Tradition and Innovation in Raw Meat Products with a Focus on the Steak Tartare Case
Abstract
1. Introduction
2. Regulatory Framework
3. Industrial Processing
4. Formulation of Steak Tartare
5. Microbial Ecology of Steak Tartare
6. Pathogens and Outbreaks
7. Innovation in the Manufacturing Process of Steak Tartare
8. Nitrite in Steak Tartare: Significance and Possible Substitution
9. Current Challenges and Future Perspectives
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tóth, F. Le Bifteck Tartare en Poudre. Méthodes de Conservation Alimentaire Vues par les Voyageurs Français en Crimée à l’Époque Moderne. Orients Bull. L’assoc. Anc. Élèves Amis Des Lang. Orient. 2015, 113–126. [Google Scholar]
- Farmer, F.M. Boston Cooking-School Cookbook; Little, Brown and Company: Boston, MA, USA, 1896. [Google Scholar]
- Escoffier, A. Le Guide Culinaire: Aide-Mémoire De Cuisine Pratique; Flammarion: Paris, France, 1903. [Google Scholar]
- Montagné, P. Larousse Gastronomique; Avec la Collaboration du Dr. Gottschalk; Éditions Larousse: Paris, France, 1938. [Google Scholar]
- Mitchell, J. Lüchow’s German Cookbook; Doubleday & Company, Inc.: Garden City, NY, USA, 1952. [Google Scholar]
- Food and Agriculture Organization of the United Nations (FAO). Meat Market Review: Overview of Global Market Developments in 2023; Food and Agriculture Organization of the United Nations: Rome, Italy, 2024. [Google Scholar]
- The Business Research Company. Meat Global Market Report 2025; The Business Research Company: London, UK, 2025. [Google Scholar]
- European Commission (EC). Regulation (EC) No 853/2004 of the European Parliament and of the Council of 29 April 2004 Laying Down Specific Hygiene Rules for Food of Animal Origin; European Commission (EC): Brussels, Belgium, 2004; Volume 139, pp. 55–205. Available online: https://eur-lex.europa.eu/eli/reg/2004/853/oj/eng (accessed on 30 April 2025).
- European Commission (EC). Regulation (EC) No 852/2004 of the European Parliament and of the Council of 29 April 2004 on the Hygiene of Foodstuffs; European Commission (EC): Brussels, Belgium, 2004. [Google Scholar]
- European Commission (EC). Regulation (EC) No 1333/2008 of the European Parliament and of the Council of 16 December 2008 on Food Additives; European Commission (EC): Brussels, Belgium, 2008. [Google Scholar]
- European Commission (EC). Commission Regulation (EC) No 2073/2005 of 15 November 2005 on Microbiological Criteria for Foodstuffs; European Commission (EC): Brussels, Belgium, 2005. [Google Scholar]
- Vågsholm, I.; Gerner-Smidt, P.; Lindgren, S.; van Hoof, J. Opinion of the Scientific Committee on Veterinary Measures Relating to Public Health on Verotoxigenic E. coli (VTEC) in Foodstuffs; European Commission Health & Consumer Protection Directorate-General: Brussels, Belgium, 2003. [Google Scholar]
- UK Health Security Agency. Guidelines for Assessing the Microbiological Safety of Ready-to-Eat Foods Placed on the Market: Interpretation of Test Results Generated by UKHSA Food Water and Environmental Microbiology Services Laboratories. 2024. Available online: https://www.gov.uk/government/publications/ready-to-eat-foods-microbiological-safety-assessment-guidelines#full-publication-update-history (accessed on 30 April 2025).
- Eurocarni. Eurocarni. 2025. Available online: https://pubblicitaitalia.com/it/carne/prodotti/eurocarni (accessed on 30 April 2025).
- Cross, H.R.; Berry, B.W.; Nichols, J.E.; Elder, R.S.; Quick, J.A. Effect of desinewing versus grinding on textural properties of beef. J. Food Sci. 1978, 43, 1507–1509. [Google Scholar] [CrossRef]
- Eurocarni. Come Ottimizzare Il Processo Di Skin Packaging Mediante Crostatura Criogenica: Gli Abbattitori Linde. Eurocarni 2025, 12. Available online: https://pubblicitaitalia.com/carne/prodotti/eurocarni/2024/12/23159 (accessed on 30 April 2025).
- Kameník, J.; Saláková, A.; Pavlík, Z.; Borilova, G.; Hulankova, R.; Steinhauserova, I. Vacuum Skin Packaging and Its Effect on Selected Properties of Beef and Pork Meat. Eur. Food Res. Technol. 2014, 239, 395–402. [Google Scholar] [CrossRef]
- Stella, S.; Bernardi, C.; Tirloni, E. Influence of Skin Packaging on Raw Beef Quality: A Review. J. Food Qual. 2018, 2018, 7464578. [Google Scholar] [CrossRef]
- Nejedli, S.; Zobundžija, M.; Hraste, A.; Kozarić, Z.; Gjurčević, K.V. Influence of the Muscle Fibre Type Composition and the Proportion of Connective Tissue on the Sensory Acceptance of Beefsteak Tartare. Acta Aliment. 2003, 32, 15–25. [Google Scholar] [CrossRef]
- Abrati, L. Ad ognuno la propria “cruda”: Ecco con quali tagli prepararla. Eurocarni 2023, 5. [Google Scholar]
- Accademia Macelleria Italiana. Tartare. Accademia Macelleria Italiana 2025. Available online: https://accademiamacelleriaitaliana.it/ (accessed on 30 April 2025).
- Eurocarni. Ambrosini: Tartare e Battute Senza Conservanti Aggiunti. Eurocarni 2025, 12. Available online: https://pubblicitaitalia.com/carne/prodotti/eurocarni/2023/12/22132 (accessed on 30 April 2025).
- Eurocarni. Nuova Battuta al Coltello You&Meat. Eurocarni 2025, 5. Available online: https://pubblicitaitalia.com/carne/prodotti/eurocarni/2024/5/22569 (accessed on 30 April 2025).
- Eurocarni. Tartare e Battute: Gusto e Sicurezza Senza Compromessi. Eurocarni 2025, 7. Available online: https://pubblicitaitalia.com/carne/prodotti/eurocarni/2024/7/22764 (accessed on 30 April 2025).
