Understanding the Aroma Profiles of Hui Li Red Sichuan Pepper (Zanthoxylum bungeanum Maxim) Across Harvesting Periods Using Sensory Evaluation, E-Nose and GC-IMS Techniques
Abstract
1. Introduction
2. Materials and Methods
2.1. Harvesting Hui Li Red Sichuan Peppers
2.2. Sensory Evaluation of Hui Li Red Sichuan Peppers with a Trained Sensory Panel
2.3. Overall Aroma Profile Analysis of Hui Li Red Sichuan Peppers Using E-Nose
2.4. Volatile Compositional Analysis of Hui Li Red Sichuan Peppers Using Headspace Gas Chromatography-Ion Mobility Spectrometry (HS-GC-IMS)
2.5. Calculation of Relative Odour Activity Value (ROAV) for Individual Volatiles Identified in Hui Li Red Sichuan Peppers
2.6. Data Analysis
3. Results and Discussion
3.1. Sensory Profile of Hui Li Red Sichuan Peppers Across Harvesting Periods
3.2. Characterisation of the Overall Aroma Profile of Hui Li Red Sichuan Peppers Across Harvesting Periods
3.3. Identification and Quantification of Volatiles in Hui Li Red Sichuan Peppers Across Harvesting Periods
3.4. Evaluation of the Contribution of Individual Volatiles in Hui Li Red Sichuan Peppers Across Harvesting Periods
3.5. Classification of Key Volatile Compounds in Hui Li Red Sichuan Peppers Across Harvesting Periods Identified Using PLS-DA
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, S.; Li, B.; An, Y.; Yang, G.; Liao, S.; Kan, J. Comprehensive Study on Nutritional, Flavour and Metabolite Characteristics of Green Prickly Ash (Zanthoxylum schinifolium) at Different Picking Stages. Int. J. Food Sci. Technol. 2022, 57, 7961–7973. [Google Scholar] [CrossRef]
- Zhang, D.; Sun, X.; Battino, M.; Wei, X.; Shi, J.; Zhao, L.; Liu, S.; Xiao, J.; Shi, B.; Zou, X. A Comparative Overview on Chili Pepper (Capsicum Genus) and Sichuan Pepper (Zanthoxylum Genus): From Pungent Spices to Pharma-Foods. Trends Food Sci. Technol. 2021, 117, 148–162. [Google Scholar] [CrossRef]
- Zeng, M.; Wang, J.; Zhang, M.; Chen, J.; He, Z.; Qin, F.; Xu, Z.; Cao, D.; Chen, J. Inhibitory Effects of Sichuan Pepper (Zanthoxylum bungeanum) and Sanshoamide Extract on Heterocyclic Amine Formation in Grilled Ground Beef Patties. Food Chem. 2018, 239, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Wang, J.; Zhu, L.; Li, T.; Jiang, W.; Zhou, J.; Peng, W.; Wu, C. Zanthoxylum bungeanum Maxim. (Rutaceae): A Systematic Review of Its Traditional Uses, Botany, Phytochemistry, Pharmacology, Pharmacokinetics, and Toxicology. Int. J. Mol. Sci. 2017, 18, 2172. [Google Scholar] [CrossRef]
- Shao, Y.; Liu, X.; Zhang, Z.; Wang, P.; Li, K.; Li, C. Comparison and Discrimination of the Terpenoids in 48 Species of Huajiao According to Variety and Geographical Origin by E-Nose Coupled with HS-SPME-GC-MS. Food Res. Int. 2023, 167, 112629. [Google Scholar] [CrossRef]
- Wang, S.; Xie, J.; Yang, W.; Sun, B. Preparative separation and purification of alkylamides from Zanthoxylum bungeanum maxim by high-speed counter-current chromatography. J. Liq. Chromatogr. Relat. Technol. 2011, 34, 2640–2652. [Google Scholar] [CrossRef]
- Xiang, L.; Liu, Y.; Xie, C.; Li, X.; Yu, Y.; Ye, M.; Chen, S. The Chemical and Genetic Characteristics of Szechuan Pepper (Zanthoxylum bungeanum and Z. armatum) Cultivars and Their Suitable Habitat. Front. Plant Sci. 2016, 7, 467. [Google Scholar] [CrossRef]
- Yang, L.-C.; Li, R.; Tan, J.; Jiang, Z.-T. Polyphenolics Composition of the Leaves of Zanthoxylum bungeanum Maxim. Grown in Hebei, China, and Their Radical Scavenging Activities. J. Agric. Food Chem. 2013, 61, 1772–1778. [Google Scholar] [CrossRef]
