Natural Polymer-Based Coatings for Animal-Derived Products: A Review of Applications, Functionality, Characterization, and Challenges
Abstract
1. Introduction
- Structural and molecular characterization with Fourier-Transform Infrared Spectroscopy—FTIR (e.g., to identify functional groups and their molecular interaction/network to evaluate the correct manufacture of a film) [14] and Raman spectroscopy (e.g., as complementary insights to FTIR and other techniques) [15];
- Mechanical performance with tensile tests by determining Young’s modulus—E (MPa), tensile strength -TS (MPa), and elongation at break—EAB (%) (e.g., whey protein-zein blends) [18];
- Barrier and surface properties with Water Vapor Permeability—WVP (e.g., to quantify moisture barrier efficacy (g·mm/m2·day·kPa)) [19];
- Functional efficacy of antimicrobial and antibiofilm coatings against Salmonella and Escherichia coli isolated in meat using minimum inhibitory concentration (MIC) technique [21];
- Antioxidant capacity with total phenolic content (TPC), 2,2-diphenyl-1-picrylhydrazyl—DPPH, 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid)—ABTS Radical Scavenging of active films (e.g., to evaluate antioxidant activity and antioxidant release kinetics) [22], FRAP (Ferric Reducing Antioxidant Power) (e.g., to quantify electron-donating capacity) [21], and the thiobarbituric acid reactive substances (TBARS) or peroxide value (PV) assays (e.g., to track secondary oxidation during storage [23];
2. Natural Polymers: Categories of Coatings According to Composition
- Lipids: beeswax, carnauba wax, and fatty acids [26]
- Monomer polymers: polylactic acid (PLA), and polyhydroxyalkanoates (PHA) [31]
- Composite systems: polysaccharide-protein (e.g., chitosan-gelatin) [32], polysaccharide-lipid (e.g., alginate-beeswax), nanocomposites (ginger nanocomposites embedded in hydrogel matrices) [33], cellulose nanocrystals, microbially synthesized-polysaccharide (e.g., pullulan-chitosan) [30], and crude bioactive algal extract (Spirogyra sp.)–chitosan [34]
3. Coatings Characterization
3.1. Chemical Composition: Structural and Molecular Characterization (FTIR, FE-SEM, and XRD)
3.2. Thermal and Mechanical Properties
3.2.1. Thermal Stability
3.2.2. Mechanical Performance: Tensile Testing (TS, EAB, and E), and Rheology
3.3. Barrier and Surface Properties
3.3.1. Barrier Film’s Properties: Biodegradability, Moisture Content, Swelling Index, and WVTR
3.3.2. Surface Morphology: SEM and Atomic Force Microscopy (AFM)
3.4. Functional Efficacy
3.4.1. Antimicrobial Activity
3.4.2. Antioxidant Capacity
3.5. Food-Specific Characterization and Food Matrix Compatibility
4. Animal-Derived Products: Practical Applications and Mechanisms of Effects
4.1. Fresh Meat and Meat Products
4.2. Fresh and Processed Eggs
4.3. Dairy Products
4.4. Seafood Products
5. Drawbacks, Research Gaps and Future Recommendations
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Borrelle, S.B.; Ringma, J.; Lavender Law, K.; Monnahan, C.C.; Lebreton, L.; McGivern, A.; Murphy, E.; Jambeck, J.; Leonard, G.H.; Hilleary, M.A.; et al. Predicted Growth in Plastic Waste Exceeds Efforts to Mitigate Plastic Pollution. Science 2020, 369, 1515–1518. [Google Scholar] [CrossRef]
- European Commission. European Bioeconomy Policy—Stocktaking and Future Developments—Report from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions; Publications Office of the European Union: Luxembourg, 2022. [Google Scholar] [CrossRef]
- Farina, P.; Tognocchi, M.; Conte, G.; Casarosa, L.; Trusendi, F.; Conti, B. Benefits of Essential Oil-Enriched Chitosan on Beef: From Appearance and Odour Improvement to Protection Against Blowfly Oviposition. Foods 2025, 14, 897. [Google Scholar] [CrossRef]
- Göçmez, E.B.; İlhak, O.İ. Effect of Marination with Bioprotective Culture-Containing Marinade on Salmonella spp. and Listeria monocytogenes in Chicken Breast Meat. J. Food Sci. 2025, 90, e70174. [Google Scholar] [CrossRef] [PubMed]
- Muncke, J.; Andersson, A.M.; Backhaus, T.; Boucher, J.M.; Carney Almroth, B.; Castillo Castillo, A.; Chevrier, J.; Demeneix, B.A.; Emmanuel, J.A.; Fini, J.B.; et al. Impacts of Food Contact Chemicals on Human Health: A Consensus Statement. Environ. Health 2020, 19, 25. [Google Scholar] [CrossRef] [PubMed]
- Yaghoubi, M.; Ayaseh, A.; Alirezalu, K.; Nemati, Z.; Pateiro, M.; Lorenzo, J.M. Effect of Chitosan Coating Incorporated with Artemisia fragrans Essential Oil on Fresh Chicken Meat during Refrigerated Storage. Polymers 2021, 13, 716. [Google Scholar] [CrossRef]
- Faisal, M.; Gani, A.; Muzaifa, M.; Heriansyah, M.B.; Desvita, H.; Kamaruzzaman, S.; Sauqi, A.; Ardiansa, D. Edible Coating Combining Liquid Smoke from Oil Palm Empty Fruit Bunches and Turmeric Extract to Prolong the Shelf Life of Mackerel. Foods 2025, 14, 139. [Google Scholar] [CrossRef]
- Sun, J.; Wang, T.; Liu, L.; Li, Q.; Liu, H.; Wang, X.; Liu, M.; Zhang, H. Preparation and Application of Edible Chitosan Coating Incorporating Natamycin. Polymers 2025, 17, 1062. [Google Scholar] [CrossRef] [PubMed]