- Eurocarni. La Nostra Camera Bianca: Il Segreto Dei Prodotti Ready to Eat di Ambrosini. Eurocarni 2025, 12. Available online: https://pubblicitaitalia.com/carne/prodotti/eurocarni/2024/12/23169 (accessed on 30 April 2025).
- Tirloni, E.; Bernardi, C.; Fusi, V.; Sgoifo Rossi, C.A.; Stella, S. Microbiological and Physicochemical Profile of Italian Steak Tartare and Predicting Growth Potential of Listeria monocytogenes. Heliyon 2024, 10, e30883. [Google Scholar] [CrossRef]
- Heuvelink, A.E.; Zwartkruis-Nahuis, J.T.; Beumer, R.R.; de Boer, E. Occurrence and survival of verocytotoxin-producing Escherichia coli O157 in meats obtained from retail outlets in The Netherlands. J. Food Prot. 1999, 62, 1115–1122. [Google Scholar] [CrossRef]
- Ercolini, D.; Russo, F.; Torrieri, E.; Masi, P.; Villani, F. Changes in the spoilage-related microbiota of beef during refrigerated storage under different packaging conditions. Appl. Environ. Microbiol. 2006, 72, 4663–4671. [Google Scholar] [CrossRef]
- Beumer, R.R.; Tamminga, S.K.; Kampelmacher, E.H. Microbiological investigation of ‘Filet Américaine’. Arch. Lebensm.-Hyg 1983, 34, 35–40. [Google Scholar]
- Roels, T.; Frazak, P.; Kazmierczak, J.; Mackenzie, W.; Proctor, M.; Kurzynski, T.; Davis, J. Incomplete Sanitation of a Meat Grinder and Ingestion of Raw Ground Beef: Contributing Factors to a Large Outbreak of Salmonella typhimurium Infection. Epidemiol. Infect. 1997, 119, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Delhalle, L.; Korsak, N.; Taminiau, B.; Nezer, C.; Burteau, S.; Delcenserie, V.; Poullet, J.B.; Daube, G. Exploring the Bacterial Diversity of Belgian Steak Tartare Using Metagenetics and Quantitative Real-Time PCR Analysis. J. Food Prot. 2016, 79, 220–229. [Google Scholar] [CrossRef]
- Regecová, I.; Turek, P.; Jevinová, P.; Pipová, M.; Mačanga, J. Monitoring of Microbiological Quality in the Process of Production of Steak Tartare. J. Food Nutr. Res. 2017, 56, 318–325. [Google Scholar]
- Tirloni, E.; Bernardi, C.; Stella, S. Shelf Life and Growth Potential of Listeria monocytogenes in Steak Tartare. LWT 2020, 118, 108807. [Google Scholar] [CrossRef]
- Stella, S.; Bernardi, C.; Tirloni, E. Growth Potential of Listeria monocytogenes in Veal Tartare. Ital. J. Food Saf. 2021, 10, 9419. [Google Scholar] [CrossRef]
- Rhoades, J.R.; Duffy, G.; Koutsoumanis, K. Prevalence and Concentration of Verocytotoxigenic Escherichia coli, Salmonella and Listeria monocytogenes in the Beef Production Chain: A Review. Food Microbiol. 2009, 26, 357–376. [Google Scholar] [CrossRef]
- Kivi, M.; Hofhuis, A.; Notermans, D.W.; Wannet, W.J.; Heck, M.E.; Van De Giessen, A.W.; Van Duynhoven, Y.T.; Stenvers, O.F.; Bosman, A.; Van Pelt, W. A Beef-Associated Outbreak of Salmonella typhimurium DT104 in The Netherlands with Implications for National and International Policy. Epidemiol. Infect. 2007, 135, 890–899. [Google Scholar] [CrossRef]
- Ethelberg, S. Salmonellosis outbreak linked to carpaccio made from imported raw beef, Denmark, June-August 2005. Euro Surveill. 2005, 10, E050922.3. [Google Scholar] [CrossRef]
- Whelan, J.; Noel, H.; Friesema, I.; Hofhuis, A.; de Jager, C.M.; Heck, M.; Heuvelink, A.; van Pelt, W. National Outbreak of Salmonella typhimurium (Dutch) Phage-Type 132 in the Netherlands, October to December 2009. Euro Surveill. 2010, 15, 19705. [Google Scholar] [CrossRef]
- Braeye, T.; Denayer, S.; De Rauw, K.; Forier, A.; Verluyten, J.; Fourie, L.; Dierick, K.; Botteldoorn, N.; Quoilin, S.; Cosse, P.; et al. Lessons learned from a textbook outbreak: EHEC-O157:H7 infections associated with the consumption of raw meat products, June 2012, Limburg, Belgium. Arch. Public Health 2014, 72, 44. [Google Scholar] [CrossRef] [PubMed]
- Doorduyn, Y.; de Jager, C.M.; van der Zwaluw, W.K.; Friesema, I.H.; Heuvelink, A.E.; de Boer, E.; Wannet, W.J.; van Duynhoven, Y.T. Shiga toxin-producing Escherichia coli (STEC) O157 outbreak, The Netherlands, September-October 2005. Euro Surveill. 2006, 11, 182–185. [Google Scholar] [CrossRef] [PubMed]
- Greenland, K.; de Jager, C.; Heuvelink, A.; van der Zwaluw, K.; Heck, M.; Notermans, D.; van Pelt, W.; Friesema, I. Nationwide outbreak of STEC O157 infection in the Netherlands, December 2008-January 2009: Continuous risk of consuming raw beef products. Euro Surveill. 2009, 14, 1–4. [Google Scholar] [CrossRef]
- Riley, L.W.; Remis, R.S.; Helgerson, S.D.; McGee, H.B.; Wells, J.G.; Davis, B.R.; Hebert, R.J.; Olcott, E.S.; Johnson, L.M.; Hargrett, N.T.; et al. Hemorrhagic Colitis Associated with a Rare Escherichia coli Serotype. N. Engl. J. Med. 1983, 308, 681–685. [Google Scholar] [CrossRef]
- CDC. Preliminary report: Foodborne outbreak of Escherichia coli O157:H7 infections from hamburgers. Morb. Mortal. Wkly. Rep. 1993, 42, 85–86. [Google Scholar]
- Nauta, M.; Evers, E.G.; Takumi, K.; Havelaar, A. Risk Assessment of Shiga-Toxin Producing Escherichia coli O157 in Steak Tartare in the Netherlands; RIVM Report; Rijksinstituut voor Volksgezondheid en Milieu RIVM: Utrecht, The Netherlands, 2001; pp. 1–169. [Google Scholar]
- Waltenburg, M.A.; Salah, Z.; Canning, M.; McCain, K.; Rickless, D.; Ablan, M.; Crawford, T.N.; Low, M.S.F.; Robyn, M.; Molinari, N.A.M.; et al. Demographic Characteristics and County-Level Indicators of Social Vulnerability in Salmonellosis Outbreaks Linked to Ground Beef—United States, 2012–2018. J. Food Prot. 2025, 88, 100411. [Google Scholar] [CrossRef]
- CDC. E. coli Outbreak Linked to Ground Beef, Food Safety Alert. CDC Archive; 2019; pp. 1–6. Available online: https://archive.cdc.gov/ (accessed on 28 April 2025).