- Xiong, Q.; Dawen, S.; Yamamoto, H.; Mizuno, M. Alkylamides from Pericarps of Zanthoxylum bungeanum. Phytochemistry 1997, 46, 1123–1126. [Google Scholar] [CrossRef]
- Ivane, N.M.A.; Haruna, S.A.; Zekrumah, M.; Roméo Elysé, F.K.; Hassan, M.O.; Hashim, S.B.H.; Tahir, H.E.; Zhang, D. Composition, Mechanisms of Tingling Paresthesia, and Health Benefits of Sichuan Pepper: A Review of Recent Progress. Trends Food Sci. Technol. 2022, 126, 1–12. [Google Scholar] [CrossRef]
- Shi, J.; Fei, X.; Hu, Y.; Liu, Y.; Wei, A. Identification of Key Genes in the Synthesis Pathway of Volatile Terpenoids in Fruit of Zanthoxylum bungeanum Maxim. Forests 2019, 10, 328. [Google Scholar] [CrossRef]
- Fei, X.; Qi, Y.; Lei, Y.; Wang, S.; Hu, H.; Wei, A. Transcriptome and Metabolome Dynamics Explain Aroma Differences between Green and Red Prickly Ash Fruit. Foods 2021, 10, 391. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Wang, H.; Wang, Z.; Huang, P.; Kan, J. Discrimination and Characterization of the Volatile Organic Compounds in Eight Kinds of Huajiao with Geographical Indication of China Using Electronic Nose, HS-GC-IMS and HS-SPME-GC–MS. Food Chem. 2022, 375, 131671. [Google Scholar] [CrossRef]
- Sun, J.; Sun, B.; Ren, F.; Chen, H.; Zhang, N.; Zhang, Y. Characterization of Key Odorants in Hanyuan and Hancheng Fried Pepper (Zanthoxylum bungeanum) Oil. J. Agric. Food Chem. 2020, 68, 6403–6411. [Google Scholar] [CrossRef]
- Yu, J.; Jing, N.; Yang, F.; Wang, S.; Yan, J.; Ma, Y.; Wei, A. Effects of Packaging and Storage Temperatures on the Bioactive Compounds and Antioxidant Capacity of Dried Zanthoxylum bungeanum Maxim. During Long-Term Storage. Sci. Hortic. 2023, 321, 112231. [Google Scholar] [CrossRef]
- Wang, A.; Wang, Y.; Kan, H.; Hao, J.; Hu, Q.; Lu, B.; Liu, Y. Comparison of Different Drying Techniques for Zanthoxylum bungeanum Leaves: Changes in Color, Microstructure, Antioxidant Capacities, and Volatile Components. LWT 2023, 188, 115469. [Google Scholar] [CrossRef]
- Hou, L.; Liu, Y.; Wei, A. Geographical Variations in the Fatty Acids of Zanthoxylum Seed Oils: A Chemometric Classification Based on the Random Forest Algorithm. Ind. Crops Prod. 2019, 134, 146–153. [Google Scholar] [CrossRef]
- Sriwichai, T.; Sookwong, P.; Siddiqui, M.W.; Sommano, S.R. Aromatic Profiling of Zanthoxylum myriacanthum (Makwhaen) Essential Oils from Dried Fruits Using Different Initial Drying Techniques. Ind. Crops Prod. 2019, 133, 284–291. [Google Scholar] [CrossRef]
- Liu, R.; Qi, N.; Sun, J.; Chen, H.; Zhang, N.; Sun, B. Effects of Frying Conditions on Volatile Composition and Odor Characteristics of Fried Pepper (Zanthoxylum bungeanum Maxim.) Oil. Foods 2022, 11, 1661. [Google Scholar] [CrossRef]
- Yang, G.; Chambers, E.; Wang, H. Flavor Lexicon Development (in English and Chinese) and Descriptive Analysis of Sichuan Pepper. J. Sens. Stud. 2021, 36, e12636. [Google Scholar] [CrossRef]
- Lu, L.; Zhang, J.; Wu, F.; Xie, G.; Shan, Z.; Liu, X. Flavor Profile Variations of Huangjiu Brewed in Different Traditional Chinese Solar Terms. Food Qual. Saf. 2022, 6, fyac037. [Google Scholar] [CrossRef]
- He, L.; Yi, Y.-W.; Xu, C.-J.; Deng, J.; Wu, H.-C.; Qiao, M.-F.; Chan, S.W.; Hu, J.-X. Impacts of Thermal Sterilization on Volatile Substances in Xiongzhang Tofu Seasoning Packets According to Electronic Nose and Gas Chromatography-Mass Spectrometry. LWT 2024, 207, 116631. [Google Scholar] [CrossRef]
