Impact of Low-Frequency Alternating Electromagnetic Fields on Postharvest Preservation of Satsuma Mandarins
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Device
2.3. Weight Loss and Color Measurements
2.4. Measurement of Respiration Rate
2.5. Total Soluble Solids (TSS), Titratable Acidity (TA), and Vitamin C (Vc) Content
2.6. Phenylalanine Ammonia-Lyase (PAL) Activity, Malondialdehyde (MDA), and Flavonoids Content
2.7. Electronic Nose Analysis
2.8. Low-Field NMR Analysis
2.9. Statistical Analysis
3. Results and Discussion
3.1. Impact of the LF-AEMF on the Weight Loss and Color Changes of Satsuma Mandarins During Storage
3.2. Impact of the LF-AEMF on the Respiration Rate of Satsuma Mandarins During Storage
3.3. Impact of the LF-AEMF on the Fruit Quality Indicators TSS, TA, and Vc Contents of Satsuma Mandarins During Storage
3.4. Impact of the LF-AEMF on the MDA Content, PAL Activity, and Flavonoids Content of Satsuma Mandarins During Storage
3.5. Impact of the LF-AEMF on the E-Nose Signal of Satsuma Mandarins During Storage
3.6. Impact of the LF-AEMF on Low-Field NMR Signal of Satsuma Mandarins During Storage
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, Y.; He, P.; He, B.; Chen, Z. Bioactive flavonoids metabolites in citrus species: Their potential health benefits and medical potentials. Front. Pharmacol. 2025, 16, 1552171. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Heying, E.; Tanumihardjo, A.S. History, Global Distribution, and Nutritional Importance of Citrus Fruits. Compr. Rev. Food Sci. Food Saf. 2012, 11, 530–545. [Google Scholar] [CrossRef]
- Nagy, S. Vitamin C contents of citrus fruit and their products: A review. J. Agric. Food Chem. 1980, 28, 8–18. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Cheng, G.; Huang, J.; Fan, X.; Lu, S. Comprehensive footprint assessment of apple and citrus loss and waste. Chin. J. Eco-Agric. 2021, 29, 683–690. [Google Scholar] [CrossRef]
- Xue, L.; Liu, X.; Lu, S.; Cheng, G.; Hu, Y.; Liu, J.; Dou, Z.; Cheng, S.; Liu, G. China’s food loss and waste embodies increasing environmental impacts. Nat. Food 2021, 2, 519–528. [Google Scholar] [CrossRef]
- Li, Y.; Guo, L.; Wei, J.; Yao, Y.; Xu, L.; Zhou, Z. Effect of polyethoxylated flavonoids (PMFs)-loaded citral and chitosan composite coatings on citrus preservation: From the perspective of fruit resistance. Food Chem. X 2024, 22, 101417. [Google Scholar] [CrossRef]
- Ibrahim, O.H.M. Abo-Elyousr K.A.M. Potential antifungal activity of various botanical extracts against the causal pathogen of the blue mold of citrus fruits. J. Plant Pathol. 2023, 105, 527–538. [Google Scholar] [CrossRef]
- Zhu, B.; Yang, Y.; Jing, S.; Wang, K.; Wang, C.; Nian, S.; Shi, Y.; Xu, H.; Kou, L. Effect of ultraviolet radiation c treatment on preservation of Naematelia aurantialba in modified atmosphere packaging. Food Packag. Shelf Life 2024, 45, 101343. [Google Scholar] [CrossRef]
- Baswal, A.K.; Dhaliwal, H.S.; Gill, K.S.; Burhan, O. Impact of Modified Atmospheric Packaging Films on Health-Promoting Compounds in Cold-Stored ‘Kinnow’ Mandarin (Citrus nobilis Lour × C. deliciosa Tenora) Fruit. Erwerbs-Obstbau 2022, 65, 899–904. [Google Scholar] [CrossRef]
- Ning, M.; Tang, F.; Chen, J.; Song, W.; Cai, W.; Zhang, Q.; Zhao, X.; Yang, X.; Shan, C.; Hao, G. Low-temperature adaptation and preservation revealed by changes in physiological–biochemical characteristics and proteome expression patterns in post-harvest Hami melon during cold storage. Planta 2022, 255, 91. [Google Scholar] [CrossRef]
- Quan, X.; Ma, J.; Sun, L.; Huang, G.; Sui, S.; Li, H.; Shao, Q.; Yan, S.; Wang, Y.; Wang, X. Enhanced Functional Properties of Chitosan Films Incorporated with Proanthocyanidins/Cinnamaldehyde/γ-Cyclodextrin Microcapsules for Citrus Fruit Preservation. J. Food Process. Preserv. 2025, 2025, 7504108. [Google Scholar] [CrossRef]
- Liu, F.; Zhang, Y.; Zeng, M.; Duan, F.; Wang, J. Quantified low voltage electrostatic field: The effects of intensity on cherry tomato preservation and mechanism. Food Chem. 2025, 463, 141100. [Google Scholar] [CrossRef]