- Okada, K.; Roobthaisong, A.; Nakkarach, A.; Hearn, S.M.; Saenharn, A.; Naksen, L.; Doung-Ngern, P.; Okada, P.A.; Iida, T. First Recorded Food-Borne Outbreak of Gastroenteritis Caused by Enteroinvasive Escherichia coli Serotype O8:H19 in Thailand. Eur. J. Clin. Microbiol. Infect. Dis. 2025, 44, 733–737. [Google Scholar] [CrossRef]
- European Union Reference Laboratory for Listeria monocytogenes. EURL Lm TECHNICAL GUIDANCE DOCUMENT on Challenge Tests and Durability Studies for Assessing Shelf-Life of Ready-to-Eat Foods Related to Listeria monocytogenes. 2021. Available online: https://food.ec.europa.eu/system/files/2021-07/biosafety_fh_mc_tech-guide-doc_listeria-in-rte-foods_en_0.pdf (accessed on 28 April 2025).
- Hluchanova, L.; Korena, K.; Juricova, H. Vacuum-Packed Steak Tartare: Prevalence of Listeria monocytogenes and Evaluation of Efficacy of Listex™ P100. Foods 2022, 11, 533. [Google Scholar] [CrossRef]
- Lee, J.; Jeong, J.; Lee, H.; Choi, Y.; Yoon, Y. Development of Predictive Model for Campylobacter jejuni Survival on Beef Tartare; Poster Session 3, 97; Antimicrobials, Laboratory and Detection Methods, Microbial Food Spoilage, Modeling and Risk Assessment, Retail and Food Service Safety and Sanitation; International Association for Food Protection: St. Louis, MO, USA, 2016. [Google Scholar]
- Kim, S.; Jeong, J.; Lee, H.; Lee, J.; Lee, S.; Ha, J.; Choi, Y.; Yoon, Y.; Choi, K.H. Kinetic Behavior of Campylobacter jejuni in Beef Tartare at Cold Temperatures and Transcriptomes Related to Its Survival. J. Food Prot. 2017, 80, 2127–2131. [Google Scholar] [CrossRef]
- Doorduyn, Y.; van den Brandhof, W.E.; van Duynhoven, Y.T.; Breukink, B.J.; Wagenaar, J.A.; Van Pelt, W. Risk factors for indigenous Campylobacter jejuni and Campylobacter coli infections in The Netherlands: A case-control study. Epidemiol. Infect. 2010, 138, 1391–1404. [Google Scholar] [CrossRef]
- Robinson, D.A. Infective Dose of Campylobacter jejuni in Milk. Br. Med. J. Clin. Res. 1981, 282, 1584. [Google Scholar] [CrossRef] [PubMed]
- Tegegne, M.; Ashenafi, M. Microbial Load and Incidence of Salmonella spp. in ‘Kitfo’, a Traditional Ethiopian Spiced, Minced Meat Dish. Ethiop. J. Health Dev. 1998, 12, 135–140. [Google Scholar]
- Tassew, H.; Abdissa, A.; Beyene, G.; Gebre-Selassie, S. Microbial Flora and Foodborne Pathogens on Minced Meat and Their Susceptibility to Antimicrobial Agents. Ethiop. J. Health Sci. 2010, 20, 137–143. [Google Scholar] [PubMed]
- Eshetea, B.B.; Addy, N.; Ewing, L.; Beaubrun, J.J.; Eribo, B. Antibiotic Resistance Characteristics and Prevalence in Kitfo, an Ethiopian Beef Tartar. J. Food Prot. 2021, 84, 152–159. [Google Scholar] [CrossRef]
- Eshetea, B.B.; Beaubrun, J.J.; Mashraqi, A.; Eribo, B. Draft Genome Sequence of Cronobacter sakazakii H05, Sequence Type 156, Isolated from a Spiced Ground Beef Dish, Kitfo. Microbiol. Resour. Announc. 2022, 11, 1–22. [Google Scholar] [CrossRef]
- Campus, M. High pressure processing of meat, meat products and seafood. Food Eng. Rev. 2010, 2, 256–273. [Google Scholar] [CrossRef]
- Borges, A.; Abreu, A.C.; Dias, C.; Saavedra, M.J.; Simões, M. New perspectives on the use of phytochemicals as an emergent strategy to control bacterial infections including biofilms. Molecules 2016, 21, 877. [Google Scholar] [CrossRef]
- Purgatorio, C.; Serio, A.; Chaves López, C.; Rossi, C.; Paparella, A. An Overview of the Natural Antimicrobial Alternatives for Sheep Meat Preservation. Compr. Rev. Food Sci. Food Saf. 2022, 21, 4210–4250. [Google Scholar] [CrossRef]
- Wheeler, T.L.; Kalchayanand, N.; Bosilevac, J.M. Pre- and post-harvest interventions to reduce pathogen contamination in the U.S. beef industry. Meat Sci. 2014, 98, 372–382. [Google Scholar] [CrossRef]
- Phebus, R.K.; Nutsch, A.L.; Schafer, D.E.; Wilson, R.C.; Riemann, M.J.; Leising, J.D.; Kastner, C.L.; Wolf, J.R.; Prasai, R.K. Comparison of Steam Pasteurization and Other Methods for Reduction of Pathogens on Surfaces of Freshly Slaughtered Beef. J. Food Prot. 1997, 60, 476–484. [Google Scholar] [CrossRef]
- Nutsch, A.L.; Phebus, R.K.; Riemann, M.J.; Kotrola, J.S.; Wilson, R.C.; Boyer, J.E.; Brown, T.L. Steam pasteurization of commercially slaughtered beef carcasses: Evaluation of bacterial populations at five anatomical locations. J Food Prot. 1998, 61, 571–577. [Google Scholar] [CrossRef] [PubMed]
- Minihan, D.; Whyte, P.; O’Mahony, M.; Collins, J.D. The effect of commercial steam pasteurization on the levels of Enterobacteriaceae and Escherichia coli on naturally contaminated beef carcasses. J. Vet. Med. B. Infect. Dis. Vet. Public Health 2003, 50, 352–356. [Google Scholar] [CrossRef] [PubMed]
- Corantin, H.; Quessy, S.; Gaucher, M.L.; Lessard, L.; Leblanc, D.; Houde, A. Effectiveness of steam pasteurization in controlling microbiological hazards of cull cow carcasses in a commercial plant. Can. J. Vet. Res. 2005, 69, 200–207. [Google Scholar]
- Retzlaff, D.; Phebus, R.; Kastner, C.; Marsden, J. Establishment of minimum operational parameters for a high-volume static chamber steam pasteurization system (SPS 400-SC) for beef carcasses to support HACCP programs. Foodborne Pathog. Dis. 2005, 2, 146–151. [Google Scholar] [CrossRef] [PubMed]