- Wu, B.; Zhu, C.; Deng, J.; Dong, P.; Xiong, Y.; Wu, H. Effect of Sichuan Pepper (Zanthoxylum Genus) Addition on Flavor Profile in Fermented Ciba Chili (Capsicum Genus) Using GC-IMS Combined with E-Nose and E-Tongue. Molecules 2023, 28, 5884. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, J.; Zhu, Z.; Lei, Y.; Huang, S.; Huang, M. Effect of Ageing Time on the Flavour Compounds in Nanjing Water-Boiled Salted Duck Detected by HS-GC-IMS. LWT 2022, 155, 112870. [Google Scholar] [CrossRef]
- Zhu, L.; Wang, L.; Chen, X.; Peng, W.; Liu, Y.; Yu, L.; Liang, F.; Wu, C. Comparative Studies on Flavor Substances of Leaves and Pericarps of Zanthoxylum bungeanum Maxim. at Different Harvest Periods. Trop. J. Pharm. Res. 2019, 18, 279. [Google Scholar] [CrossRef]
- Feng, X.; Huang, P.; Duan, P.; Wang, H.; Kan, J. Dynamic Zanthoxylum Pungency Characteristics and Their Correlation with Sanshool Composition and Chemical Structure. Food Chem. 2023, 407, 135138. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, S.; Shi, B.; Wang, H.; Liu, L.; Zhong, K.; Zhao, L.; Chen, Z. Evaluation of the Pungency Intensity and Time-related Aspects of Chinese Zanthoxylum bungeanum Based on Human Sensation. J. Sens. Stud. 2018, 33, e12465. [Google Scholar] [CrossRef]
- Luo, J.; Hou, X.; Li, S.; Luo, Q.; Wu, H.; Shen, G.; Gu, X.; Mo, X.; Zhang, Z. Degradation and Transformation Mechanisms of Numbing Substances: Hydroxyl-α-Sanshool & Hydroxyl-β-Sanshool from Zanthoxylum bungeanum Exposed to Acid Environment. Food Chem. X 2022, 14, 100342. [Google Scholar] [CrossRef]
- Luo, J.; Ke, J.; Hou, X.; Li, S.; Luo, Q.; Wu, H.; Shen, G.; Zhang, Z. Composition, Structure and Flavor Mechanism of Numbing Substances in Chinese Prickly Ash in the Genus Zanthoxylum: A Review. Food Chem. 2022, 373, 131454. [Google Scholar] [CrossRef]
- Li, X.; Cheng, X.; Yang, J.; Wang, X.; Lü, X. Unraveling the Difference in Physicochemical Properties, Sensory, and Volatile Profiles of Dry Chili Sauce and Traditional Fresh Dry Chili Sauce Fermented by Lactobacillus plantarum PC8 Using Electronic Nose and HS-SPME-GC-MS. Food Biosci. 2022, 50, 102057. [Google Scholar] [CrossRef]
- Feng, J.; Zhang, B.; Zhang, H.; Wu, Z.; Li, M.; Wang, D.; Wang, C. Combining with E-Nose, GC-MS, GC-IMS and Chemometrics to Explore Volatile Characteristics during the Different Stages of Zanthoxylum bungeanum Maxim Fruits. Food Res. Int. 2024, 195, 114964. [Google Scholar] [CrossRef] [PubMed]
- He, F.; Yang, S.; Zhang, G.; Xu, L.; Li, H.; Sun, J.; Huang, M.; Zheng, F.; Sun, B. Exploration of Key Aroma Active Compounds in Strong Flavor Baijiu during the Distillation by Modern Instrument Detection Technology Combined with Multivariate Statistical Analysis Methods. J. Food Compos. Anal. 2022, 110, 104577. [Google Scholar] [CrossRef]
- Wang, Y.; He, Y.; Liu, Y.; Wang, D. Analyzing Volatile Compounds of Young and Mature Docynia delavayi Fruit by HS-SPME-GC-MS and rOAV. Foods 2022, 12, 59. [Google Scholar] [CrossRef]
- Yang, X. Aroma Constituents and Alkylamides of Red and Green Huajiao (Zanthoxylum bungeanum and Zanthoxylum schinifolium). J. Agric. Food Chem. 2008, 56, 1689–1696. [Google Scholar] [CrossRef]
- Li, Y.; Luo, X.; Long, F.; Wu, Y.; Zhong, K.; Bu, Q.; Huang, Y.; Gao, H. Quality Improvement of Fermented Chili Pepper by Inoculation of Pediococcus Ethanolidurans M1117: Insight into Relevance of Bacterial Community Succession and Metabolic Profile. LWT 2023, 179, 114655. [Google Scholar] [CrossRef]