- Vargas-Ramella, M.; da Silva, D.; Dilarri, G.; Zortea, A.V.L.; Mendes, C.R.; de Souza Laurentino, G.; Campagnol, P.C.B.; de Oliveira, A.F.; da Silveira, C.B. Quality Effects of Sodium Alginate Coating Cross-Linked with CaCl2 on Mugil Liza Fillets during Storage. Food Control 2025, 170, 111048. [Google Scholar] [CrossRef]
- Li, H.; Tang, R.; Mustapha, W.A.W.; Liu, J.; Faridul Hasan, K.M.; Li, X.; Huang, M. Application of Gelatin Composite Coating in Pork Quality Preservation during Storage and Mechanism of Gelatin Composite Coating on Pork Flavor. Gels 2022, 8, 21. [Google Scholar] [CrossRef]
- Zandona, E.; Vukelić, M.; Hanousek Čiča, K.; Zandona, A.; Mrvčić, J.; Katalinić, M.; Cindrić, I.; Abdurramani, A.; Jurina, I.B. Bioactive Properties of the Microwave-Assisted Olive Leaf Extract and Its Incorporation into a Whey Protein Isolate Coating of Semi-Hard Cheese. Foods 2025, 14, 1496. [Google Scholar] [CrossRef]
- Echegaray, N.; Goksen, G.; Kumar, M.; Sharma, R.; Hassoun, A.; Lorenzo, J.M.; Dar, B.N. A Critical Review on Protein-Based Smart Packaging Systems: Understanding the Development, Characteristics, Innovations, and Potential Applications. Crit. Rev. Food Sci. Nutr. 2023, 64, 8633–8648. [Google Scholar] [CrossRef] [PubMed]
- Nunes, C.; Silva, M.; Farinha, D.; Sales, H.; Pontes, R.; Nunes, J. Edible Coatings and Future Trends in Active Food Packaging–Fruits’ and Traditional Sausages’ Shelf Life Increasing. Foods 2023, 12, 3308. [Google Scholar] [CrossRef]
- Choudhary, S.; Sharma, K.; Mishra, P.K.; Kumar, V.; Sharma, V. Development and Characterization of Biodegradable Agarose/Gum Neem/Nanohydroxyapatite/Polyoxyethylene Sorbitan Monooleate Based Edible Bio-Film for Applications towards a Circular Economy. Environ. Technol. Innov. 2023, 29, 103023. [Google Scholar] [CrossRef]
- Qiao, D.; Li, M.; Chen, J.; Lin, L.; Lu, J.; Zhao, G.; Zhang, B.; Xie, F. Combination of Crosslinked Zein Film Enhances the Water Barrier and Mechanical Properties of Deacetylated Konjac Glucomannan/Agar-Based Bilayer Films. Food Chem. 2025, 475, 143350. [Google Scholar] [CrossRef]
- Atta, O.M.; Manan, S.; Ahmed, A.A.Q.; Awad, M.F.; Ul-Islam, M.; Subhan, F.; Ullah, M.W.; Yang, G. Development and Characterization of Yeast-Incorporated Antimicrobial Cellulose Biofilms for Edible Food Packaging Application. Polymers 2021, 13, 2310. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Córdoba, L.J.; Norton, I.T.; Batchelor, H.K.; Gkatzionis, K.; Spyropoulos, F.; Sobral, P.J.A. Physico-Chemical, Antimicrobial and Antioxidant Properties of Gelatin-Chitosan Based Films Loaded with Nanoemulsions Encapsulating Active Compounds. Food Hydrocoll. 2018, 79, 544–559. [Google Scholar] [CrossRef]
- Kalita, P.; Bora, N.S.; Gogoi, B.; Goswami, A.; Pachuau, L.; Das, P.J.; Baishya, D.; Roy, S. Improving the Hydrophobic Nature of Biopolymer Based Edible Packaging Film: A Review. Food Chem. 2025, 479, 143793. [Google Scholar] [CrossRef]
- ASTM E96/E96M-22a; Standard Test Methods for Gravimetric Determination of Water Vapor Transmission Rate of Materials. ASTM International: West Conshohocken, PA, USA, 2022.
- Ahmed, S.B.; Doğan, N.; Akgul, Y.; Doğan, C. Functional Bio-Nanofibers for Active Packaging: Electro-Blown Gelatin/Xanthan Gum with Carbon Dots. Bionanoscience 2025, 15, 338. [Google Scholar] [CrossRef]
- Johnson, A.M.; Thamburaj, S.; Etikala, A.; Sarma, C.; Mummaleti, G.; Kalakandan, S.K. Evaluation of Antimicrobial and Antibiofilm Properties of Chitosan Edible Coating with Plant Extracts against Salmonella and E. coli Isolated from Chicken. J. Food Process. Preserv. 2022, 46, e16653. [Google Scholar] [CrossRef]
- Luciano, C.G.; Tessaro, L.; Lourenço, R.V.; Bittante, A.M.Q.B.; Fernandes, A.M.; Sobral, P.J.A. Bi-Layer Gelatin Active Films with “Pitanga” Leaf Hydroethanolic Extract and/or Natamycin in the Second Layer. J. Appl. Polym. Sci. 2021, 138, 106–119. [Google Scholar] [CrossRef]
- Zheng, K.; Zhang, J.; Yang, F.; Wang, W.; Li, W.; Qin, C. Properties and Biological Activity of Chitosan-Coix Seed Starch Films Incorporated with Nano Zinc Oxide and Artemisia annua Essential Oil for Pork Preservation. LWT 2022, 164, 113665. [Google Scholar] [CrossRef]
- Gagaoua, M.; Bhattacharya, T.; Lamri, M.; Oz, F.; Dib, A.L.; Oz, E.; Uysal-Unalan, I.; Tomasevic, I. Green Coating Polymers in Meat Preservation. Coatings 2021, 11, 1379. [Google Scholar] [CrossRef]
- Pires, A.F.; Díaz, O.; Cobos, A.; Pereira, C.D. A Review of Recent Developments in Edible Films and Coatings-Focus on Whey-Based Materials. Foods 2024, 13, 2638. [Google Scholar] [CrossRef] [PubMed]
- Kanelaki, A.; Zampouni, K.; Mourtzinos, I.; Katsanidis, E. Hydrogels, Oleogels and Bigels as Edible Coatings of Sardine Fillets and Delivery Systems of Rosemary Extract. Gels 2022, 8, 660. [Google Scholar] [CrossRef]
- Venkatachalam, K.; Lekjing, S.; Noonim, P. Influences of Different Coating Materials on the Quality Changes of Hardboiled Salted Duck Eggs under Ambient Storage. Brazilian Arch. Biol. Technol. 2019, 62, e19180471. [Google Scholar] [CrossRef]
- Ezati, P.; Priyadarshi, R.; Bang, Y.J.; Rhim, J.W. CMC and CNF-Based Intelligent PH-Responsive Color Indicator Films Integrated with Shikonin to Monitor Fish Freshness. Food Control 2021, 126, 108046. [Google Scholar] [CrossRef]