- Attenborough, M.; Matthews, K.R. Food safety through the meat supply chain. Symp. Ser. Soc. Appl. Microbiol. 2000, 29, 144S–148S. [Google Scholar] [CrossRef] [PubMed]
- Tarkowski, J.A.; Stoffer, S.C.C.; Beumer, R.R.; Kampelmacher, E.H. Low Dose Gamma Irradiation of Raw Meat. I. Bacteriological and Sensory Quality Effects in Artificially Contaminated Samples. Int. J. Food Microbiol. 1984, 1, 13–23. [Google Scholar] [CrossRef]
- Sohaib, M.; Anjum, F.M.; Arshad, M.S.; Rahman, U.U. Postharvest intervention technologies for safety enhancement of meat and meat based products; a critical review. J. Food Sci. Technol. 2016, 53, 19–30. [Google Scholar] [CrossRef]
- Hochreutener, M.; Zweifel, C.; Corti, S.; Stephan, R. Effect of a commercial steam-vacuuming treatment implemented after slaughtering for the decontamination of cattle carcasses. Ital. J. Food Saf. 2017, 6, 6864. [Google Scholar] [CrossRef]
- Hayagreeva, D.; Pandey, M.C. Novel approaches in improving the quality and safety aspects of processed meat products through high pressure processing technology: A review. Trends Food Sci. Technol. 2016, 54, 175–185. [Google Scholar] [CrossRef]
- Bolumar, T.; Orlien, V.; Sikes, A.; Aganovic, K.; Bak, K.H.; Guyon, C.; Stübler, A.S.; de Lamballerie, M.; Hertel, C.; Brüggemann, D.A. High-pressure processing of meat: Molecular impacts and industrial applications. Compr. Rev. Food Sci. Food Saf. 2021, 20, 332–368. [Google Scholar] [CrossRef]
- Jung, S.; Samson, C. Chapter 7: High Hydrostatic Pressure Food Processing: Potential and Limitations. RSC Green Chem. 2018, 53, 251–315. [Google Scholar]
- Kameník, J.; Dušková, M.; Dorotíková, K.; Hušáková, M.; Ježek, F. The Effect of High-Pressure Processing on the Survival of Non-O157 Shiga Toxin-Producing Escherichia coli in Steak Tartare: The Good- or Best-Case Scenario? Microorganisms 2023, 11, 377. [Google Scholar] [CrossRef] [PubMed]
- Yim, D. Uses of Chemical Technologies for Meat Decontamination. Food Sci. Anim. Resour. 2025, 45, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Guragain, M.; Chitlapilly Dass, S.; Palanisamy, V.; Bosilevac, J.M. Impact of intense sanitization on environmental biofilm communities and the survival of Salmonella enterica at a beef processing plant. Front. Microbiol. 2024, 15, 1338600. [Google Scholar] [CrossRef]
- Oh, H.; Kim, S.; Lee, S.; Ha, J.; Lee, J.; Choi, Y.; Lee, Y.; Kim, Y.; Seo, Y.; Yoon, Y. Development of Hydrogels to Improve the Safety of Yukhoe (Korean Beef Tartare) by Reducing Psychrotrophic Listeria monocytogenes Cell Counts on Raw Beef Surface. Korean J. Food Sci. Anim. Resour. 2018, 38, 1189–1195. [Google Scholar] [CrossRef]
- Botta, C.; Coisson, J.D.; Ferrocino, I.; Colasanto, A.; Pessione, A.; Cocolin, L.; Arlorio, M.; Rantsiou, K. Impact of electrolyzed water on the microbial spoilage profile of Piedmontese steak tartare. Microbiol. Spectr. 2021, 9, e0175121. [Google Scholar] [CrossRef]
- Lambo, M.T.; Chang, X.; Liu, D. The Recent Trend in the Use of Multistrain Probiotics in Livestock Production: An Overview. Animals 2021, 11, 2805. [Google Scholar] [CrossRef]
- Callaway, T.R.; Ricke, S.C. Direct-Fed Microbials and Prebiotics for Animals, 2nd ed.; Springer: Cham, Switzerland, 2023; pp. 1–221. [Google Scholar]
- European Food Safety Authority (EFSA). Opinion of the Scientific Panel on Biological Hazards on a request from the Commission related to the effects of Nitrites/Nitrates on the Microbiological Safety of Meat Products. EFSA J. 2004, 2, 54. [Google Scholar]
- Veldhuizen, E.J.; Creutzberg, T.O.; Burt, S.A.; Haagsman, H.P. Low Temperature and Binding to Food Components Inhibit the Antibacterial Activity of Carvacrol Against Listeria monocytogenes in Steak Tartare. J. Food Prot. 2007, 70, 2127–2132. [Google Scholar] [CrossRef]
- Myers, K.; Cannon, J.; Montoya, D.; Dickson, J.; Lonergan, S.; Sebranek, J. Effects of High Hydrostatic Pressure and Varying Concentrations of Sodium Nitrite from Traditional and Vegetable-Based Sources on the Growth of Listeria monocytogenes on Ready-to-Eat (RTE) Sliced Ham. Meat Sci. 2013, 94, 69–76. [Google Scholar] [CrossRef]
- Cropp, M.S.; Sebranek, J.G.; Dickson, J.S.; Walla, A.M.; Houser, T.A.; Prusa, K.J.; Unruh, D.A.; Tarté, R. Effect of Nitrite-Embedded Packaging Film on Growth of Listeria monocytogenes in Nitrite-free and Conventionally-cured Bologna Sausage. J. Food Prot. 2024, 87, 100361. [Google Scholar] [CrossRef] [PubMed]
- Claus, J.R.; Du, C. Nitrite-embedded packaging film effects on fresh and frozen beef color development and stability as influenced by meat age and muscle type. Meat Sci. 2013, 95, 526–535. [Google Scholar] [CrossRef] [PubMed]
- Nyarko, E.; D’Amico, D.; Mach, P.; Xia, W.; Donnelly, C. Delivery of selective agents via time-delayed release tablets improves recovery of Listeria monocytogenes injured by acid and nitrite. J. Food Prot. 2014, 77, 772–780. [Google Scholar] [CrossRef] [PubMed]
- Muchaamba, F.; Eshwar, A.K.; Stevens, M.J.A.; Stephan, R.; Tasara, T. Different Shades of Listeria monocytogenes: Strain, Serotype, and Lineage-Based Variability in Virulence and Stress Tolerance Profiles. Front. Microbiol. 2022, 12, 792162. [Google Scholar] [CrossRef]
