Biorefining of Walnut Shells into Polyphenol-Rich Extracts Using Ultrasound-Assisted, Enzyme-Assisted, and Pressurized Liquid Extraction Coupled with Chemometrics
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Proximate Analyses
2.3. Maceration (M)
2.4. Pressurized Liquid Extraction (PLE)
2.5. Enzyme-Assisted Extraction (EAE)
2.6. Ultrasound-Assisted Extraction (UAE)
2.7. Combined Extraction (Ultrasound-Assisted Enzyme Extraction—US-EAE)
2.8. Determination of Extraction Yield
2.9. Total Phenolic Content (TPC)
2.10. Total Antioxidant Capacity (TAC)
2.10.1. DPPH Assay
2.10.2. ABTS Assay
2.11. Polyphenol Characterization and Quantification by UPLC-ESI–MS/MS
2.12. Statistical Analysis
3. Results and Discussion
3.1. Proximate Analysis
3.2. Effect of Conventional and Innovative Extraction Methods on Total Phenolic Content (TPC) and Total Antioxidant Capacity (TAC) of Walnut Shells
3.2.1. Maceration
3.2.2. Pressurized Liquid Extraction (PLE)
3.2.3. Ultrasound-Assisted Extraction (UAE)
3.2.4. Enzyme-Assisted Extraction (EAE)
3.2.5. Combined Ultrasound- and Enzyme-Assisted Extraction (US-EAE)
3.3. Polyphenol Characterization and Quantification by UPLC-ESI–MS/MS
3.3.1. Flavonoids
3.3.2. Phenolic Acids and Other Bioactive Compounds
3.4. Chemometric Analysis
3.4.1. Correlation Coefficient
3.4.2. Principal Component Analysis (PCA)
3.4.3. Hierarchical Cluster Analysis (HCA)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gullón, P.; Gullón, B.; Romaní, A.; Rocchetti, G.; Lorenzo, J.M. Smart advanced solvents for bioactive compounds recovery from agri-food by-products: A review. Trends Food Sci. Technol. 2020, 101, 182–197. [Google Scholar] [CrossRef]
- Sharif, T.; Bhatti, H.N.; Bull, I.D.; Bilal, M. Recovery of high-value bioactive phytochemicals from agro-waste of mango (Mangifera indica L.) using enzyme-assisted ultrasound pretreated extraction. Biomass Convers. Biorefinery 2023, 13, 6591–6599. [Google Scholar] [CrossRef]
- Nguyen, T.; Vu, D. A review on phytochemical composition and potential health-promoting properties of walnuts. Food Rev. Int. 2023, 39, 397–423. [Google Scholar] [CrossRef]
- FAOSTAT. Food and Agriculture Organization Corporate Statistical Database. Available online: https://www.fao.org/faostat/en/#search/walnut (accessed on 1 March 2025).
- Statista. The Statistics Portal for Market Data. Available online: https://www.statista.com (accessed on 1 March 2025).
- Fordos, S.; Abid, N.; Gulzar, M.; Pasha, I.; Oz, F.; Shahid, A.; Aadil, R.M. Recent development in the application of walnut processing by-products (walnut shell and walnut husk). Biomass Convers. Biorefinery 2023, 13, 14389–14411. [Google Scholar] [CrossRef]
- United Nations (UN). PAGE and Sustainable Development Goals. 2020. Available online: https://www.un-page.org/page-and-sustainable-development-goals (accessed on 1 March 2025).
- Günal-Köroğlu, D.; Erskine, E.; Ozkan, G.; Capanoglu, E.; Esatbeyoglu, T. Applications and safety aspects of bioactives obtained from by-products/wastes. Adv. Food Nutr. Res. 2023, 107, 213–261. [Google Scholar]
- Kumar, K.; Yadav, A.N.; Kumar, V.; Vyas, P.; Dhaliwal, H.S. Food waste: A potential bioresource for extraction of nutraceuticals and bioactive compounds. Bioresour. Bioprocess. 2017, 4, 18. [Google Scholar] [CrossRef]
- Mungwari, C.; King’ondu, C.; Sigauke, P.; Obadele, B. Conventional and modern techniques for bioactive compounds recovery from plants: Review. Sci. Afr. 2025, 27, e02509. [Google Scholar] [CrossRef]
- Savic, I.M.; Gajic, I.M.S. Development of the sustainable extraction procedures of bioactive compounds from industrial food wastes and their application in the products for human uses. Sustainability 2023, 15, 2102. [Google Scholar] [CrossRef]
- Gallego, R.; Bueno, M.; Herrero, M. Sub- and supercritical fluid extraction of bioactive compounds from plants, food-by-products, seaweeds and microalgae—An update. Trends Anal. Chem. 2019, 116, 198–213. [Google Scholar] [CrossRef]
- Quitério, E.; Grosso, C.; Ferraz, R.; Delerue-Matos, C.; Soares, C. A critical comparison of the advanced extraction techniques applied to obtain health-promoting compounds from seaweeds: A review. Mar. Drugs 2022, 20, 677. [Google Scholar] [CrossRef]
- Herrera, R.; Hemming, J.; Smeds, A.; Gordobil, O.; Willför, S.; Labidi, J. Recovery of bioactive compounds from hazelnuts and walnut shells: Quantitative–qualitative analysis and chromatographic purification. Biomolecules 2020, 10, 1363. [Google Scholar] [CrossRef] [PubMed]
- Han, H.; Wang, S.; Rakita, M.; Wang, Y.; Han, Q.; Xu, Q. Effect of ultrasound-assisted extraction of phenolic compounds on the characteristics of walnut shells. Food Nutr. Sci. 2018, 9, 1034–1045. [Google Scholar] [CrossRef]
- Kamali, H.; Sani, T.A.; Mohammadi, A.; Alesheikh, P.; Khodaverdi, E.; Hadizadeh, F. A comparison between pressurized hot water and pressurized liquid extraction for optimizing phenolic and antioxidants capacity of the wooden layer between of walnut seed. J. Supercrit. Fluids 2018, 133, 535–541. [Google Scholar] [CrossRef]
- LST EN ISO 665:2020; Oilseeds—Determination of Moisture and Volatile Matter Content. International Organization for Standardization (ISO): Geneva, Switzerland, 2020.