- El Sheikha, A.F.; Allam, A.Y.; Oz, E.; Khan, M.R.; Proestos, C.; Oz, F. Edible Xanthan/Propolis Coating and Its Effect on Physicochemical, Microbial, and Sensory Quality Indices in Mackerel Tuna (Euthynnus affinis) Fillets during Chilled Storage. Gels 2022, 8, 405. [Google Scholar] [CrossRef]
- Roy, S.; Priyadarshi, R.; Rhim, J.W. Development of Multifunctional Pullulan/Chitosan-Based Composite Films Reinforced with ZnO Nanoparticles and Propolis for Meat Packaging Applications. Foods 2021, 10, 2789. [Google Scholar] [CrossRef]
- Trajkovska Petkoska, A.; Daniloski, D.; D’Cunha, N.M.; Naumovski, N.; Broach, A.T. Edible Packaging: Sustainable Solutions and Novel Trends in Food Packaging. Food Res. Int. 2021, 140, 109981. [Google Scholar] [CrossRef]
- Farajzadeh, F.; Motamedzadegan, A.; Shahidi, S.A.; Hamzeh, S. The Effect of Chitosan-Gelatin Coating on the Quality of Shrimp (Litopenaeus vannamei) under Refrigerated Condition. Food Control 2016, 67, 163–170. [Google Scholar] [CrossRef]
- Raduly, F.M.; Raditoiu, V.; Raditoiu, A.; Grapin, M.; Constantin, M.; Răut, I.; Nicolae, C.A.; Frone, A.N. Ag0–Ginger Nanocomposites Integrated into Natural Hydrogelated Matrices Used as Antimicrobial Delivery Systems Deposited on Cellulose Fabrics. Gels 2024, 10, 106. [Google Scholar] [CrossRef] [PubMed]
- Soiklom, S.; Siri-anusornsak, W.; Petchpoung, K.; Soiklom, S.; Maneeboon, T. Development of Bioactive Edible Film and Coating Obtained from Spirogyra sp. Extract Applied for Enhancing Shelf Life of Fresh Products. Foods 2025, 14, 804. [Google Scholar] [CrossRef] [PubMed]
- Antonino, C.; Difonzo, G.; Faccia, M.; Caponio, F. Effect of Edible Coatings and Films Enriched with Plant Extracts and Essential Oils on the Preservation of Animal-Derived Foods. J. Food Sci. 2024, 89, 748–772. [Google Scholar] [CrossRef]
- Hashemi, S.M.B.; Kaveh, S.; Abedi, E.; Phimolsiripol, Y. Polysaccharide-Based Edible Films/Coatings for the Preservation of Meat and Fish Products: Emphasis on Incorporation of Lipid-Based Nanosystems Loaded with Bioactive Compounds. Foods 2023, 12, 3268. [Google Scholar] [CrossRef]
- Padilla, C.; Pępczyńska, M.; Vizueta, C.; Quero, F.; Díaz-Calderón, P.; Macnaughtan, W.; Foster, T.; Enrione, J. The Effect of Cellulose Nanocrystals on the Molecular Organization, Thermomechanical, and Shape Memory Properties of Gelatin-Matrix Composite Films. Gels 2024, 10, 766. [Google Scholar] [CrossRef]
- Choudhary, S.; Sharma, K.; Bhatti, M.S.; Sharma, V.; Kumar, V. DOE-Based Synthesis of Gellan Gum-Acrylic Acid-Based Biodegradable Hydrogels: Screening of Significant Process Variables and in Situ Field Studies. RSC Adv. 2022, 12, 4780–4794. [Google Scholar] [CrossRef]
- Priyadarshi, R.; Kim, S.M.; Rhim, J.W. Pectin/Pullulan Blend Films for Food Packaging: Effect of Blending Ratio. Food Chem. 2021, 347, 129022. [Google Scholar] [CrossRef] [PubMed]
- Chuesiang, P.; Siripatrawan, U.; Sanguandeekul, R.; McClements, D.J.; McLandsborough, L. Antimicrobial Activity of PIT-Fabricated Cinnamon Oil Nanoemulsions: Effect of Surfactant Concentration on Morphology of Foodborne Pathogens. Food Control 2019, 98, 405–411. [Google Scholar] [CrossRef]
- Mora-Palma, R.M.; Martinez-Munoz, P.E.; Contreras-Padilla, M.; Feregrino-Perez, A.; Rodriguez-Garcia, M.E. Evaluation of Water Diffusion, Water Vapor Permeability Coefficients, Physicochemical and Antimicrobial Properties of Thin Films of Nopal Mucilage, Orange Essential Oil, and Orange Pectin. J. Food Eng. 2024, 366, 111865. [Google Scholar] [CrossRef]
- Yan, T.; Ren, Y.; Zhang, R.; Li, K.; Yang, B.; Tong, M.; He, J. Biodegradable Chitosan-Based Films Decorated with Biosynthetic Copper Oxide Nanoparticle for Post-Harvest Tomato Preservation. Int. J. Biol. Macromol. 2025, 295, 139595. [Google Scholar] [CrossRef]
- Yang, X.; Zhao, D.; Ge, S.; Bian, P.; Xue, H.; Lang, Y. Alginate-Based Edible Coating with Oregano Essential Oil/β-Cyclodextrin Inclusion Complex for Chicken Breast Preservation. Int. J. Biol. Macromol. 2023, 251, 126126. [Google Scholar] [CrossRef] [PubMed]
- Peiyao, C.; Shuhao, H.; Yinxin, L.; Cheng, L.; Xinyi, Z.; Xingmeng, L.; Cui, S.; Chongde, S.; Huang, L. Preparation and Characterization of Chitosan Based Edible Coating Containing Vanillin/HPβCD Inclusion Complex and Its Application in Chicken Preservation. Food Control 2024, 166, 110683. [Google Scholar] [CrossRef]
- Zabihollahi, N.; Alizadeh, A.; Almasi, H.; Hanifian, S.; Hamishekar, H. Development and Characterization of Carboxymethyl Cellulose Based Probiotic Nanocomposite Film Containing Cellulose Nanofiber and Inulin for Chicken Fillet Shelf Life Extension. Int. J. Biol. Macromol. 2020, 160, 409–417. [Google Scholar] [CrossRef]
- Such, A.; Wisła-Świder, A.; Węsierska, E.; Nowak, E.; Szatkowski, P.; Kopcińska, J.; Koronowicz, A. Edible Chitosan-Alginate Based Coatings Enriched with Turmeric and Oregano Additives: Formulation, Antimicrobial and Non-Cytotoxic Properties. Food Chem. 2023, 426, 136662. [Google Scholar] [CrossRef]
- ASTM D882-18; Standard Test Method for Tensile Properties of Thin Plastic Sheeting. ASTM International: West Conshohocken, PA, USA, 2018.
- ASTM D638-14; Standard Test Method for Tensile Properties of Plastics. 9th ed. ASTM International: West Conshohocken, PA, USA, 2014.