- D’Onofrio, F.; Visciano, P.; Krasteva, I.; Torresi, M.; Tittarelli, M.; Pomilio, F.; Iannetti, L.; Di Febo, T.; Paparella, A.; Schirone, M.; et al. Immunoproteome profiling of Listeria monocytogenes under mild acid and salt stress conditions. Proteomics 2022, 22, 1–9. [Google Scholar] [CrossRef]
- Lavieri, N.A.; Sebranek, J.G.; Cordray, J.C.; Dickson, J.S.; Horsch, A.M.; Jung, S.; Manu, D.K.; Brehm-Stecher, B.F.; Mendonça, A.F. Effects of different nitrite concentrations from a vegetable source with and without high hydrostatic pressure on the recovery of Listeria monocytogenes on ready-to-eat restructured ham. J. Food Prot. 2014, 77, 781–787. [Google Scholar] [CrossRef]
- Hospital, X.F.; Hierro, E.; Fernández, M. Effect of reducing nitrate and nitrite added to dry fermented sausages on the survival of Salmonella Typhimurium. Food Res. Int. 2014, 62, 410–415. [Google Scholar] [CrossRef]
- Lee, J.; Gwak, E.; Ha, J.; Kim, S.; Lee, S.; Lee, H.; Oh, M.H.; Park, B.Y.; Oh, N.S.; Choi, K.H.; et al. Mathematical Model for Predicting the Growth Probability of Staphylococcus aureus in Combinations of NaCl and NaNO2 under Aerobic or Evacuated Storage Conditions. Korean J. Food Sci. Anim. Resour. 2016, 36, 752–759. [Google Scholar] [CrossRef]
- Jo, H.; Park, B.; Oh, M.; Gwak, E.; Lee, H.; Lee, S.; Yoon, Y. Probabilistic Models to Predict the Growth Initiation Time for Pseudomonas spp. in Processed Meats Formulated with NaCl and NaNO2. Korean J. Food Sci. Anim. Resour. 2014, 34, 736–741. [Google Scholar] [CrossRef]
- Lee, S.; Lee, H.; Kim, S.; Lee, J.; Ha, J.; Gwak, E.; Oh, M.H.; Park, B.Y.; Kim, J.S.; Choi, K.H.; et al. Probabilistic Models to Describe the Effect of NaNO2 in Combination with NaCl on the Growth Inhibition of Lactobacillus in Frankfurters. Meat Sci. 2015, 110, 302–309. [Google Scholar] [CrossRef]
- Lee, H.; Gwak, E.; Lee, S.; Kim, S.; Lee, J.; Ha, J.; Oh, M.H.; Park, B.Y.; Yang, M.; Choi, K.H.; et al. Model to Predict Growth/No Growth Interfaces of Enterococcus as a Function of NaCl and NaNO2. J. Food Saf. 2016, 36, 537–547. [Google Scholar] [CrossRef]
- Majou, D.; Christieans, S. Mechanisms of the Bactericidal Effects of Nitrate and Nitrite in Cured Meats. Meat Sci. 2018, 145, 273–284. [Google Scholar] [CrossRef] [PubMed]
- Hustad, G.O.; Cerveny, J.G.; Trenk, H.; Deibel, R.H.; Kautter, D.A.; Fazio, T.; Johnston, R.W.; Kolari, O.E. Effect of sodium nitrite and sodium nitrate on botulinal toxin production and nitrosamine formation in wieners. Appl. Microbiol. 1973, 26, 22–26. [Google Scholar] [CrossRef] [PubMed]
- Bowen, V.G.; Cerveny, J.G.; Deibel, R.H. Effect of sodium ascorbate and sodium nitrite on toxin formation of Clostridium botulinum in wieners. Appl. Microbiol. 1974, 27, 605–606. [Google Scholar] [CrossRef]
- Keto-Timonen, R.; Lindström, M.; Puolanne, E.; Niemistö, M.; Korkeala, H. Inhibition of Toxigenesis of Group II (Nonproteolytic) Clostridium botulinum Type B in Meat Products by Using a Reduced Level of Nitrite. J. Food Prot. 2012, 75, 1346–1349. [Google Scholar] [CrossRef]
- Pegg, R.B.; Shahidi, F. Nitrite Curing of Meat; Food & Nutrition Press, Inc.: Trumbull, CT, USA, 2000. [Google Scholar]
- European Commission (EC). Commission Regulation (EU) 2023/2108 of 6 October 2023 Amending Annex II to Regulation (EC) No 1333/2008 and the Annex to Commission Regulation (EU) No 231/2012 Regarding Food Additives Nitrites (E 249-250) and Nitrates (E 251-252); European Commission (EC): Brussels, Belgium, 2005. [Google Scholar]
- EFSA ANS Panel (EFSA Panel on Food Additives and Nutrient Sources added to Food); Mortensen, A.; Aguilar, F.; Crebelli, R.; Di Domenico, A.; Dusemund, B.; Frutos, M.J.; Galtier, P.; Gott, D.; Gundert-Remy, U.; et al. Scientific Opinion on the re-evaluation of potassium nitrite (E 249) and sodium nitrite (E 250) as food additives. EFSA J. 2017, 15, e04786. [Google Scholar]
- EFSA CONTAM Panel (EFSA Panel on Contaminants in the Food Chain); Schrenk, D.; Bignami, M.; Bodin, L.; Chipman, J.K.; del Mazo, J.; Hogstrand, C.; Hoogenboom, L.; Leblanc, J.C.; Nebbia, C.S.; et al. Scientific Opinion on the risk assessment of N-nitrosamines in food. EFSA J. 2023, 21, e07884. [Google Scholar]
- Guéraud, F.; Buisson, C.; Promeyrat, A.; Naud, N.; Fouché, E.; Bézirard, V.; Dupuy, J.; Plaisancié, P.; Héliès-Toussaint, C.; Trouilh, L.; et al. Effects of sodium nitrite reduction, removal or replacement on cured and cooked meat for microbiological growth, food safety, colon ecosystem, and colorectal carcinogenesis in Fischer 344 rats. NPJ Sci. Food 2023, 7, 53. [Google Scholar] [CrossRef]
- Terns, M.J.; Milkowski, A.L.; Rankin, S.A.; Sindelar, J.J. Determining the Impact of Varying Levels of Vegetable Juice Powder and Incubation Time on Cured Meat Characteristics in a Model System. Meat Sci. 2011, 88, 311–316. [Google Scholar] [CrossRef]
- Ministerial Decree 26 May 2016 Amendments to the decree of Italy, 21 September 2005 concerning the regulation of the production and sale of certain delicatessen products. (16A04808) (GU General Series no. 149 of 28-06-2016). Available online: https://www.gazzettaufficiale.it/eli/id/2016/06/28/16A04808/sg (accessed on 20 April 2025).