- Liu, H.; Wen, J.; Xu, Y.; Wu, J.; Yu, Y.; Yang, J.; Liu, H.; Fu, M. Evaluation of Dynamic Changes and Formation Regularity in Volatile Flavor Compounds in Citrus Reticulata ‘Chachi’ Peel at Different Collection Periods Using Gas Chromatography-Ion Mobility Spectrometry. LWT 2022, 171, 114126. [Google Scholar] [CrossRef]
- Yamada, Y.; Kuzuyama, T.; Komatsu, M.; Shin-ya, K.; Omura, S.; Cane, D.E.; Ikeda, H. Terpene Synthases Are Widely Distributed in Bacteria. Proc. Natl. Acad. Sci. USA 2015, 112, 857–862. [Google Scholar] [CrossRef]
- Vranová, E.; Coman, D.; Gruissem, W. Network Analysis of the MVA and MEP Pathways for Isoprenoid Synthesis. Annu. Rev. Plant Biol. 2013, 64, 665–700. [Google Scholar] [CrossRef]
- Xie, Z.; Kapteyn, J.; Gang, D.R. A Systems Biology Investigation of the MEP/Terpenoid and Shikimate/Phenylpropanoid Pathways Points to Multiple Levels of Metabolic Control in Sweet Basil Glandular Trichomes. Plant J. 2008, 54, 349–361. [Google Scholar] [CrossRef]
- Ji, Y.; Li, S.; Ho, C.-T. Chemical Composition, Sensory Properties and Application of Sichuan Pepper (Zanthoxylum genus). Food Sci. Hum. Wellness 2019, 8, 115–125. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, Y.; Yan, F.; Tang, Y.; Yu, B.; Chen, B.; Lu, L.; Yuan, L.; Wu, Z.; Chen, H. Monitoring Changes in the Volatile Compounds of Tea Made from Summer Tea Leaves by GC-IMS and HS-SPME-GC-MS. Foods 2022, 12, 146. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wan, J.; Zhang, Y.; Hou, X.; Shen, G.; Li, S.; Luo, Q.; Li, Q.; Zhou, M.; Liu, X.; et al. The Establishment of Comprehensive Quality Evaluation Model for Flavor Characteristics of Green Sichuan Pepper (Zanthoxylum armatum DC.) in Southwest China. Food Chem. X 2023, 18, 100721. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.; Liu, Z.; Lu, X.; Cheng, J.; Lu, G.; Sun, J.; Yang, H.; Guan, Y.; Pang, L. Analysis of the Nutritional Properties and Flavor Profile of Sweetpotato Residue Fermented with Rhizopus oligosporus. LWT 2023, 174, 114401. [Google Scholar] [CrossRef]
- Gao, L.; Zhang, L.; Liu, J.; Zhang, X.; Lu, Y. Analysis of the Volatile Flavor Compounds of Pomegranate Seeds at Different Processing Temperatures by GC-IMS. Molecules 2023, 28, 2717. [Google Scholar] [CrossRef]
- Pu, D.; Duan, W.; Huang, Y.; Zhang, Y.; Sun, B.; Ren, F.; Zhang, H.; Chen, H.; He, J.; Tang, Y. Characterization of the Key Odorants Contributing to Retronasal Olfaction during Bread Consumption. Food Chem. 2020, 318, 126520. [Google Scholar] [CrossRef]
- Xu, M.; Wang, J.; Zhu, L. Tea Quality Evaluation by Applying E-Nose Combined with Chemometrics Methods. J. Food Sci. Technol. 2021, 58, 1549–1561. [Google Scholar] [CrossRef]
- Zhang, J.; Cui, C.; Chen, H.; Liu, J. The Completion of Esterification of Free Fatty Acids in Zanthoxylum bungeanum Seed Oil with Ethanol. Int. J. Green Energy 2014, 11, 822–832. [Google Scholar] [CrossRef]
Sample ID | Harvesting Time | Solar Term * | Average Highest Temperature (°C) | Average Lowest Temperature (°C) | Average Humidity (%) | Average Rainfall (mm/h) | Average Ground Wind Speed (m/s) |
---|---|---|---|---|---|---|---|
LSA | 24 July 2022 | Greater Heat | 29 | 19 | 69.5 | 0.32 | 1.44 |
LSB | 7 August 2022 | Beginning of Autumn | 26 | 18 | 81.0 | 0.53 | 0.81 |
LSC | 22 August 2022 | End of Heat | 28 | 18 | 74.0 | 0.31 | 0.91 |
LSD | 6 September 2022 | White Dew | 26 | 17 | 77.8 | 0.37 | 1.23 |
LSE | 21 September 2022 | Autumn Equinox | 24 | 17 | 81.2 | 0.41 | 0.82 |
