Ultrasound and Heat Treatment and Its Potential to Reduce Fennel Allergenicity
Abstract
1. Introduction
2. Materials and Methods
- Ultrasonic bath: 60 min at 40 °C
- Ultrasonic processor: 15 min at 60 °C
- Heat treatment: in a water bath at 95 °C for 1 min
3. Results and Discussion
3.1. Electrophoretic Analysis of Protein Extracts
3.2. Immunochemical Detection of Allergens by Western Blot
3.3. Immunochemical Detection of Allergenic Proteins Using the ELISA Method
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SDS-PAGE | Sodium dodecyl sulfate–polyacrylamide gel electrophoresis |
ELISA | Enzyme-linked immunosorbent assay |
DIC | Dynamic thermal high-pressure sterilization |
HPP | High-pressure processing |
LTP | Lipid-transfer protein |
References
- Zuidmeer, L.; Goldhahn, K.; Rona, R.J.; Gislason, D.; Madsen, C.; Summers, C.; Sodergren, E.; Dahlstrom, J.; Lindner, T.; Sigurdardottir, S.T.; et al. The prevalence of plant food allergies: A systematic review. J. Allergy Clin. Immunol. 2008, 121, 1210–1218.e4. [Google Scholar] [CrossRef] [PubMed]
- Vanga, S.K.; Jain, M.; Raghavan, V. Significance of fruit and vegetable allergens: Possibilities of its reduction through processing. Food Rev. Int. 2018, 34, 103–125. [Google Scholar] [CrossRef]
- D’Amato, G.; Cecchi, L.; Bonini, S.; Nunes, C.; Annesi-Maesano, I.; Behrendt, H.; Liccardi, G.; Popov, T.; Van Cauwenberge, P. Allergenic pollen and pollen allergy in Europe. Allergy 2007, 62, 976–990. [Google Scholar] [CrossRef] [PubMed]
- Shridhar, K.; Sathe, S.K.; Sharma, G.M. Effects of food processing on food allergens. Mol. Nutr. Food Res. 2009, 53, 970–978. [Google Scholar] [CrossRef]
- Market Research Future. Canned Fruits and Vegetables Market Research Report (ID: MRFR/F-B & N/11028-HCR). Market Research Future. 2025. Available online: https://www.marketresearchfuture.com/reports/canned-fruits-vegetables-market-12551 (accessed on 15 March 2025).
- Gonzalez, P.M.; Cassin, A.M.; Durban, R.; Upton, J.E.M. Effects of Food Processing on Allergenicity. Curr. Allergy Asthma Rep. 2025, 25, 9. [Google Scholar] [CrossRef]
- Sancho, A.I.; Rigby, N.M.; Zuidmeer, L.; Asero, R.; Mistrello, G.; Amato, S. The effect of thermal processing on the IgE reactivity of the non-specific lipid transfer protein from apple, Mal d 3. Allergy 2005, 60, 1262–1268. [Google Scholar] [CrossRef]
- Cuadrado, C.; Cabanillas, B.; Pedrosa, M.M.; Varela, A.; Guillamón, E.; Muzquiz, M.; Crespo, J.F.; Rodriguez, J.; Burbano, C. Influence of thermal processing on IgE reactivity to lentil and chickpea proteins. Mol. Nutr. Food Res. 2009, 53, 1462–1468. [Google Scholar] [CrossRef]
- Beyer, B.; Obrist, D.; Czarda, P.; Pühringer, K.; Vymyslicky, F.; Siegmund, B.; D’Amico, S.; Cichna-Markl, M. Influence of Roasting Temperature on the Detectability of Potentially Allergenic Lupin by SDS-PAGE, ELISAs, LC-MS/MS, and Real-Time PCR. Foods 2024, 13, 673. [Google Scholar] [CrossRef]
- Cabanillas, B.; Jappe, U.; Novak, N. Allergy to Peanut, Soybean, and Other Legumes: Recent Advances in Allergen Characterization, Stability to Processing and IgE Cross-Reactivity. Mol. Nutr. Food Res. 2018, 62, 1700446. [Google Scholar] [CrossRef]
- Kern, K.; Santa-Ardharnpreecha, S.; Delaroque, N.; Dölle-Bierke, S.; Treudler, R.; Ehrentreich-Förster, E.; Rothkopf, I.; Worm, M.; Szardenings, M. Heat Treatment of Hazelnut Allergens Monitored by Polyclonal Sera and Epitope Fingerprinting. Foods 2024, 13, 3932. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, M.; Zhang, J.; Zhang, Z.; Wang, H.; Li, Z. Effects of Thermal Processing on IgG/IgE Reactivity, In Vitro Digestibility, and Structural Characteristics of Almond (Prunus dulcis). ACS Food Sci. Technol. 2024, 4, 567–577. [Google Scholar] [CrossRef]