- Zhang, X.; Lin, L.; Zhou, H.; Zhou, G.; Wang, X. All-Natural Chitosan-Based Polyimine Vitrimer with Multiple Advantages: A Novel Strategy to Solve Nondegradable Plastic Waste Pollution. J. Hazard. Mater. 2024, 465, 133030. [Google Scholar] [CrossRef]
- Akhter, R.; Masoodi, F.A.; Wani, T.A. Chitosan, Gelatin and Pectin Based Bionanocomposite Films with Rosemary Essential Oil as an Active Ingredient for Future Foods. Int. J. Biol. Macromol. 2024, 272, 132813. [Google Scholar] [CrossRef] [PubMed]
- Daei, S.; Mohtarami, F.; Pirsa, S. A Biodegradable Film Based on Carrageenan Gum/Plantago Psyllium Mucilage/Red Beet Extract: Physicochemical Properties, Biodegradability and Water Absorption Kinetic. Polym. Bull. 2022, 79, 11317–11338. [Google Scholar] [CrossRef]
- Dalei, G.; Das, S.; Mohanty, D.; Biswal, S.; Jena, D.; Dehury, P.; Das, B.R. Xanthan Gum-Pectin Edible Coating Enriched with Sweet Orange (Citrus sinensis L.) Peel Essential Oil for Chicken Meat Preservation. Food Biophys. 2025, 20, 52. [Google Scholar] [CrossRef]
- Trodtfeld, F.; Tölke, T.; Wiegand, C. Developing a Prolamin-Based Gel for Food Packaging: In-Vitro Assessment of Cytocompatibility. Gels 2023, 9, 740. [Google Scholar] [CrossRef]
- Mohammadi, L.; Wardana, A.A.; Tanaka, F.; Tanaka, F. The Physicochemical, Mechanical, and Antifungal Properties of Sodium Alginate Film Containing Japanese Rice Vinegar and Peppermint (Mentha piperita) Oil as Bio-Composite Packaging. Int. J. Biol. Macromol. 2024, 281, 136511. [Google Scholar] [CrossRef]
- Chen, W.; Liu, H.; Chai, Y.; Guo, C.; Luo, C.; Chen, D.; Cheng, X.; Wang, F.; Huang, C. Chitosan–Pullulan Films Enriched with Artemisia annua Essential Oil: Characterization and Application in Grape Preservation. Int. J. Biol. Macromol. 2023, 243, 125216. [Google Scholar] [CrossRef] [PubMed]
- Balti, R.; Mansour, M.B.; Sayari, N.; Yacoubi, L.; Rabaoui, L.; Brodu, N.; Massé, A. Development and Characterization of Bioactive Edible Films from Spider Crab (Maja crispata) Chitosan Incorporated with Spirulina Extract. Int. J. Biol. Macromol. 2017, 105, 1464–1472. [Google Scholar] [CrossRef] [PubMed]
- da Rocha, M.; Alemán, A.; Romani, V.P.; López-Caballero, M.E.; Gómez-Guillén, M.C.; Montero, P.; Prentice, C. Effects of Agar Films Incorporated with Fish Protein Hydrolysate or Clove Essential Oil on Flounder (Paralichthys orbignyanus) Fillets Shelf-Life. Food Hydrocoll. 2018, 81, 351–363. [Google Scholar] [CrossRef]
- Salimiraad, S.; Safaeian, S.; Basti, A.A.; Khanjari, A.; Nadoushan, R.M. Characterization of Novel Probiotic Nanocomposite Films Based on Nano Chitosan/Nano Cellulose/Gelatin for the Preservation of Fresh Chicken Fillets. LWT 2022, 162, 113429. [Google Scholar] [CrossRef]
- Betancur-D’Ambrosio, M.C.; Pérez-Cervera, C.E.; Barrera-Martinez, C.; Andrade-Pizarro, R. Antimicrobial Activity, Mechanical and Thermal Properties of Cassava Starch Films Incorporated with Beeswax and Propolis. J. Food Sci. Technol. 2024, 61, 782–789. [Google Scholar] [CrossRef]
- Matadamas-Ortiz, A.; Hernández-Hernández, E.; Castaño-Tostado, E.; Amaro-Reyes, A.; García-Almendárez, B.E.; Velazquez, G.; Regalado-González, C. Long-Term Refrigerated Storage of Beef Using an Active Edible Film Reinforced with Mesoporous Silica Nanoparticles Containing Oregano Essential Oil (Lippia graveolens Kunth). Int. J. Mol. Sci. 2023, 24, 92. [Google Scholar] [CrossRef]
- Cui, H.; Hanus, R.; Kessler, M.R. Degradation of ROMP-Based Bio-Renewable Polymers by UV Radiation. Polym. Degrad. Stab. 2013, 98, 2357–2365. [Google Scholar] [CrossRef]
- Shah, Y.A.; Bhatia, S.; Al-Harrasi, A.; Afzaal, M.; Saeed, F.; Anwer, M.K.; Khan, M.R.; Jawad, M.; Akram, N.; Faisal, Z. Mechanical Properties of Protein-Based Food Packaging Materials. Polymers 2023, 15, 1724. [Google Scholar] [CrossRef]
- Vargas-Ramella, M.; Lorenzo, J.M.; Zamuz, S.; Montes, L.; Santos López, E.M.; Moreira, R.; Franco, D. Influence of Pork Backfat Replacement by Microencapsulated Fish Oil on Physicochemical, Rheological, Nutritional, and Sensory Features of Pork Liver Pâtés. LWT 2022, 163, 113522. [Google Scholar] [CrossRef]
- Pluta-Kubica, A.; Jamróz, E.; Juszczak, L.; Krzyściak, P.; Zimowska, M. Characterization of Furcellaran-Whey Protein Isolate Films with Green Tea or Pu-Erh Extracts and Their Application as Packaging of an Acid-Curd Cheese. Food Bioprocess Technol. 2021, 14, 78–92. [Google Scholar] [CrossRef]
- Estrella-Osuna, D.E.; Ruiz-Cruz, S.; Rodríguez-Félix, F.; Figueroa-Enríquez, C.E.; González-Ríos, H.; Fernández-Quiroz, D.; Márquez-Ríos, E.; Tapia-Hernández, J.A.; Pérez-Álvarez, J.Á.; Suárez-Jiménez, G.M. Rheological Properties and Antioxidant Activity of Gelatin-Based Edible Coating Incorporating Tomato (Solanum lycopersicum L.) Extract. Gels 2024, 10, 624. [Google Scholar] [CrossRef]
- Konrade, D.; Gaidukovs, S.; Vilaplana, F.; Sivan, P. Pectin from Fruit- and Berry-Juice Production by-Products: Determination of Physicochemical, Antioxidant and Rheological Properties. Foods 2023, 12, 1615. [Google Scholar] [CrossRef]
- Suhag, R.; Kumar, N.; Petkoska, A.T.; Upadhyay, A. Film Formation and Deposition Methods of Edible Coating on Food Products: A Review. Food Res. Int. 2020, 136, 109582. [Google Scholar] [CrossRef] [PubMed]
- Commission Regulation (EU) No 10/2011 of 14 January 2011 on Plastic Materials and Articles Intended to Come into Contact with Food Text. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex%3A32011R0010 (accessed on 23 June 2025).
- ASTM D6400-21; Standard Specification for Labeling of Plastics Designed to Be Aerobically Composted in Municipal or Industrial Facilities. ASTM: West Conshohocken, PA, USA, 2022. Available online: https://compass.astm.org/document/?contentCode=ASTM%7CD6400-21%7Cen-US&proxycl=https%3A%2F%2Fsecure.astm.org&fromLogin=true (accessed on 29 April 2025).
- Marzlan, A.A.; Muhialdin, B.J.; Zainal Abedin, N.H.; Manshoor, N.; Ranjith, F.H.; Anzian, A.; Meor Hussin, A.S. Incorporating Torch Ginger (Etlingera elatior Jack) Inflorescence Essential Oil onto Starch-Based Edible Film towards Sustainable Active Packaging for Chicken Meat. Ind. Crops Prod. 2022, 184, 115058. [Google Scholar] [CrossRef]
- Choudhary, S.; Sharma, K.; Kumar, V.; Bhatia, J.K.; Sharma, S.; Sharma, V. Microwave-Assisted Synthesis of Gum Gellan-Cl-Poly(Acrylic-Co- Methacrylic Acid) Hydrogel for Cationic Dyes Removal. Polym. Bull. 2020, 77, 4917–4935. [Google Scholar] [CrossRef]
- ISO 14855-2; Determination of the Ultimate Aerobic Biodegradability of Plastic Materials Under Controlled Composting Conditions—Method by Analysis of Evolved Carbon Dioxide. ISO: Geneva, Switzerland, 2018.