Chemical Classes | Volatile Compounds | RI | Dt [a.u.] | CAS No. | LSA | LSB | LSC | LSD | LSE |
---|---|---|---|---|---|---|---|---|---|
Pyrazine | 2,3-Dimethylpyrazine | 1326.8 | 1.46205 | 5910-89-4 | 492.07 ± 111.39 c | 646.39 ± 42.07 c | 1555.22 ± 108.47 a | 1031.68 ± 1.35 b | 1671.06 ± 34.46 a |
2-acetoxy-3,5-dichloro-Benzonitrile | 1215.5 | 1.209 | 54300-08-2 | 1136.77 ± 269.33 b | 1666.53 ± 80.80 a | 1849.41 ± 24.97 a | 1898.95 ± 23.73 a | 1922.53 ± 15.13 a | |
Ethylpyrazine | 928.7 | 1.12929 | 13925-00-3 | 808.69 ± 184.69 bc | 1107.59 ± 147.60 b | 743.20 ± 49.14 c | 437.18 ± 3.25 d | 2038.48 ± 60.80 a | |
Methylpyrazine | 1238.4 | 1.38494 | 109-08-0 | 481.77 ± 45.97 d | 565.06 ± 19.71 c | 1028.64 ± 22.21 a | 339.19 ± 16.52 e | 894.24 ± 26.94 b | |
Tetramethylpyrazine | 1089.5 | 1.21335 | 1124-11-4 | 2427.98 ± 328.66 c | 2975.82 ± 112.57 ab | 3066.49 ± 80.70 ab | 2634.76 ± 136.14 bc | 3418.05 ± 52.02 a | |
Alcohol | 1-Penten-3-ol | 1162.3 | 1.33235 | 616-25-1 | 247.96 ± 38.77 b | 252.16 ± 6.01 b | 360.80 ± 9.21 a | 158.66 ± 6.10 c | 265.58 ± 9.82 b |
1-Propanol | 1029.7 | 1.11077 | 71-23-8 | 193.02 ± 60.99 b | 263.73 ± 10.92 b | 198.70 ± 7.45 b | 89.59 ± 4.79 c | 388.88 ± 35.70 a | |
3-Methyl-1-butanol | 1216 | 1.24667 | 123-51-3 | 1151.00 ± 247.32 b | 1471.54 ± 46.05 ab | 1625.38 ± 18.22 a | 1565.47 ± 16.55 a | 1661.89 ± 23.43 a | |
Linalool | 1098 | 1.21324 | 78-70-6 | 2343.38 ± 340.35 b | 2704.90 ± 113.07 ab | 2990.69 ± 84.09 a | 3200.03 ± 62.94 a | 2820.90 ± 63.63 ab | |
Propan-2-ol | 920.5 | 1.21867 | 67-63-0 | 107.40 ± 41.82 b | 173.65 ± 13.18 a | 59.34 ± 8.48 b | 29.01 ± 3.44 c | 203.35 ± 25.36 a | |
tert-Butyl alcohol | 917.3 | 1.3273 | 75-65-0 | 294.75 ± 69.14 a | 375.11 ± 29.13 a | 201.66 ± 19.79 b | 79.90 ± 2.55 c | 386.97 ± 13.67 a | |
Aldehydes | (E)-2-Hexenal | 1240.6 | 1.1871 | 6728-26-3 | 1929.77 ± 202.75 c | 2232.73 ± 111.11 bc | 2532.72 ± 206.00 ab | 2261.98 ± 127.80 bc | 2950.86 ± 60.26 a |
(E)-2-octenal | 1055.8 | 1.80732 | 2548-87-0 | 388.06 ± 116.70 b | 547.99 ± 179.00 ab | 1163.31 ± 153.82 a | 784.88 ± 280.61 ab | 1148.84 ± 279.48 a | |
(E,E)-2,4-heptadienal | 1008.2 | 1.60923 | 4313-3-5 | 3811.54 ± 818.68 a | 4904.04 ± 92.19 a | 4457.85 ± 17.85 a | 312.23 ± 48.52 b | 4140.72 ± 132.71 a | |
(E, Z)-2,6-Nonadienal | 1181.7 | 1.36543 | 557-48-2 | 710.82 ± 112.00 c | 906.78 ± 38.01 b | 1562.44 ± 45.65 a | 868.30 ± 31.56 bc | 1541.97 ± 16.56 a | |
2-Methyl propanal | 811.6 | 1.28012 | 78-84-2 | 201.20 ± 25.79 b | 232.77 ± 13.24 b | 307.34 ± 12.16 a | 75.58 ± 1.36 c | 297.34 ± 3.92 a | |
2-Methyl-2-pentenal | 828 | 1.1546 | 623-36-9 | 308.66 ± 37.44 a | 349.24 ± 8.77 a | 150.27 ± 14.01 c | 17.67 ± 1.61 d | 195.48 ± 12.43 b | |
3-Methyl-2-butenal | 1198.6 | 1.3768 | 107-86-8 | 375.64 ± 48.78 c | 488.62 ± 30.91 b | 999.51 ± 43.66 a | 377.71 ± 29.47 bc | 1008.05 ± 53.09 a | |
Butanal, 3-methyl- | 918.4 | 1.3951 | 590-86-3 | 456.57 ± 124.26 a | 569.93 ± 72.66 a | 474.51 ± 36.73 a | 121.39 ± 3.96 b | 494.99 ± 13.28 a | |
Hexanal | 1085 | 1.25966 | 66-25-1 | 219.34 ± 28.86 a | 264.64 ± 18.72 a | 283.83 ± 15.32 a | 174.46 ± 17.66 b | 226.00 ± 15.98 a | |
n-Nonanal | 1343.1 | 1.47441 | 124-19-6 | 1004.34 ± 206.95 c | 1227.10 ± 27.05 c | 1926.58 ± 150.33 ab | 1752.63 ± 114.02 b | 2414.16 ± 43.23 a | |
Pentanal | 949.8 | 1.18461 | 110-62-3 | 258.47 ± 83.44 c | 376.40 ± 28.16 bc | 709.78 ± 34.73 a | 120.81 ± 4.28 d | 503.66 ± 26.28 b | |