- Saeed, A.P.; Mohammed, A.S.; Raouf, A.; Satish, G.K.; Gagandeep, S.K. Effects of alternating magnetic field on freezing of minimally processed guav. LWT 2022, 163, 113544. [Google Scholar] [CrossRef]
- Chang, C.; Tsai, S.; Gavahian, M.; Cheng, K.; Hou, C.; Yudhistira, B.; Lin, S.; Santoso, P.S.; Hsieh, C. Direct and alternating current electric fields affect pectin esterase and cellulase in tomato (Solanum lycopersicum L.) fruit during storage. Postharvest Biol. Technol. 2023, 205, 112495. [Google Scholar] [CrossRef]
- Mahsa, M.; Moloud, N.; Reza, E. Effect of thawing under an alternating magnetic field on rainbow trout (Oncorhynchus mykiss) fillet characteristics. Food Chem. 2023, 402, 134255. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, L.; Zhao, S.; Luo, N.; Deng, Q. Comparison study of static and alternating magnetic field treatments on the quality preservation effect of cherry tomato at low temperature. J. Food Process Eng. 2020, 43, e13453. [Google Scholar] [CrossRef]
- Xiong, W.; Meng, J.; Zhang, Y.; Fan, G.; Pan, C.; Shen, C.; Long, Y. Effect of alternating current electric fields on the preservation of fresh-cut Chinese cabbage and spinach. Innov. Food Sci. Emerg. Technol. 2025, 102, 104005. [Google Scholar] [CrossRef]
- Faridnia, F.; Ma, L.Q.; Bremer, J.P.; Burritt, J.D.; Hamid, N.; Oey, I. Effect of freezing as pre-treatment prior to pulsed electric field processing on quality traits of beef muscles. Innov. Food Sci. Emerg. Technol. 2015, 29, 31–40. [Google Scholar] [CrossRef]
- Zhou, J.; Wu, J.; Liu, H.; Lin, X.; Cheng, L.; Li, C.; Weng, S.; Zhao, M.; Xu, Y.; Wen, J. Low voltage electrostatic field combined with ice-temperature to improve the quality of litchi during storage. Food Res. Int. 2024, 196, 115068. [Google Scholar] [CrossRef]
- Kong, F.; Li, P.; Zhang, H.; Tian, C.; Leng, D.; Hou, C. Enhanced Supercooling of Water with a 6 mT/50 Hz Oscillating Magnetic Field and its Application in Fruit Preservation. Food Bioprocess Technol. 2024, 17, 4239–4248. [Google Scholar] [CrossRef]
- Naeem, A.; Abbas, T.; Ali, M.T.; Hasnain, A. Effect of guar gum coatings containing essential oils on shelf life and nutritional quality of green-unripe mangoes during low temperature storage. Int. J. Biol. Macromol. 2018, 113, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Peng, K.; Luo, D.; Xia, B. Non-destructive testing and identification of citrus varieties based on machine olfaction. Jiangxi Agric. Univ. 2017, 39, 1017–1024. [Google Scholar] [CrossRef]
- Feng, Y.; Xu, H.; Sun, Y.; Xia, R.; Hou, Z.; Li, Y.; Wang, Y.; Pan, S.; Fan, Y.; Zhu, J.; et al. Review of packaging for improving storage quality of fresh edible mushrooms. Packag. Technol. Sci. 2023, 36, 629–646. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, X.; Liang, J.; Fu, Y.; Wang, J.; Jiang, M.; Pan, L. Cell wall and reactive oxygen metabolism responses of strawberry fruit during storage to low voltage electrostatic field treatment. Postharvest Biol. Technol. 2022, 192, 112017. [Google Scholar] [CrossRef]
- Wang, W.; Li, X.; Hu, J.; Bi, J. Review of the research progress of the electromagnetic field treatment technology in fruit and vegetable preservation and processing. Sci. Technol. Food Ind. 2025, 46, 398–406. [Google Scholar] [CrossRef]
- Ji, W.; Huang, H.; Deng, A.; Pan, C. Effects of static magnetic fields on Escherichia coli. Micron 2009, 40, 894–898. [Google Scholar] [CrossRef]
- Mohammad, L.; Nasser, H.; Mohsen, D.I.; Saideh, F.J. Effects of high voltage electric field on storage life and antioxidant capacity of whole pomegranate fruit. Innov. Food Sci. Emerg. Technol. 2022, 75, 102888. [Google Scholar] [CrossRef]
- Yang, N.; Zhang, X.; Lu, Y.; Jiang, F.; Yu, J.; Sun, X.; Hao, Y. Use of DENBA+ to assist refrigeration and extend the shelf-life of strawberry fruit. Postharvest Biol. Technol. 2023, 195, 112152. [Google Scholar] [CrossRef]
- Rahimeh, J.; Mahdi, B.; Sara, D.; Roghayeh, K.; Esmaeil, C. Chitosan nano-biopolymer/Citrus paradisi peel oil delivery system enhanced shelf-life and postharvest quality of cherry tomato. Int. J. Biol. Macromol. 2022, 225, 1212–1223. [Google Scholar] [CrossRef]