- OECD Biodegradability in Seawater, OECD Guidelines for the Testing of Chemicals. Available online: https://www.oecd.org/en/publications/test-no-306-biodegradability-in-seawater_9789264070486-en.html (accessed on 29 April 2025).
- Khan, M.R.; Sadiq, M.B.; Mehmood, Z. Development of Edible Gelatin Composite Films Enriched with Polyphenol Loaded Nanoemulsions as Chicken Meat Packaging Material. CYTA-J. Food 2020, 18, 137–146. [Google Scholar] [CrossRef]
- Hassan, B.; Chatha, S.A.S.; Hussain, A.I.; Zia, K.M.; Akhtar, N. Recent Advances on Polysaccharides, Lipids and Protein Based Edible Films and Coatings: A Review. Int. J. Biol. Macromol. 2018, 109, 1095–1107. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Durst, R.W.; Wrolstad, R.E. Determination of Total Monomeric Anthocyanin Pigment Content of Fruit Juices, Beverages, Natural Colorants, and Wines by the PH Differential Method: Collaborative Study. J. AOAC Int. 2005, 88, 1269–1278. [Google Scholar] [CrossRef] [PubMed]
- Bajpai, S.K.; Bajpai, M.; Shah, F.F. Alginate Dialdehyde (AD)-Crosslinked Casein Films: Synthesis, Characterization and Water Absorption Behavior. Des. Monomers Polym. 2016, 19, 406–419. [Google Scholar] [CrossRef]
- Iñiguez-Moreno, M.; González-González, R.B. Effect of Gelatin and Salicylic Acid Incorporated in Chitosan Coatings on Strawberry Preservation. Int. J. Biol. Macromol. 2025, 305, 140918. [Google Scholar] [CrossRef]
- Javan, A.J.; Baktash, S.; Yancheshmeh, B.S.; Parsaeimehr, M.; Madanchi, H.; Abdolshahi, A.; Marvdashti, L.M.; Shriatifar, N. Effect of Vicia villosa Protein Isolate-Based Edible Coating Incorporated with ZnO Nanoparticles on the Shelf-Life of Chicken Breast Meat during Cold Storage. Food Hydrocoll. Health 2024, 5, 100176. [Google Scholar] [CrossRef]
- Bajpai, S.K.; Chand, N.; Ahuja, S.; Roy, M.K. Curcumin/Cellulose Micro Crystals/Chitosan Films: Water Absorption Behavior and in Vitro Cytotoxicity. Int. J. Biol. Macromol. 2015, 75, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Galus, S.; Karwacka, M.; Ciurzyńska, A.; Janowicz, M. Effect of Drying Conditions and Jojoba Oil Incorporation on the Selected Physical Properties of Hydrogel Whey Protein-Based Edible Films. Gels 2024, 10, 340. [Google Scholar] [CrossRef] [PubMed]
- Galus, S.; Mikus, M.; Ciurzyńska, A.; Janowicz, M. Whey Protein Isolate-Based Edible Coatings Incorporated with Jojoba Oil as a Novel Approach for Improving the Quality of Fresh-Cut Root Parsley during Refrigerated Storage. Appl. Sci. 2022, 12, 9023. [Google Scholar] [CrossRef]
- Galus, S.; Kowalska, H.; Ignaczak, A.; Kowalska, J.; Karwacka, M.; Ciurzyńska, A.; Janowicz, M. Effects of Polysaccharide-Based Edible Coatings on the Quality of Fresh-Cut Beetroot (Beta vulgaris L.) During Cold Storage. Coatings 2025, 15, 583. [Google Scholar] [CrossRef]
- Umaraw, P.; Munekata, P.E.S.; Verma, A.K.; Barba, F.J.; Singh, V.P.; Kumar, P.; Lorenzo, J.M. Edible Films/Coating with Tailored Properties for Active Packaging of Meat, Fish and Derived Products. Trends Food Sci. Technol. 2020, 98, 10–24. [Google Scholar] [CrossRef]
- Pereira, C.D.; Varytskaya, H.; Łydzińska, O.; Szkolnicka, K.; Gomes, D.; Pires, A. Effect of Sheep’s Whey Edible Coatings with a Bioprotective Culture, Kombucha Tea or Oregano Essential Oil on Cheese Characteristics. Foods 2024, 13, 4132. [Google Scholar] [CrossRef]
- Cruz-Guzmán, J.A.; Garzón-García, A.M.; Ruíz-Cruz, S.; Márquez-Ríos, E.; Valdez-Hurtado, S.; Paredes-Quijada, G.T.; Rodríguez-Figueroa, J.C.; Silvas-García, M.I.; Montoya-Camacho, N.; Ocaño-Higuera, V.M.; et al. The Effect of Muicle–Chitosan Edible Coatings on the Physical, Chemical, and Microbiological Quality of Cazon Fish (Mustelus lunulatus) Fillets Stored in Ice. Foods 2025, 14, 1619. [Google Scholar] [CrossRef]
- Thakur, S.; Bains, A.; Kumar, A.; Goksen, G.; Dhull, S.B.; Ali, N.; Kaushik, R.; Iqbal, M.; Chawla, P. Synthesis of Hydrothermal-Assisted Papaya Peel-Derived Carbon Quantum Dots Impregnated Carboxymethyl Cellulose and Pectin Crosslinked Nanohydrogel for Shelf-Life Enhancement of Strawberry. Int. J. Biol. Macromol. 2024, 283, 137591. [Google Scholar] [CrossRef]
- Al-Hilifi, S.A.; Al-Ali, R.M.; Petkoska, A.T. Ginger Essential Oil as an Active Addition to Composite Chitosan Films: Development and Characterization. Gels 2022, 8, 327. [Google Scholar] [CrossRef]
- Vargas-Ramella, M.; Lorenzo, J.M.; Zamuz, S.; Valdés, M.E.; Moreno, D.; Guamán Balcázar, M.C.; Fernández-Arias, J.M.; Reyes, J.F.; Franco, D. The Antioxidant Effect of Colombian Berry (Vaccinium meridionale Sw.) Extracts to Prevent Lipid Oxidation during Pork Patties Shelf-Life. Antioxidants 2021, 10, 1290. [Google Scholar] [CrossRef]
- Kurek, M.; Pišonić, P.; Ščetar, M.; Janči, T.; Čanak, I.; Vidaček Filipec, S.; Benbettaieb, N.; Debeaufort, F.; Galić, K. Edible Coatings for Fish Preservation: Literature Data on Storage Temperature, Product Requirements, Antioxidant Activity, and Coating Performance—A Review. Antioxidants 2024, 13, 1417. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, A.S.; Elsebaie, E.M.; Abdelrhman, W.M.; Abdulmaguid, N.Y.M.; Bahnasy, R.M.; Elgendy, M.S.A.; Elashry, A.M.M.M.; El-Hassanin, M.F.; El-Wakeil, N.H.M.; Khalil, A.M.M.; et al. Evaluation of In Vitro Antioxidant, Anti-Obesity, and Anti-Diabetic Activities of Opuntia Ficus Cladodes Gel and Its Application as a Preservative Coating for Shrimp during Refrigerated Storage. Gels 2023, 9, 716. [Google Scholar] [CrossRef] [PubMed]
- Vargas-Ramella, M.; Pateiro, M.; Gavahian, M.; Franco, D.; Zhang, W.; Khaneghah, A.M.; Guerrero-Sánchez, Y.; Lorenzo, J.M. Impact of Pulsed Light Processing Technology on Phenolic Compounds of Fruits and Vegetables. Trends Food Sci. Technol. 2021, 115, 1–11. [Google Scholar] [CrossRef]