Propanal | 796.7 | 1.14548 | 123-38-6 | 717.88 ± 127.00 d | 969.80 ± 22.51 c | 1245.93 ± 65.84 b | 201.61 ± 7.79 e | 1970.02 ± 27.85 a | |
Acids | Acetic acid | 1445.1 | 1.05985 | 64-19-7 | 6494.35 ± 471.92 a | 6974.13 ± 155.23 a | 6466.99 ± 101.97 a | 5938.75 ± 237.68 a | 4822.92 ± 266.24 b |
Heptanoic acid | 1080.9 | 1.36966 | 111-14-8 | 3716.29 ± 158.43 b | 3973.82 ± 60.31 b | 3225.14 ± 88.92 c | 5079.51 ± 129.81 a | 2430.89 ± 71.95 d | |
Pentanoic acid | 878.6 | 1.21964 | 109-52-4 | 523.50 ± 70.95 bc | 671.41 ± 9.98 ab | 634.78 ± 42.33 ab | 466.09 ± 55.77 c | 820.34 ± 12.75 a | |
Terpene | alpha-Pinene-D | 1014.4 | 1.66667 | 80-56-8 | 564.75 ± 186.14 b | 1002.97 ± 129.78 a | 1107.48 ± 75.33 a | 398.42 ± 85.87 b | 1567.86 ± 54.99 a |
alpha-Pinene-M | 1013.1 | 1.29761 | 80-56-8 | 46.66 ± 12.87 c | 87.91 ± 14.87 b | 136.28 ± 12.09 b | 319.44 ± 37.53 a | 302.27 ± 30.27 a | |
beta-Pinene | 1088.9 | 1.29488 | 127-91-3 | 1199.46 ± 41.53 b | 1307.63 ± 91.06 b | 1271.82 ± 39.49 b | 1062.20 ± 51.39 c | 1582.38 ± 38.51 a | |
gamma-Terpinene | 1227.7 | 1.21249 | 99-85-4 | 6000.54 ± 472.47 b | 7137.74 ± 285.16 a | 7005.04 ± 166.52 a | 7667.60 ± 212.84 a | 7898.78 ± 120.07 a | |
Limonene | 1204.1 | 1.68643 | 138-86-3 | 270.98 ± 52.40 bc | 341.52 ± 1.79 b | 508.73 ± 16.04 a | 234.38 ± 9.30 c | 536.00 ± 12.70 a | |
Myrcene | 1165.2 | 1.29095 | 123-35-3 | 3259.85 ± 525.43 a | 3761.18 ± 111.26 a | 3884.18 ± 108.33 a | 3954.58 ± 74.85 a | 3815.07 ± 77.68 a | |
Ketone | (2S-trans)-Cyclohexanone | 1133 | 1.33977 | 14073-97-3 | 236.35 ± 66.91 c | 370.77 ± 38.76 b | 485.39 ± 14.41 a | 428.86 ± 18.67 ab | 463.50 ± 19.40 ab |
6-Methylhepta-3,5-dien-2-one-D | 1104 | 1.74493 | 1604-28-0 | 1451.81 ± 261.18 c | 2315.92 ± 326.69 b | 3446.57 ± 277.32 a | 578.10 ± 107.00 d | 1953.42 ± 137.19 bc | |
6-Methylhepta-3,5-dien-2-one-M | 1103.8 | 1.2198 | 1604-28-0 | 2932.68 ± 64.24 ab | 2781.60 ± 18.20 b | 2494.00 ± 47.91 c | 3064.61 ± 117.16 a | 3072.72 ± 4.92 a | |
Acetone | 820 | 1.11433 | 67-64-1 | 5574.27 ± 137.70 a | 5768.81 ± 42.00 a | 4870.00 ± 110.33 c | 2701.50 ± 76.56 d | 5301.29 ± 98.56 b | |
Hydroxyacetone (acetol) | 1321.6 | 1.24585 | 116-09-6 | 465.30 ± 61.27 b | 542.04 ± 8.11 ab | 554.07 ± 36.79 ab | 548.33 ± 21.25 ab | 648.81 ± 21.34 a | |
Maltol | 1133.9 | 1.21541 | 118-71-8 | 220.58 ± 116.91 b | 397.73 ± 25.79 a | 404.18 ± 20.22 a | 493.36 ± 14.19 a | 441.66 ± 4.29 a | |
Esters | (Z)-3-Hexenyl acetate | 1302.9 | 1.30144 | 3681-71-8 | 3508.72 ± 424.26 c | 4300.56 ± 264.78 ab | 5128.53 ± 10.14 a | 4400.08 ± 227.93 ab | 3785.07 ± 111.57 bc |
(Z)-3-Hexenyl butyrate | 1226.5 | 1.43107 | 16491-36-4 | 561.38 ± 47.65 a | 431.53 ± 28.57 b | 389.55 ± 30.15 b | 565.51 ± 33.67 a | 380.41 ± 7.49 b | |
delta-Hexalactone-D | 1082.1 | 1.52085 | 823-22-3 | 1583.55 ± 48.56 a | 1471.14 ± 90.91 ab | 1219.68 ± 124.89 b | 714.47 ± 79.41 c | 562.22 ± 38.10 d | |
delta-Hexalactone-M | 1082.2 | 1.16828 | 823-22-3 | 2012.70 ± 154.13 a | 1658.86 ± 109.38 bc | 1472.42 ± 11.74 c | 1868.31 ± 3.41 ab | 1256.75 ± 34.18 d | |
Acetic acid, 2-methylbutyl ester | 880.7 | 1.28214 | 624-41-9 | 36.10 ± 2.18 c | 59.20 ± 6.17 b | 35.96 ± 3.39 c | 28.26 ± 2.92 d | 109.59 ± 6.69 a | |
Allyl hexanoate | 1352.8 | 1.37688 | 123-68-2 | 445.87 ± 23.04 b | 483.25 ± 14.19 b | 466.85 ± 21.69 b | 818.03 ± 62.46 a | 480.64 ± 14.71 b | |
Butyl acetate | 1076.5 | 1.62471 | 123-86-4 | 519.56 ± 170.12 a | 716.31 ± 14.11 a | 641.21 ± 21.46 a | 237.97 ± 20.41 b | 572.37 ± 24.94 a | |