- Arribas, C.; Sanchiz, A.; Pedrosa, M.M.; Perez-Garcia, S.; Linacero, R.; Cuadrado, C. Impact of Heat and Pressure Processing Treatments on the Digestibility of Peanut, Hazelnut, Pistachio and Cashew Allergens. Foods 2024, 13, 3549. [Google Scholar] [CrossRef] [PubMed]
- Camus-Ela, M.; Wang, Y.; Rennie, G.H.; Raghavan, V.; Wang, J. Update on hazelnut allergy: Allergen characterization, epidemiology, food processing technique and detecting strategy. Compr. Rev. Food Sci. Food Saf. 2025, 24, e70098. [Google Scholar] [CrossRef] [PubMed]
- Cuadrado, C.; Sanchiz, A.; Vicente, F.; Ballesteros, I.; Linacero, R. Changes Induced by Pressure Processing on Immunoreactive Proteins of Tree Nuts. Molecules 2020, 25, 954. [Google Scholar] [CrossRef]
- Cuadrado, C.; Arribas, C.; Sanchiz, A.; Pedrosa, M.M.; Gamboa, P.; Betancor, D.; Blanco, C.; Cabanillas, B.; Linacero, R. Effects of enzymatic hydrolysis combined with pressured heating on tree nut allergenicity. Food Chem. 2024, 451, e70098. [Google Scholar] [CrossRef]
- Chizoba Ekezie, F.G.; Cheng, J.H.; Sun, D.W. Effects of nonthermal food processing technologies on food allergens: A review of recent research advances. Trends Food Sci. Technol. 2018, 74, 12–25. [Google Scholar] [CrossRef]
- Dong, X.; Wang, J.; Raghavan, V. Critical reviews and recent advances of novel non-thermal processing techniques on the modification of food allergens. Crit. Rev. Food Sci. Nutr. 2021, 61, 196–210. [Google Scholar] [CrossRef]
- Dong, G.; Hinds, L.M.; Soro, A.B.; Hu, Z.; Sun, D.W.; Tiwari, B.K. Non-Thermal Processing Technologies for Allergen Control in Alternative Protein Sources for Food Industry Applications. Food Eng. Rev. 2024, 16, 595–617. [Google Scholar] [CrossRef]
- Šic Žlabur, J.; Brajer, M.; Voća, S.; Galić, A.; Radman, S.; Rimac-Brnčić, S.; Xia, Q.; Zhu, Z.; Grimi, N.; Barba, F.J. Ultrasound as a Promising Tool for the Green Extraction of Specialized Metabolites from Some Culinary Spices. Molecules 2021, 26, 1866. [Google Scholar] [CrossRef]
- Sengar, A.S.; Thirunavookarasu, N.; Choudhary, P.; Naik, M.; Surekha, A.; Sunil, C.K.; Rawson, A. Application of power ultrasound for plant protein extraction, modification and allergen reduction—A review. Appl. Food Res. 2022, 2, 2. [Google Scholar] [CrossRef]
- Naik, A.S.; Suryawanshi, D.; Kumar, M.; Waghmare, R. Ultrasonic treatment: A cohort review on bioactive compounds, allergens and physico-chemical properties of food. Curr. Res. Food Sci. 2021, 4, 470–477. [Google Scholar] [CrossRef] [PubMed]
- Pi, X.; Zhu, L.; Wang, Y.; Sun, F.; Zhang, B. Effect of the Combined Ultrasound with Other Technologies on Food Allergenicity: Ultrasound before, under, and after Other Technologies. J. Agric. Food Chem. 2024, 72, 16095–16111. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.X.; Lin, H.; Cao, L.M.; Jameel, K. Effect of high intensity ultrasound on the allergenicity of shrimp. J. Zhejiang Univ. Sci. B 2006, 7, 251–256. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Tian, G.; Wang, L.; Sang, Y.; Sun, J. Effects of ultrasound-assisted high temperature-pressure treatment on the structure and allergenicity of tropomyosin from clam (Mactra veneriformis). Food Chem. X 2023, 18, 100740. [Google Scholar] [CrossRef]