- Liu, C.; Chen, W.; Chang, C.; Li, P.; Lu, P.; Hsieh, C. Effect of a high voltage electrostatic field (HVEF) on the shelf life of persimmons (Diospyros kaki). LWT 2017, 75, 236–242. [Google Scholar] [CrossRef]
- Ni, X.; Yu, J.; Shao, P.; Yu, J.; Chen, H.; Gao, H. Preservation of Agaricus bisporus freshness with using innovative ethylene manipulating active packaging paper. Food Chem. 2021, 345, 128757. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Zhang, D.; Ma, Z.; Zheng, R.; Liu, X.; Wang, J.; Yue, S. Effects of Static Magnetic Field Treatment on the Quality of Fresh-Cut Lotus Root During Storage. Horticulturae 2025, 11, 379. [Google Scholar] [CrossRef]
- Liu, F.; Xu, Y.; Zeng, M.; Zhang, Y.; Pan, L.; Wang, J.; Huang, S. A novel physical hurdle technology by combining low voltage electrostatic field and modified atmosphere packaging for long-term stored button mushrooms (Agaricus bisporus). Innov. Food Sci. Emerg. Technol. 2023, 90, 103514. [Google Scholar] [CrossRef]
- Kim, B.G.; Kim, N.Y.; Kim, J.H.; Akimitsu, K.; Chong, Y.; Ahn, J.H. Flavonoid O-Diglucosyltransferase from Rice: Molecular Cloning and Characterization. J. Plant Biol. 2009, 52, 41–48. [Google Scholar] [CrossRef]
- Pandey, P.R.; Parajuli, P.; Koffas, A.M.; Sohng, K.J. Microbial production of natural and non-natural flavonoids: Pathway engineering, directed evolution and systems/synthetic biology. Biotechnol. Adv. 2016, 34, 634–662. [Google Scholar] [CrossRef]
- Wei, Q.; Sun, Q.; Hou, Q.; Zheng, O.; Xiao, N.; Liu, S. Effect of static magnetic field-assisted freezing at different temperatures on the structural and functional properties of pacific white shrimp (Litopenaeus vannamei) myofibrillar protein. Food Chem. 2025, 471, 142836. [Google Scholar] [CrossRef]
- Zhu, Y.; Xie, C.; Zheng, W.; Shi, T.; Zhou, Z.; Wu, Y. Effects of ozone treatment combined with low voltage electrostatic field on the quality of Citrus unshiu × sinensis during cold storage. J. Food Saf. Qual. 2022, 13, 6416–6422. [Google Scholar] [CrossRef]
- Qin, L.; Wu, Y.; Chen, J.; Xia, W.; Liao, E.; Wang, H. Effects of superchilling on quality of crayfish (Procambarus clarkii): Water migration, biogenic amines accumulation, and nucleotides catabolism. Int. J. Food Sci. Technol. 2021, 57, 506–515. [Google Scholar] [CrossRef]
- Han, M.; Wang, P.; Xu, X.; Zhou, G. Low-field NMR study of heat-induced gelation of pork myofibrillar proteins and its relationship with microstructural characteristics. Food Res. Int. 2014, 62, 1175–1182. [Google Scholar] [CrossRef]
Sensor Name | Performance Characteristics |
---|---|
W1C | Sensitive to aromatic compounds |
W5S | High sensitivity, mainly detecting nitrogen oxides |
W3C | Sensitive to ammonia and aromatic compounds |
W6S | Sensitive to hydrogen |
W5C | Sensitive to alkanes, aromatic compounds, and weakly polar compounds |
W1S | Mainly detects alkanes, aromatic compounds, and weakly polar compounds |
W1W | Sensitive to inorganic sulfides and terpenes |
W2S | Wide range of substances, mainly detects ethanol and some aromatic compounds |
W2W | Sensitive to aromatic compounds and sulfur-containing organic compounds |
W3S | Sensitive to alkanes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, Q.; Hu, J.; Lu, Y.; Cao, Y.; Lin, S. Impact of Low-Frequency Alternating Electromagnetic Fields on Postharvest Preservation of Satsuma Mandarins. Foods 2025, 14, 2307. https://doi.org/10.3390/foods14132307
Dong Q, Hu J, Lu Y, Cao Y, Lin S. Impact of Low-Frequency Alternating Electromagnetic Fields on Postharvest Preservation of Satsuma Mandarins. Foods. 2025; 14(13):2307. https://doi.org/10.3390/foods14132307
Chicago/Turabian StyleDong, Qunhui, Jiamiao Hu, Yihui Lu, Yujin Cao, and Shaoling Lin. 2025. "Impact of Low-Frequency Alternating Electromagnetic Fields on Postharvest Preservation of Satsuma Mandarins" Foods 14, no. 13: 2307. https://doi.org/10.3390/foods14132307
APA StyleDong, Q., Hu, J., Lu, Y., Cao, Y., & Lin, S. (2025). Impact of Low-Frequency Alternating Electromagnetic Fields on Postharvest Preservation of Satsuma Mandarins. Foods, 14(13), 2307. https://doi.org/10.3390/foods14132307