- Gassara, F.; Kouassi, A.P.; Brar, S.K.; Belkacemi, K. Green Alternatives to Nitrates and Nitrites in Meat-based Products—A Review. Crit. Rev. Food Sci. Nutr. 2016, 56, 2133–2148. [Google Scholar] [CrossRef]
- Ferysiuk, K.; Wójciak, K.M. Reduction of Nitrite in Meat Products through the Application of Various Plant-Based Ingredients. Antioxidants 2020, 9, 711. [Google Scholar] [CrossRef] [PubMed]
- Fraqueza, M.; Laranjo, M.; Elias, M.; Patarata, L. Microbiological hazards associated with salt and nitrite reduction in cured meat products: Control strategies based on antimicrobial effect of natural ingredients and protective microbiota. Curr. Opin. Food Sci. 2021, 38, 32–39. [Google Scholar] [CrossRef]
- Shakil, M.H.; Trisha, A.T.; Rahman, M.; Talukdar, S.; Kobun, R.; Huda, N.; Zzaman, W. Nitrites in Cured Meats, Health Risk Issues, Alternatives to Nitrites: A Review. Foods 2022, 11, 3355. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, Y.; Jia, J.; Peng, H.; Qian, Q.; Pan, Z.; Liu, D. Nitrite and Nitrate in Meat Processing: Functions and Alternatives. Curr. Res. Food Sci. 2023, 6, 100470. [Google Scholar] [CrossRef]
- Tahmouzi, S.; Alizadeh Salmani, B.; Eskandari, S.; Arab, M. Effects of Plant Substitutes for Nitrite on the Technological Characteristics of Fermented Sausages: A Comprehensive Review. Food Sci. Nutr. 2025, 13, e70186. [Google Scholar] [CrossRef]
- Bonaccorsi, A. Il Viaggiator Goloso lancia la nuova linea di carne. GDO Week 2024, 11. Available online: https://www.gdoweek.it/il-viaggiator-goloso-lancia-la-nuova-linea-di-carne/ (accessed on 20 April 2025).
- Premi, L.; Rocchetti, G.; Rossetti, C.; Dallolio, M.; Lucini, L.; Rebecchi, A. Coagulase-negative staphylococci enhance the colour of fermented meat through a complex cross-talk between the arginase and nitric oxide synthase activities. LWT 2024, 202, 116333. [Google Scholar] [CrossRef]
- Pulido, J.C.; Martín, I.; Castaño, C.; Martín-Miguélez, J.M.; Delgado, J.; Córdoba, J.J. Design of a nitrite-free dry-cured fermented “salchichón” process preventing growth of Salmonella, Listeria monocytogenes, and Staphylococcus aureus. Int. J. Food Microbiol. 2025, 433, 111116. [Google Scholar] [CrossRef]
- Szymański, P.; Okoń, A.; Zielińska, D.; Łaszkiewicz, B.; Kołożyn-Krajewska, D.; Dolatowski, Z.J. Use of Selected Environmental Lactic Acid Bacteria During Industrial Production of Heat-Treated Nitrite-Free Organic Sausage. Foods 2025, 14, 1028. [Google Scholar] [CrossRef]
- Yang, H.; Liu, Y.; Nychas, G.E.; Luo, X.; Zhu, L.; Mao, Y.; Dong, P.; Zhang, Y. Utilizing lactic acid bacteria and their metabolites for controlling Listeria monocytogenes in meat products: Applications, limitations, and future perspectives. Trends Food Sci. Technol. 2024, 152, 104699. [Google Scholar] [CrossRef]
- Marcelli, V.; Osimani, A.; Aquilanti, L. Research progress in the use of lactic acid bacteria as natural biopreservatives against Pseudomonas spp. in meat and meat products: A review. Food Res. Int. 2024, 196, 115129. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Shen, J.; Meng, G.; Wang, H.; Liu, C.; Zhu, C.; Zhao, G. Screening and application of functional autochthonous starter culture from cured meat, which can reduce nitrite content. Int. Microbiol. 2025, 28, 1123–1133. [Google Scholar] [CrossRef] [PubMed]
- Van der Veken, D.; Poortmans, M.; Dewulf, L.; Fraeye, I.; Michiels, C.; Fédéric Leroy, F. Challenge tests reveal limited outgrowth of proteolytic Clostridium botulinum during the production of nitrate- and nitrite-free fermented sausages. Meat Sci. 2023, 200, 109158. [Google Scholar] [CrossRef] [PubMed]
- Bal-Prylipko, L.; Kanishchev, O.; Mushtruk, M.; Leonova, B. Development of technology for extended-shelf-life meat products. Anim. Sci. Food Technol. 2024, 15, 132–149. [Google Scholar] [CrossRef]