- Fernando, S.S.; Jo, C.; Mudannayake, D.C.; Jayasena, D.D. An Overview of the Potential Application of Chitosan in Meat and Meat Products. Carbohydr. Polym. 2024, 324, 121477. [Google Scholar] [CrossRef]
- Colaruotolo, L.A.; Singh, S.S.; Dobson, S.; Lim, L.T.; Joye, I.J.; Rogers, M.A.; Corradini, M.G. Mapping Deterioration in Electrospun Zein Nonwoven Nanostructures Encapsulating Corn Oil. Curr. Res. Food Sci. 2024, 9, 100801. [Google Scholar] [CrossRef] [PubMed]
- Mihalca, V.; Kerezsi, A.D.; Weber, A.; Gruber-traub, C.; Schmucker, J.; Vodnar, D.C.; Dulf, F.V.; Socaci, S.A.; Fărcaș, A.; Mureșan, C.I.; et al. Protein-based Films and Coatings for Food Industry Applications. Polymers 2021, 13, 769. [Google Scholar] [CrossRef]
- Qin, X.; Chen, L.; Zhao, J.; Zhang, W.; Tian, H.; Bi, S.; Jin, G.; Zhou, Y.; Zhu, Q.; Cheng, Y.; et al. Crosslinked Protein-Polysaccharide Nanocomposite Coating for Pork Preservation: Impact on Physicochemical Properties and Microbial Structure. Food Chem. 2025, 470, 142721. [Google Scholar] [CrossRef]
- Domínguez, R.; Pateiro, M.; Gagaoua, M.; Barba, F.J.; Zhang, W.; Lorenzo, J.M. A Comprehensive Review on Lipid Oxidation in Meat and Meat Products. Antioxidants 2019, 8, 429. [Google Scholar] [CrossRef]
- Karwowska, M.; Łaba, S.; Szczepański, K. Food Loss and Waste in Meat Sector—Why the Consumption Stage Generates the Most Losses? Sustainability 2021, 13, 6227. [Google Scholar] [CrossRef]
- Wójcik, W.; Łukasiewicz-Mierzejewska, M.; Damaziak, K.; Bień, D. Biogenic Amines in Poultry Meat and Poultry Products: Formation, Appearance, and Methods of Reduction. Animals 2022, 12, 1577. [Google Scholar] [CrossRef] [PubMed]
- Serrano-León, J.S.; Bergamaschi, K.B.; Yoshida, C.M.P.; Saldaña, E.; Selani, M.M.; Rios-Mera, J.D.; Alencar, S.M.; Contreras-Castillo, C.J. Chitosan Active Films Containing Agro-Industrial Residue Extracts for Shelf Life Extension of Chicken Restructured Product. Food Res. Int. 2018, 108, 93–100. [Google Scholar] [CrossRef]
- Zhou, X.; Zong, X.; Zhang, M.; Ge, Q.; Qi, J.; Liang, J.; Xu, X.; Xiong, G. Effect of Konjac Glucomannan/Carrageenan-Based Edible Emulsion Coatings with Camellia Oil on Quality and Shelf-Life of Chicken Meat. Int. J. Biol. Macromol. 2021, 183, 331–339. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, Y.; Wang, H.; Liu, W.; Cheong, K.; Teng, B. Effect of Sodium Alginate-Agar Coating Containing Ginger Essential Oil on the Shelf Life and Quality of Beef. Food Control 2021, 130, 108216. [Google Scholar] [CrossRef]
- Alizadeh Behbahani, B.; Noshad, M.; Jooyandeh, H. Improving Oxidative and Microbial Stability of Beef Using Shahri Balangu Seed Mucilage Loaded with Cumin Essential Oil as a Bioactive Edible Coating. Biocatal. Agric. Biotechnol. 2020, 24, 101563. [Google Scholar] [CrossRef]
- Diao, X.; Huan, Y.; Chitrakar, B. Extending the Shelf Life of Ready-to-Eat Spiced Chicken Meat: Garlic Aqueous Extracts-Carboxymethyl Chitosan Ultrasonicated Coating Solution. Food Bioprocess Technol. 2020, 13, 786–796. [Google Scholar] [CrossRef]
- Antoniadou, D.; Govaris, A.; Ambrosiadis, I.; Sergelidis, D. Effect of Chitosan Coating on the Shelf Life of Ready-to-Eat Bovine Meatballs and the Control of Listeria monocytogenes Growth on Their Surface during Refrigeration Storage. J. Hell. Vet. Med. Soc. 2019, 70, 1495–1502. [Google Scholar] [CrossRef]
- Huang, M.; Wang, H.; Xu, X.; Lu, X.; Song, X.; Zhou, G. Effects of Nanoemulsion-Based Edible Coatings with Composite Mixture of Rosemary Extract and ε-Poly-L-Lysine on the Shelf Life of Ready-to-Eat Carbonado Chicken. Food Hydrocoll. 2020, 102, 105576. [Google Scholar] [CrossRef]
- Venkatachalam, K.; Ieamkheng, S.; Noonim, P.; Lekjing, S. Effect of Edible Coating Made from Arrowroot Flour and Kaffir Lime Leaf Essential Oil on the Quality Changes of Pork Sausage under Prolonged Refrigerated Storage. Foods 2023, 12, 3691. [Google Scholar] [CrossRef]
- Kurpas, M.; Wieczorek, K.; Osek, J. Ready-to-Eat Meat Products as a Source of Listeria monocytogenes. J. Vet. Res. 2018, 62, 49–55. [Google Scholar] [CrossRef]
- Benavides-Reyes, C.; Folegatti, E.; Dominguez-Gasca, N.; Litta, G.; Sanchez-Rodriguez, E.; Rodriguez-Navarro, A.B.; Umar Faruk, M. Research Note: Changes in Eggshell Quality and Microstructure Related to Hen Age during a Production Cycle. Poult. Sci. 2021, 100, 101287. [Google Scholar] [CrossRef] [PubMed]
- Sharaf Eddin, A.; Ibrahim, S.A.; Tahergorabi, R. Egg Quality and Safety with an Overview of Edible Coating Application for Egg Preservation. Food Chem. 2019, 296, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Zhang, B.; Dong, J.; Lu, B.; Hu, C.; Tang, X. Egg Freshness Prediction Using a Comprehensive Analysis Based on Visible near Infrared Spectroscopy. Spectrosc. Lett. 2020, 53, 512–522. [Google Scholar] [CrossRef]
- Gabriela da Silva Pires, P.; Daniela da Silva Pires, P.; Cardinal, K.M.; Bavaresco, C. The Use of Coatings in Eggs: A Systematic Review. Trends Food Sci. Technol. 2020, 106, 312–321. [Google Scholar] [CrossRef]
- Morsy, M.K.; Sharoba, A.M.; Khalaf, H.H.; El-Tanahy, H.H.; Cutter, C.N. Efficacy of Antimicrobial Pullulan-Based Coating to Improve Internal Quality and Shelf-Life of Chicken Eggs During Storage. J. Food Sci. 2015, 80, M1066–M1074. [Google Scholar] [CrossRef]
- Pan, D.; Li, Y.; Hu, Y.; Li, R.; Gao, X.; Fan, X.; Fang, H.; Du, Q.; Zhou, C. Effect of Different Concentrations of Gellan Gum with/without 0.50% Basil Essential Oil on the Physicochemical Properties of Gellan Gum-Rice Bran Oil Coating Emulsions and Their Application in Egg Preservation. Food Chem. 2023, 418, 136030. [Google Scholar] [CrossRef]