- Wang, J.; Wang, J.; Kranthi Vanga, S.; Raghavan, V. Influence of high-intensity ultrasound on the IgE binding capacity of Act d 2 allergen, secondary structure, and In-vitro digestibility of kiwifruit proteins. Ultrason. Sonochem. 2021, 71, 105409. [Google Scholar] [CrossRef]
- Jadid, N.; Widodo, A.F.; Ermavitalini, D.; Sa’adah, N.N.; Gunawan, S.; Nisa, C. The medicinal Umbelliferae plant Fen-nel (Foeniculum vulgare Mill.): Cultivation, traditional uses, phytopharmacological properties, and application in animal husbandry. Arab. J. Chem. 2023, 16, 3. [Google Scholar] [CrossRef]
- Pastorello, E.A.; Farioli, L.; Stafylaraki, C.; Scibilia, J.; Giuffrida, M.G.; Mascheri, A.; Piantanida, M.; Baro, C.; Primavesi, L.; Nichelatti, M.; et al. Fennel Allergy is an LTP (Lipid Tranfer Protein) Related Food Hypersensitivity Associated to Peach Allergy. J. Agric. Food Chem. 2013, 61, 740–746. [Google Scholar] [CrossRef]
- Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef]
- Wilson, C.M. Staining of protein gels: Comparisons of dyes and procedures. Methods Enzymol. 1983, 91, 236–247. [Google Scholar] [CrossRef]
- Bliss, C.I.; Greenwood, M.L.; White, E.S. A rankit analysis of paired comparisons for measuring the effect of sprays on flavor. Biometrics 1956, 12, 381–403. [Google Scholar] [CrossRef]
- Dunnett, C.W. A multiple comparison procedure for comparing several treatments with a control. J Am Stat Assoc. 1955, 50, 1096–1121. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024; Available online: https://www.R-project.org/ (accessed on 15 June 2025).
- Lenth, V. Emmeans: Estimated Marginal Means, Aka Least-Squares Means. 2025. Available online: https://CRAN.R-project.org/package=emmeans (accessed on 15 June 2025).
- Douglas, B.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Soft. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- O’Malley, A.; Pote, S.; Giangrieco, I.; Tuppo, L.; Gawlicka-Chruszcz, A.; Kowal, K.; Ciardiello, M.A.; Chruszcz, M. Structural characterization of act c 10.0101 and pun g 1.0101—Allergens from the non-specific lipid transfer protein family. Molecules 2021, 26, 256. [Google Scholar] [CrossRef] [PubMed]
- Asero, R.; Mistrello, G.; Roncarolo, D.; Amato, S. Detection of some safe plant-derived foods for LTP-allergic patients. Int. Arch. Allergy Immunol. 2007, 144, 57–63. [Google Scholar] [CrossRef]
- Zhang, Y.; Che, H.; Li, C.; Jin, T. Food Allergens of Plant Origin. Foods 2023, 12, 2232. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maravić-Vlahoviček, G.; Marić, M.; Badanjak Sabolović, M.; Rimac Brnčić, S. Ultrasound and Heat Treatment and Its Potential to Reduce Fennel Allergenicity. Foods 2025, 14, 2251. https://doi.org/10.3390/foods14132251
Maravić-Vlahoviček G, Marić M, Badanjak Sabolović M, Rimac Brnčić S. Ultrasound and Heat Treatment and Its Potential to Reduce Fennel Allergenicity. Foods. 2025; 14(13):2251. https://doi.org/10.3390/foods14132251
Chicago/Turabian StyleMaravić-Vlahoviček, Gordana, Mirela Marić, Marija Badanjak Sabolović, and Suzana Rimac Brnčić. 2025. "Ultrasound and Heat Treatment and Its Potential to Reduce Fennel Allergenicity" Foods 14, no. 13: 2251. https://doi.org/10.3390/foods14132251
APA StyleMaravić-Vlahoviček, G., Marić, M., Badanjak Sabolović, M., & Rimac Brnčić, S. (2025). Ultrasound and Heat Treatment and Its Potential to Reduce Fennel Allergenicity. Foods, 14(13), 2251. https://doi.org/10.3390/foods14132251