- Ruiz, D.J.; Carballo, J.; Lorenzo, J.M. The use of grape seed extract on meat products: A review. In Grape Seeds: Nutrient Content, Antioxidant Properties and Health Benefits, 1st ed.; Lorenzo Rodríguez, J.M., Franco Ruíz, D., Eds.; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2016; Chapter 7. [Google Scholar]
- Libera, J.; Latoch, A.; Wójciak, K.M. Utilization of Grape Seed Extract as a Natural Antioxidant in the Technology of Meat Products Inoculated with a Probiotic Strain of LAB. Foods 2020, 9, 103. [Google Scholar] [CrossRef]
- Nafady, N.A.A.; Seleim, M.A.A.; Darwish, S.M.I.; El-Geddawy, M.A.M.A. Effect of Incorporating Grape Seeds as a Natural Preservative on the Properties of Beef Burgers during Freeze Preservation. Assiut J. Agric. Sci. 2024, 55, 43–60. [Google Scholar] [CrossRef]
- Porto-Fett, A.C.; Campano, S.G.; Rieker, M.; Stahler, L.J.; McGeary, L.; Shane, L.E.; Shoyer, B.A.; Osoria, M.; Luchansky, J.B. Behavior of Listeria monocytogenes on Mortadella Formulated Using a Natural, Clean-Label Antimicrobial Agent during Extended Storage at 4 or 12 °C. J. Food Prot. 2018, 81, 769–775. [Google Scholar] [CrossRef]
- Roila, R.; Primavilla, S.; Ranucci, D.; Galarini, R.; Paoletti, F.; Altissimi, C.; Valiani, A.; Branciari, R. The Effects of Encapsulation on the In Vitro Anti-Clostridial Activity of Olive Mill Wastewater Polyphenolic Extracts: A Promising Strategy to Limit Microbial Growth in Food Systems. Molecules 2024, 29, 1441. [Google Scholar] [CrossRef]
- Strzelecki, P.; Karczewska, M.; Szalewska-Pałasz, A.; Nowicki, D. Phytochemicals Controlling Enterohemorrhagic Escherichia coli (EHEC) Virulence—Current Knowledge of Their Mechanisms of Action. Int. J. Mol. Sci. 2025, 26, 381. [Google Scholar] [CrossRef]
- Dufour, V.; Stahl, M.; Baysse, C. The Antibacterial Properties of Isothiocyanates. Microbiology 2015, 161, 229–243. [Google Scholar] [CrossRef]
- Meira, N.V.B.; Holley, R.A.; Bordin, K.; de Macedo, R.E.E.; Luciano, F.B. Combination of Essential Oil Compounds and Phenolic Acids against Escherichia coli O157:H7 In Vitro and in Dry-Fermented Sausage Production. Int. J. Food Microbiol. 2017, 260, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Nadarajah, D.; Han, J.H.; Holley, R.A. Inactivation of Escherichia coli O157:H7 in packaged ground beef by allyl isothiocyanate. Int. J. Food Microbiol. 2005, 99, 269–279. [Google Scholar] [CrossRef] [PubMed]
- Tosi, E.A.; Ré, E.; Ortega, M.E.; Cazzoli, A.F. Food Preservative Based on Propolis: Bacteriostatic Activity of Propolis Polyphenols and Flavonoids upon Escherichia coli. Food Chem. 2007, 104, 1025–1029. [Google Scholar] [CrossRef]
- Apata, E.S.; Lasisi, O.T.; Olaleye, O.O.; Apata, O.C.; Okolosi, J.E.; Uthman-Akinhanmi, Y.O.; Adedeji, O.Y.; Hashem, M. Effect of Replacing Nitrite with Ginger Powder in Brine Solution on the Quality of Cured Beef. Theory Pract. Meat Process. 2025, 10, 67–74. [Google Scholar] [CrossRef]
- Orădan, A.C.; Tocai, A.C.; Rosan, C.A.; Vicas, S.I. Fruit Extracts Incorporated into Meat Products as Natural Antioxidants, Preservatives, and Colorants. Processes 2024, 12, 2756. [Google Scholar] [CrossRef]
- Konteles, S.J.; Stavropoulou, N.A.; Thanou, I.V.; Mouka, E.; Kousiaris, V.; Stoforos, G.N.; Gogou, E.; Giannakourou, M.C. Enriching Cured Meat Products with Bioactive Compounds Recovered from Rosa damascena and Rosmarinus officinalis L. Distillation By-Products: The Pursuit of Natural Antimicrobials to Reduce the Use of Nitrites. Appl. Sci. 2023, 13, 13085. [Google Scholar] [CrossRef]
- Nastasijevic, I.; Lakicevic, B.; Petrović, Z. Cold Chain Management in Meat Storage, Distribution and Retail: A Review. IOP Conf. Ser. Earth Environ. Sci. 2017, 85, 012022. [Google Scholar] [CrossRef]
- Bernardez-Morales, G.M.; Nichols, B.W.; Douglas, S.L.; Belk, A.D.; Brandebourg, T.D.; Reyes, T.M.; Sawyer, J.T. Extended Storage of Beef Steaks Using Thermoforming Vacuum Packaging. Foods 2023, 12, 2922. [Google Scholar] [CrossRef]
- Centro Carne 2025. Available online: https://www.centrocarneshop.com/tartare/104-tartare-marchigiana-carne-che-passione-160-g-vs-skin.html (accessed on 15 June 2025).
