. ChemistrySelect 2024, 9, e202304895. [Google Scholar] [CrossRef]
- Martínez-Esquivias, F.; Gutiérrez-Angulo, M.; Pérez-Larios, A.; Sánchez-Burgos, J.A.; Becerra-Ruiz, J.S.; Guzmán-Flores, J.M. Anticancer activity of selenium nanoparticles in vitro studies. Anti-Cancer Agents Med. Chem. 2022, 22, 1658–1673. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, M.; Kumar, P.; Tejavath, K.K.; Tiwari, V. Assessment of Molecular Mechanism of Gallate-Polyvinylpyrrolidone-Capped Hybrid Silver Nanoparticles against Carbapenem-Resistant Acinetobacter baumannii. ACS Omega 2020, 5, 1206–1213. [Google Scholar] [CrossRef]
- Liu, Y.; Yuan, Y.; Duan, S.; Li, C.; Hu, B.; Liu, A.; Wu, D.; Cui, H.; Lin, L.; He, J.; et al. Preparation and characterization of chitosan films with three kinds of molecular weight for food packaging. Int. J. Biol. Macromol. 2020, 155, 249–259. [Google Scholar] [CrossRef]
- Meng, X.; Li, B.; Liu, J.; Tian, S. Physiological responses and quality attributes of table grape fruit to chitosan preharvest spray and postharvest coating during storage. Food Chem. 2008, 106, 501–508. [Google Scholar] [CrossRef]
- Du, Y.; Yang, F.; Yu, H.; Cheng, Y.; Guo, Y.; Yao, W.; Xie, Y. Fabrication of novel self-healing edible coating for fruits preservation and its performance maintenance mechanism. Food Chem. 2021, 351, 129284. [Google Scholar] [CrossRef] [PubMed]
- Hajji, S.; Younes, I.; Affes, S.; Boufi, S.; Nasri, M. Optimization of the formulation of chitosan edible coatings supplemented with carotenoproteins and their use for extending strawberries postharvest life. Food Hydrocoll. 2018, 83, 375–392. [Google Scholar] [CrossRef]
- Lin, Y.; Lin, H.; Zhang, S.; Chen, Y.; Chen, M.; Lin, Y. The role of active oxygen metabolism in hydrogen peroxide-induced pericarp browning of harvested longan fruit. Postharvest Biol. Technol. 2014, 96, 42–48. [Google Scholar] [CrossRef]
- Kou, X.; He, Y.; Li, Y.; Chen, X.; Feng, Y.; Xue, Z. Effect of abscisic acid (ABA) and chitosan/nano-silica/sodium alginate composite film on the color development and quality of postharvest Chinese winter jujube (Zizyphus jujuba Mill. cv. Dongzao). Food Chem. 2019, 270, 385–394. [Google Scholar] [CrossRef]
- Valenzuela, C.; Tapia, C.; López, L.; Bunger, A.; Escalona, V.; Abugoch, L. Effect of edible quinoa protein-chitosan based films on refrigerated strawberry (Fragaria × ananassa) quality. Electron. J. Biotechnol. 2015, 18, 406–411. [Google Scholar] [CrossRef]
Test Parameters | Levels of Test Parameters | ||
---|---|---|---|
−1 | 0 | 1 | |
Temperature (°C) | 85 | 90 | 95 |
Time (min) | 150 | 180 | 210 |
Material–liquid ratio (%) | 6 | 8 | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Li, Y.; Huo, Y.; Wang, H.; Wang, D. Dianthus superbus L. (QM) Extract-Assisted Silver Nanoparticle Gelatin Films with Antioxidant and Antimicrobial Properties for Fresh Fruit Preservation. Foods 2025, 14, 2327. https://doi.org/10.3390/foods14132327
Zhang C, Li Y, Huo Y, Wang H, Wang D. Dianthus superbus L. (QM) Extract-Assisted Silver Nanoparticle Gelatin Films with Antioxidant and Antimicrobial Properties for Fresh Fruit Preservation. Foods. 2025; 14(13):2327. https://doi.org/10.3390/foods14132327
Chicago/Turabian StyleZhang, Chenwei, Yao Li, Yue Huo, Hongtao Wang, and Dandan Wang. 2025. "Dianthus superbus L. (QM) Extract-Assisted Silver Nanoparticle Gelatin Films with Antioxidant and Antimicrobial Properties for Fresh Fruit Preservation" Foods 14, no. 13: 2327. https://doi.org/10.3390/foods14132327
APA StyleZhang, C., Li, Y., Huo, Y., Wang, H., & Wang, D. (2025). Dianthus superbus L. (QM) Extract-Assisted Silver Nanoparticle Gelatin Films with Antioxidant and Antimicrobial Properties for Fresh Fruit Preservation. Foods, 14(13), 2327. https://doi.org/10.3390/foods14132327