- Liu, J.; Cheng, D.; Zhang, D.; Han, L.; Gan, Y.; Zhang, T.; Yu, Y. Incorporating ε-Polylysine Hydrochloride, Tea Polyphenols, Nisin, and Ascorbic Acid into Edible Coating Solutions: Effect on Quality and Shelf Life of Marinated Eggs. Food Bioprocess Technol. 2022, 15, 2683–2696. [Google Scholar] [CrossRef]
- Abd El-Rahim, A.M.; Mansour, A.I.A.; Abd-El Naby, A.N.; Saad, S.A. Influences of Whey Protein Concentrate Based-Antimicrobial Edible Film Coatings on Soft Cheese Properties. Egypt. J. Chem. 2024, 67, 603–612. [Google Scholar] [CrossRef]
- Zaiden, I.Q.; Al-Hadidy, Y.I. The Effectiveness of Edible Film from Corn Starch Supported with Clove Oil (Dianthus carphyllus L.) on the Microbial, Physiochemical and Sensory Evaluation Properties of Soft Cheese. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2025; Volume 1449, p. 012150. [Google Scholar]
- Pires, A.; Pietruszka, H.; Bożek, A.; Szkolnicka, K.; Gomes, D.; Díaz, O.; Cobos, A.; Pereira, C. Sheep’s Second Cheese Whey Edible Coatings with Oregano and Clary Sage Essential Oils Used as Sustainable Packaging Material in Cheese. Foods 2024, 13, 674. [Google Scholar] [CrossRef]
- Cano Embuena, A.I.; Cháfer Nácher, M.; Chiralt Boix, A.; Molina Pons, M.P.; Borrás Llopis, M.; Beltran Martínez, M.C.; González Martínez, C. Quality of Goat′s Milk Cheese as Affected by Coating with Edible Chitosan-Essential Oil Films. Int. J. Dairy Technol. 2017, 70, 68–76. [Google Scholar] [CrossRef]
- Silva, S.P.M.; Ribeiro, S.C.; Teixeira, J.A.; Silva, C.C.G. Application of an Alginate-Based Edible Coating with Bacteriocin-Producing Lactococcus Strains in Fresh Cheese Preservation. LWT 2022, 153, 112486. [Google Scholar] [CrossRef]
- Erceg, T.; Šovljanski, O.; Tomić, A.; Aćimović, M.; Stupar, A.; Baloš, S. Comparison of the Properties of Pullulan-Based Active Edible Coatings Implemented for Improving Sliced Cheese Shelf Life. Polymers 2024, 16, 178. [Google Scholar] [CrossRef] [PubMed]
- Chandan, R.C. Role of Milk and Dairy Foods in Nutrition and Health. In Dairy Processing and Quality Assurance; Chandan, R.C., Kilara, A., Shah, N.P., Eds.; Wiley: Hoboken, NJ, USA, 2015; pp. 428–466. [Google Scholar]
- El-Sayed, S.M.; Youssef, A.M. Emergence of Cheese Packaging by Edible Coatings for Enhancing Its Shelf-Life. J. Food Meas. Charact. 2024, 18, 5265–5280. [Google Scholar] [CrossRef]
- Ramos, Ó.L.; Pereira, J.O.; Silva, S.I.; Fernandes, J.C.; Franco, M.I.; Lopes-da-Silva, J.A.; Pintado, M.E.; Malcata, F.X. Evaluation of Antimicrobial Edible Coatings from a Whey Protein Isolate Base to Improve the Shelf Life of Cheese. J. Dairy Sci. 2012, 95, 6282–6292. [Google Scholar] [CrossRef] [PubMed]
- Sivamaruthi, B.S.; Kesika, P.; Chaiyasut, C. A Narrative Review on Biogenic Amines in Fermented Fish and Meat Products. J. Food Sci. Technol. 2021, 58, 1623–1639. [Google Scholar] [CrossRef]
- Hager, J.V.; Rawles, S.D.; Xiong, Y.L.; Newman, M.C.; Webster, C.D. Edible Corn-Zein-Based Coating Incorporated with Nisin or Lemongrass Essential Oil Inhibits Listeria monocytogenes on Cultured Hybrid Striped Bass, Morone chrysops × Morone saxatilis, Fillets During Refrigerated and Frozen Storage. J. World Aquac. Soc. 2019, 50, 204–218. [Google Scholar] [CrossRef]
- Xiong, Y.; Kamboj, M.; Ajlouni, S.; Fang, Z. Incorporation of Salmon Bone Gelatine with Chitosan, Gallic Acid and Clove Oil as Edible Coating for the Cold Storage of Fresh Salmon Fillet. Food Control 2021, 125, 107994. [Google Scholar] [CrossRef]
- Mohajer, F.; Khanzadi, S.; Keykhosravy, K.; Noori, S.M.A.; Azizzadeh, M.; Hashemi, M. Impact of Gelatin Nanogel Coating Containing Thymol and Nisin on the Microbial Quality of Rainbow Trout Fillets and the Inoculated Listeria monocytogenes. Aquac. Res. 2021, 52, 3958–3965. [Google Scholar] [CrossRef]
- Vieira, B.B.; Mafra, J.F.; da Rocha Bispo, A.S.; Ferreira, M.A.; de Lima Silva, F.; Rodrigues, A.V.N.; Evangelista-Barreto, N.S. Combination of Chitosan Coating and Clove Essential Oil Reduces Lipid Oxidation and Microbial Growth in Frozen Stored Tambaqui (Colossoma macropomum) Fillets. LWT 2019, 116, 108546. [Google Scholar] [CrossRef]
- Berizi, E.; Hosseinzadeh, S.; Shekarforoush, S.S.; Barbieri, G. Microbial, Chemical, Textural and Sensory Properties of Coated Rainbow Trout by Chitosan Combined with Pomegranate Peel Extract during Frozen Storage. Int. J. Biol. Macromol. 2018, 106, 1004–1013. [Google Scholar] [CrossRef]
- Soares, N.M.F.; Oliveira, M.S.G.; Vicente, A.A. Effects of Glazing and Chitosan-Based Coating Application on Frozen Salmon Preservation during Six-Month Storage in Industrial Freezing Chambers. LWT 2015, 61, 524–531. [Google Scholar] [CrossRef]
Product | Edible Coating Main Composition | Main Effects of Natural Polymer-Based Coatings | References |
---|---|---|---|
Fresh meat | |||
Chicken breast | Vicia villosa protein isolate with ZnO NPs | Lower TVC, LAB, TBARS, and TVB-N levels; acceptable sensory attributes in coated fillets | [79] |
Chicken breast | Xanthan gum-pectin with sweet orange peel EO | Minimized weight loss, lower TVB-N levels; coating biocompatible with L929 cells | [52] |
Pork meat | Chitosan-coix seed starch with ZnO NPS Artemisia annua EO | Lower pH, TVC, TBARS, and TVB-N levels with the optimum combination | [23] |
Minced pork | Egg white-chitosan-pectin cross linked with tannic acid-nisin | Reduced water loss and delayed changes in taste, texture, and color; lowered pH, TVB-N, carbonyl content, and microbial growth at the end of storage with the optimum combination | [96] |
Beef slices | Sodium alginate-agar with ginger EO | Lowered microbial population; retarded lipid oxidation (reduced PV and MDA); extended shelf-life; and maintained acceptable sensory properties | [102] |
Beef slices | Shahri Balangu seed mucilage with cumin EO | Extended meat shelf-life by inhibiting bacterial growth, reducing PV and MDA, with no negative impact on sensory attributes | [103] |