- Perito, M.A.; Chiodo, E.; Serio, A.; Paparella, A.; Fantini, A. Factors influencing consumers’ attitude towards biopreservatives. Sustainability, Special Issue: Agricultural and Food Systems Sustainability: The Complex Challenge of Losses and Waste. Sustainability 2020, 12, 38. [Google Scholar]
- Piracci, G.; Lamonaca, E.; Santeramo, F.G.; Boncinelli, F.; Casini, L. On the willingness to pay for food sustainability labelling: A meta-analysis. Agric. Econ. 2024, 55, 329–345. [Google Scholar] [CrossRef]
Beef (%) | Other Ingredients | Antioxidants | Acidity Regulators | Preservatives |
---|---|---|---|---|
97% | Extra virgin olive oil, salt, spices (pepper, nutmeg) | - | - | Sodium nitrite |
95% | Extra virgin olive oil 3%, salt, lemon juice, pepper | Sodium ascorbate | - | Sodium nitrite |
93% | Water, salt, natural flavours, beetroot powder, paprika extract | - | - | - |
92% | Extra virgin olive oil, water, salt, dextrose, pepper | Sodium ascorbate | Sodium acetate | Sodium nitrite |
92% | Water, natural flavours, salt, sugars: dextrose | Ascorbic acid | Sodium acetates, sodium citrate | Sodium nitrite |
91% | Salt, pepper, vegetable fibre, natural flavours, maltodextrin, sunflower oil, extra virgin olive oil | Ascorbic acid | Sodium acetates, sodium citrate | Sodium nitrite |
91% | Extra virgin olive oil, water, flavourings, salt | Ascorbic acid, sodium ascorbate | - | - |
91% | Extra virgin olive oil, water, flavourings, salt, pepper | Ascorbic acid, sodium ascorbate | - | - |
88% | PDQ Parmesan cheese, extra virgin olive oil, salt, white pepper, dextrose | Sodium ascorbate | Sodium acetates | Sodium nitrite |
85% | Water, salt, dextrose, fructose, sucrose, flavourings, black pepper, garlic | Ascorbic acid, sodium ascorbate | Sodium acetates | Sodium |
85% | Water, salt, dextrose, fructose, sucrose, flavourings, white pepper | Ascorbic acid, sodium ascorbate | Sodium acetates | Sodium nitrite |
85% | Water, salt, dextrose, fructose, sucrose, flavourings, black pepper, garlic | Ascorbic acid, sodium ascorbate | Sodium acetates | Sodium nitrite |
82% | Water, cheese, salt, dextrose, natural flavours, sunflower oil, extra virgin olive oil | Ascorbic acid | Sodium acetates | Sodium nitrite |
Years | Country | Foodborne Pathogen | Food Product | Cases | References |
---|---|---|---|---|---|
1982 | USA | E. coli O157:H7 | Hamburger | ≥47 | [42] |
2005 | Netherlands | S. Typhimurium (DT104) | Filet Américain | 169 | [36] |
2005 | Denmark | S. Typhimurium (DT104) | Beef carpaccio | 40 | [37] |
2009 | Netherlands | S. Typhimurium (ft132) | Steak tartare | 23 | [38] |
2012 | Belgium | E. coli O157:H7 | Steak tartare | 24 | [39] |
2005 | Netherlands | E. coli O157:H7 | Steak tartare | 21 | [40] |
2008–2009 | Denmark | E. coli O157:H7 | Steak tartare | 20 | [41] |
2012–2018 | USA | S. Typhimurium and Newport | Ground beef | 737 | [45] |
2019 | USA | E. coli O103 | Ground beef | 209 | [46] |
2024 | Thailand | E. coli O8:H19 | Minced raw beef salad | 154 | [47] |
Botanical Species | Main Active Compounds | Target Microorganisms | Technological Effects | References |
---|---|---|---|---|
Grape seed extract (Vitis vinifera) | Proanthocyanidins | Aerobic mesophilic count, fungi, yeasts | Reduces oxidative rancidity; extends shelf life; may affect colour and flavour | [120,121,122] |
Ginger (Zingiber officinale Rosc) | Polyphenols, flavonoids | E. coli and S. Enteritidis | Antioxidant; antimicrobial; limits lipid and protein oxidation | [130] |
Lemon (Citrus limon) | Ascorbic acid, flavonoids | L. monocytogenes | Antioxidant; antimicrobial; limits lipid and protein oxidation | [131] |
Mustard oil (Brassica juncea) | Allyl isothiocyanate | E. coli O157:H7 | Antioxidant; antimicrobial | [128] |
Olive mill vegetation water (Olea europaea) | Phenolic compounds, tannin | C. perfringens, C. botulinum, and C. difficile | Antioxidant; antimicrobial | [124] |
Pear (Pyrus communis) | Polyphenols, flavonoids | Enterobacteriaceae and Pseudomonas spp. | Antioxidant; antimicrobial; limits lipid and protein oxidation | [131] |
Pineapple (Ananas sativus) | Polyphenols, organic acids, bromelain | Pseudomonas spp. | Antioxidant; antimicrobial; limits lipid and protein oxidation | [131] |
Pomegranate (Punica granatum) | Ellagitannins, punicalagin, anthocyanins | Pseudomonas spp., LAB, and L. monocytogenes | Antioxidant; antimicrobial; limits lipid and protein oxidation | [131] |
Propolis extracts | Phenolic acids, flavonoids, terpenoids | E. coli ATCC 25922 | Antioxidant; antimicrobial | [129] |
Rose petal (Rosa damascena) | Flavonoids, phenolic compounds, saponins, tannins, terpenoids | Aerobic mesophilic count, LAB | Antioxidant; antimicrobial; limits lipid and protein oxidation | [132] |
Rosemary leaf (Rosmarinus officinalis) | Polyphenols, flavonoids, terpenoids | Aerobic mesophilic count, LAB | Antioxidant; antimicrobial; limits lipid and protein oxidation | [132] |
Vinegar (Liquid buffered and dry buffered vinegar) | Flavonoids, phenolic acids | L. monocytogenes | Antioxidant; antimicrobial | [123] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Ambrosio, G.; Maggio, F.; Serio, A.; Paparella, A. Tradition and Innovation in Raw Meat Products with a Focus on the Steak Tartare Case. Foods 2025, 14, 2326. https://doi.org/10.3390/foods14132326
D’Ambrosio G, Maggio F, Serio A, Paparella A. Tradition and Innovation in Raw Meat Products with a Focus on the Steak Tartare Case. Foods. 2025; 14(13):2326. https://doi.org/10.3390/foods14132326
Chicago/Turabian StyleD’Ambrosio, Giovanni, Francesca Maggio, Annalisa Serio, and Antonello Paparella. 2025. "Tradition and Innovation in Raw Meat Products with a Focus on the Steak Tartare Case" Foods 14, no. 13: 2326. https://doi.org/10.3390/foods14132326
APA StyleD’Ambrosio, G., Maggio, F., Serio, A., & Paparella, A. (2025). Tradition and Innovation in Raw Meat Products with a Focus on the Steak Tartare Case. Foods, 14(13), 2326. https://doi.org/10.3390/foods14132326