Butyl butanoate | 1182 | 1.8007 | 109-21-7 | 2172.85 ± 241.62 b | 2343.12 ± 79.30 b | 3407.15 ± 199.19 a | 991.94 ± 60.77 c | 2372.91 ± 70.13 b | |
Ethyl 2-oxopropanoate | 1276.9 | 1.43614 | 617-35-6 | 84.53 ± 5.20 cd | 81.12 ± 1.59 d | 89.67 ± 4.23 bc | 145.50 ± 12.29 a | 105.92 ± 4.79 b | |
Ethyl acetate | 918.8 | 1.08716 | 141-78-6 | 345.56 ± 66.20 a | 397.54 ± 23.74 a | 165.27 ± 17.29 b | 140.24 ± 16.56 b | 469.41 ± 35.40 a | |
Ethyl butyrate | 1031.5 | 1.21088 | 105-54-4 | 450.68 ± 87.92 a | 616.07 ± 44.58 a | 216.39 ± 20.11 b | 148.54 ± 25.48 c | 292.72 ± 23.48 b | |
Ethyl pentanoate | 1126 | 1.27916 | 539-82-2 | 4284.61 ± 415.17 b | 4938.86 ± 91.81 a | 5012.15 ± 110.59 a | 1285.56 ± 66.07 c | 4421.81 ± 89.88 ab | |
Isoamyl acetate | 1105.1 | 1.30586 | 123-92-2 | 1774.07 ± 342.14 b | 2310.44 ± 57.14 ab | 2541.65 ± 37.44 a | 1293.93 ± 59.73 c | 1897.17 ± 36.61 b | |
Isoamyl butanoate | 1251.1 | 1.39868 | 106-27-4 | 617.11 ± 77.58 a | 619.98 ± 10.23 a | 723.80 ± 25.84 a | 646.86 ± 18.05 a | 647.29 ± 19.20 a | |
Linalyl acetate | 1240.7 | 1.21697 | 115-95-7 | 3367.72 ± 323.14 c | 4045.86 ± 140.25 b | 4406.03 ± 57.38 ab | 4556.81 ± 137.18 ab | 4896.29 ± 39.00 a | |
Methyl acetate | 813.9 | 1.2013 | 79-20-9 | 190.62 ± 30.01 b | 224.07 ± 5.13 ab | 270.10 ± 6.72 a | 122.78 ± 9.04 c | 271.64 ± 3.09 a | |
Methyl butanoate | 987.7 | 1.41948 | 623-42-7 | 55.25 ± 33.23 b | 161.35 ± 45.94 a | 156.18 ± 27.04 a | 39.76 ± 0.82 b | 209.32 ± 9.65 a | |
Methyl cinnamate | 1378.8 | 1.89446 | 103-26-4 | 1411.93 ± 248.19 a | 1620.99 ± 47.94 a | 1378.50 ± 238.95 a | 2618.29 ± 1243.20 a | 1815.42 ± 1240.45 a | |
Methyl heptanoate | 1300.4 | 1.79356 | 106-73-0 | 982.87 ± 164.89 b | 1184.66 ± 59.89 b | 1793.84 ± 106.43 a | 1226.77 ± 122.30 b | 1006.45 ± 45.06 b | |
Methyl hexanoate | 1172 | 1.29599 | 106-70-7 | 4447.17 ± 308.09 a | 3707.24 ± 277.63 a | 3979.41 ± 147.06 a | 3844.06 ± 254.30 a | 3769.97 ± 128.80 a | |
Pentyl acetate | 1155.5 | 1.30771 | 628-63-7 | 766.79 ± 126.49 c | 946.72 ± 20.28 b | 1314.03 ± 12.71 a | 335.57 ± 18.64 d | 805.30 ± 10.53 bc | |
Propyl butyrate-D | 1136 | 1.70615 | 105-66-8 | 1379.82 ± 204.56 a | 1449.18 ± 148.26 a | 1373.51 ± 48.68 a | 1668.43 ± 10.32 a | 1280.36 ± 100.25 a | |
Propyl butyrate-M | 1135.3 | 1.28257 | 105-66-8 | 1529.34 ± 109.35 a | 1512.22 ± 84.96 a | 1296.82 ± 29.43 b | 1608.38 ± 59.30 a | 1260.71 ± 54.70 b | |
Others | Acetaldehyde diethyl acetal | 872 | 1.12429 | 105-57-7 | 159.92 ± 39.18 b | 227.36 ± 8.66 a | 211.33 ± 6.85 ab | 55.13 ± 1.78 c | 266.88 ± 3.01 a |
Decalin | 1055.2 | 1.20924 | 91-17-8 | 433.69 ± 66.30 b | 593.98 ± 70.53 ab | 571.92 ± 57.92 ab | 288.76 ± 45.91 c | 760.87 ± 37.15 a | |
Dipropyl sulphide | 880.3 | 1.16491 | 111-47-7 | 195.15 ± 20.65 a | 229.84 ± 2.44 a | 201.85 ± 12.62 a | 150.75 ± 5.54 b | 230.86 ± 7.59 a | |
N-nitroso-di-N-propylamine | 1075.8 | 1.27549 | 621-64-7 | 3466.19 ± 235.85 a | 3561.43 ± 122.88 a | 3554.94 ± 26.76 a | 2336.14 ± 182.74 b | 3601.32 ± 54.24 a | |
Pyridine | 1224 | 1.24361 | 110-86-1 | 3343.69 ± 164.53 a | 3558.87 ± 23.87 a | 3410.57 ± 43.22 a | 3512.98 ± 23.05 a | 3436.19 ± 92.56 a | |
Sesamol | 1311.4 | 1.20692 | 533-31-3 | 431.55 ± 125.65 d | 665.59 ± 86.66 bc | 1068.64 ± 63.23 a | 457.78 ± 48.40 cd | 862.70 ± 36.62 ab | |
Styrene | 881.1 | 1.04766 | 100-42-5 | 709.10 ± 35.82 b | 766.31 ± 12.48 ab | 780.81 ± 16.63 a | 783.85 ± 18.68 a | 793.71 ± 15.69 a | |
Triethylamine | 805.3 | 1.46738 | 121-44-8 | 270.23 ± 108.67 a | 354.38 ± 113.91 a | 446.39 ± 99.38 a | 530.59 ± 155.43 a | 448.23 ± 183.96 a | |