Ready to eat meat | |||
Spiced chicken | Carboxymethyl chitosan with garlic acid extract | Reduced microbial growth and lipid and protein oxidation without affecting appearance or taste | [104] |
Bovine meatballs | Chitosan | Reduced microbial growth and extended shelf-life up to 28 days without altering sensory characteristics | [105] |
Carbonado chicken | Chitosan-gelatin with rosemary extract and ε-poly-L-lysine | Showed reduced TBC, mold and yeast counts, lipid oxidation, and pH changes, extending the shelf-life by at least 6 days under refrigeration | [106] |
Product | Edible Coating Main Composition | Main Effects of Natural Polymer-Based Coatings | References |
---|---|---|---|
Eggs | |||
Whole fresh egg | Pullulan with nisin | Maintained internal quality, reduced weight loss, and extended shelf-life; nisin improved microbial growth control | [113] |
Whole fresh egg | Gellan gum-rice bran oil emulsion with basil EO | Delayed freshness loss over 42 days and reduced microbial growth with basil EO | [114] |
Hardboiled salted duck egg | Paraffin wax, chitosan, WPI, or SPI | WPI coating reduced weight loss, lipid oxidation, and microbial growth, and preserved sensory quality during 15 days at 30 °C | [27] |
Marinated egg | Chitosan with ascorbic acid and tea polyphenols, or nisin and ε-polylysine (or their combination) | Chitosan coating with ascorbic acid, tea polyphenols, nisin, and ε-polylysine extended shelf-life of marinated eggs from 12 to 20 days, maintaining pH, color, texture, and reducing microbial growth | [115] |
Dairy products | |||
Soft cheese | Whey protein with sorbate, nisin, both, or marjoram oil | Reduced weight loss and TBC, and improved organoleptic characteristics, with the coatings combining sorbate and nisin or those including marjoram oil standing out | [116] |
Soft cheese | Corn starch with clove oil | Did not reduce moisture losses; microbial growth was inhibited and sensory characteristics were improved | [117] |
Model cheese | SCW-WPI with oregano or clary sage | Increased moisture and water activity, reduced titratable acidity and texture parameters; no improvement in microbial stability over natamycin | [118] |
Semi-hard cheese | Chitosan with rosemary and oregano essential oils | Increased microbial safety and reduced weight loss and lipid/protein degradation; in the case of oregano, aroma and flavor were improved (when applied twice) | [119] |
Fresh cheese | Alginate with bacteriocin-producing Lactococcus spp. | Coatings with Lactococcus spp. reduced spoilage bacteria, L. monocytogenes and its migration; all coatings reduced weight loss without affecting pH or acidity | [120] |
Sliced cheese | Pullulan-chitosan or pullulan-gelatin bilayer with lemongrass and curry hydrolats | Enhanced barrier properties and showed stronger antimicrobial effect against S. aureus (enhanced in the case of the combination with chitosan) | [121] |
Product | Edible Coating Main Composition | Main Effects of Natural Polymer-Based Coatings | References |
---|---|---|---|
Fresh fish | |||
Lebranche mullet fillets | Sodium alginate cross-linked with CaCl2 | Reduced moisture absorption, pH decay, TVB-N, and microbial growth, but lipid oxidation increased | [9] |
Hybrid striped bass fillets | Corn-zein with nisin or lemongrass EO | Nisin and lemongrass both inhibited L. monocytogenes growth, with nisin more effective; PVC outperformed vacuum packaging | [126] |
Salmon fillets | Gelatin-chitosan with gallic acid and clove oil | The combination of the two natural polymer with gallic acid and clove oils showed the best performance on the fresh salmon fillet preservation and extended the shelf-life for at least 5 days | [127] |
Rainbow trout fillets | Gelatin nanogel with nisin-thymol | The combination of nisin and thymol provided the most effective inhibition against L. monocytogenes | [128] |
Frozen fish | |||
Hybrid striped bass fillets | Corn-zein with nisin or lemongrass EO | Nisin and lemongrass both inhibited L. monocytogenes growth, with nisin more effective; PVC outperformed vacuum packaging | [126] |
Tambaqui fillets | Chitosan with clove essential oil | Delayed lipid oxidation, inhibited psychrotrophic bacteria; clove oil addition negatively affected sensory properties | [129] |
Rainbow trout fillets | Chitosan with pomegranate peel extract | Decreased pH, TBARS, TVB-N, LAB and mold counts; improved texture, but negatively affected colour | [130] |
Salmon fillets | Chitosan | Chitosan (1.5%) showed improved performance in maintaining color and controlling microbial contamination | [131] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vargas-Ramella, M.; Echegaray, N.; Campagnol, P.C.B.; Lorenzo, J.M. Natural Polymer-Based Coatings for Animal-Derived Products: A Review of Applications, Functionality, Characterization, and Challenges. Foods 2025, 14, 2255. https://doi.org/10.3390/foods14132255
Vargas-Ramella M, Echegaray N, Campagnol PCB, Lorenzo JM. Natural Polymer-Based Coatings for Animal-Derived Products: A Review of Applications, Functionality, Characterization, and Challenges. Foods. 2025; 14(13):2255. https://doi.org/10.3390/foods14132255
Chicago/Turabian StyleVargas-Ramella, Márcio, Noemí Echegaray, Paulo Cezar Bastianello Campagnol, and José Manuel Lorenzo. 2025. "Natural Polymer-Based Coatings for Animal-Derived Products: A Review of Applications, Functionality, Characterization, and Challenges" Foods 14, no. 13: 2255. https://doi.org/10.3390/foods14132255
APA StyleVargas-Ramella, M., Echegaray, N., Campagnol, P. C. B., & Lorenzo, J. M. (2025). Natural Polymer-Based Coatings for Animal-Derived Products: A Review of Applications, Functionality, Characterization, and Challenges. Foods, 14(13), 2255. https://doi.org/10.3390/foods14132255