Vanillin | 1389.1 | 1.27221 | 121-33-5 | 1325.37 ± 303.60 bc | 1658.74 ± 11.99 bc | 4906.87 ± 1189.04 a | 996.03 ± 377.00 c | 3065.24 ± 895.97 ab | |
Veratrole | 1147.8 | 1.28211 | 91-16-7 | 4041.35 ± 82.16 bc | 4256.20 ± 48.56 ab | 3983.61 ± 65.91 c | 4228.80 ± 129.13 ab | 4342.79 ± 51.51 a |
Volatile Compound | Aroma Characteristic | Odour Threshold Value (mg/kg) | CAS No. | ROAV (%) | ||||
---|---|---|---|---|---|---|---|---|
LSA | LSB | LSC | LSD | LSE | ||||
(E)-2-octenal | Citrus | 0.0027 | 2548-87-0 | 2.96 | 3.46 | 3.11 | 0.22 | 2.65 |
(E, Z)-2,6-Nonadienal | Intense violet and cucumber | 0.00011 | 557-48-2 | 13.60 | 15.68 | 26.79 | 14.78 | 24.19 |
(Z)-3-Hexenylacetate | Intense green grass | 0.009 | 3681-71-8 | 0.82 | 0.91 | 1.07 | 0.92 | 0.73 |
2-Methylpropanal | Intense irritating odour | 0.001 | 78-84-2 | 0.65 | 0.66 | 0.28 | 0.03 | 0.34 |
Acetaldehyde diethylacetal | - | 0.0049 | 105-57-7 | 2.80 | 2.71 | 2.49 | 2.27 | 1.70 |
3-Methyl-butanal | Apple-like | 0.00035 | 590-86-3 | 3.09 | 3.89 | 3.45 | 1.27 | 2.82 |
Butylacetate | Fruity | 0.01 | 123-86-4 | 0.46 | 0.45 | 0.64 | 0.19 | 0.41 |
Ethylbutyrate | Pineapple | 0.0009 | 105-54-4 | 10.06 | 10.44 | 10.51 | 2.68 | 8.48 |
Ethylpentanoate | Apple | 0.00058 | 539-82-2 | 2.92 | 3.63 | 2.42 | 1.41 | 6.07 |
Isoamylacetate | Banana | 0.00015 | 123-92-2 | 8.69 | 7.86 | 9.10 | 8.08 | 7.45 |
Linalool | Buddha’s hand-like aroma | 0.00022 | 78-70-6 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
Methylheptanoate | - | 0.004 | 106-73-0 | 0.74 | 0.77 | 0.65 | 1.22 | 0.78 |
Myrcene | Sweet orange and balsam | 0.0012 | 123-35-3 | 0.85 | 0.90 | 1.62 | 0.53 | 1.29 |
n-Nonanal | Green and slightly sweet | 0.0031 | 124-19-6 | 2.37 | 2.19 | 2.16 | 1.41 | 2.00 |
Pentanoic acid | Unpleasant | 0.00016 | 109-52-4 | 3.37 | 4.47 | 8.37 | 1.41 | 5.43 |
Triethylamine | Intense ammonia | 0.022 | 121-44-8 | 0.23 | 0.26 | 0.26 | 0.22 | 0.27 |
Vanillin | Vanilla | 0.0012 | 121-33-5 | 0.49 | 0.56 | 0.70 | 0.83 | 0.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, L.; Chan, S.W.; Leong, S.Y.; Guo, M.; Hou, Z.; Xu, X.; Singaram, N.; Lin, D.; Qiao, X.; Wang, L.; et al. Understanding the Aroma Profiles of Hui Li Red Sichuan Pepper (Zanthoxylum bungeanum Maxim) Across Harvesting Periods Using Sensory Evaluation, E-Nose and GC-IMS Techniques. Foods 2025, 14, 2285. https://doi.org/10.3390/foods14132285
He L, Chan SW, Leong SY, Guo M, Hou Z, Xu X, Singaram N, Lin D, Qiao X, Wang L, et al. Understanding the Aroma Profiles of Hui Li Red Sichuan Pepper (Zanthoxylum bungeanum Maxim) Across Harvesting Periods Using Sensory Evaluation, E-Nose and GC-IMS Techniques. Foods. 2025; 14(13):2285. https://doi.org/10.3390/foods14132285
Chicago/Turabian StyleHe, Lian, Sook Wah Chan, Sze Ying Leong, Mingyi Guo, Zhiyong Hou, Xiangbo Xu, Nallammai Singaram, Dan Lin, Xing Qiao, Lin Wang, and et al. 2025. "Understanding the Aroma Profiles of Hui Li Red Sichuan Pepper (Zanthoxylum bungeanum Maxim) Across Harvesting Periods Using Sensory Evaluation, E-Nose and GC-IMS Techniques" Foods 14, no. 13: 2285. https://doi.org/10.3390/foods14132285
APA StyleHe, L., Chan, S. W., Leong, S. Y., Guo, M., Hou, Z., Xu, X., Singaram, N., Lin, D., Qiao, X., Wang, L., Wu, H., & Lu, Z. (2025). Understanding the Aroma Profiles of Hui Li Red Sichuan Pepper (Zanthoxylum bungeanum Maxim) Across Harvesting Periods Using Sensory Evaluation, E-Nose and GC-IMS Techniques. Foods, 14(13), 2285. https://doi.org/10.3390/foods14132285