- LST EN ISO 8968-1:2014; Milk and Milk Products—Determination of Nitrogen Content. International Organization for Standardization (ISO): Geneva, Switzerland, 2014.
- LST EN ISO 659:2000; Oilseeds—Determination of Oil Content (Reference Method). International Organization for Standardization (ISO): Geneva, Switzerland, 2000.
- ISO 749:1977; Oilseeds—Determination of Ash. International Organization for Standardization (ISO): Geneva, Switzerland, 1977.
- LST EN ISO 6865:2001; Animal Feeding Stuffs—Determination of Crude Fibre Content—Method with Intermediate Filtration. International Organization for Standardization (ISO): Geneva, Switzerland, 2001.
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin–Ciocalteu reagent. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1999; Volume 299, pp. 152–178. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Akpinar Bayizit, A.; Bekar, E.; Unal, T.T.; Celik, M.A.; Acoglu Celik, B.; Koc Alibasoglu, E.; Kamiloglu, S. Investigating the effect of harvest season on the bioaccessibility of bee pollen polyphenols by ultra-high performance liquid chromatography tandem mass spectrometry. Eur. Food Res. Technol. 2023, 249, 2529–2542. [Google Scholar] [CrossRef]
- Goklani, B.; Prapurna, P.N.; Srinath, S. Simulation of pyrolytic conversion of walnut shell waste to value-added products. Mater. Today Proc. 2023, 72, 336–339. [Google Scholar] [CrossRef]
- Hu, Q.; Liu, J.; Li, J.; Liu, H.; Dong, N.; Geng, Y.; Wang, Y. Phenolic composition and nutritional attributes of Diaphragma juglandis fructus and shell of walnut (Juglans regia L.). Food Sci. Biotechnol. 2020, 29, 187–196. [Google Scholar] [CrossRef]
- Kizatova, M.; Sultanova, M.; Baikenov, A.; Saduakas, A.; Akzhanov, N. Revealing the features of the composition of the walnut shell from the point of view of the possibility of its use in the food industry. East.-Eur. J. Enterp. Technol. 2022, 115, 49–55. [Google Scholar] [CrossRef]
- Demirbas, A. Fuel characteristics of olive husk and walnut, hazelnut, sunflower, and almond shells. Energy Sources 2002, 24, 215–221. [Google Scholar] [CrossRef]
- Gozaydin, G.; Yuksel, A. Valorization of hazelnut shell waste in hot compressed water. Fuel Process. Technol. 2017, 166, 96–106. [Google Scholar] [CrossRef]
- Li, K.Q.; Jiang, Q.; Chen, G.; Gao, L.; Peng, J.H.; Chen, Q.; Chen, J. Kinetics characteristics and microwave reduction behavior of walnut shell-pyrolusite blends. Bioresour. Technol. 2021, 319, 124172. [Google Scholar] [CrossRef] [PubMed]
- David, E. Evaluation of hydrogen yield evolution in gaseous fraction and biochar structure resulting from walnut shells pyrolysis. Energies 2020, 13, 6359. [Google Scholar] [CrossRef]
- Dunford, N.T.; Gumus, Z.P.; Gur, C.S. Chemical composition and antioxidant properties of pecan shell water extracts. Antioxidants 2022, 11, 1127. [Google Scholar] [CrossRef]
- Villarreal-Lozoya, J.E.; Lombardini, L.; Cisneros-Zevallos, L. Phytochemical constituents and antioxidant capacity of different pecan Carya illinoinensis (Wangenh.) K. Koch cultivars. Food Chem. 2007, 102, 1241–1249. [Google Scholar] [CrossRef]
- Sevimli-Gur, C.; Gezgin, Y.; Oz, A.; Al Sharqi, S.; Gumus, Z.P.; Dunford, N.T. Biological activity of the extracts from pecan shelling industry byproducts. Trans. ASABE 2021, 64, 869–877. [Google Scholar] [CrossRef]
- Jha, A.K.; Sit, N. Extraction of bioactive compounds from plant materials using combination of various novel methods: A review. Trends Food Sci. Technol. 2022, 119, 579–591. [Google Scholar] [CrossRef]
- Usman, I.; Hussain, M.; Imran, A.; Afzaal, M.; Saeed, F.; Javed, M.; Saewan, S.A. Traditional and innovative approaches for the extraction of bioactive compounds. Int. J. Food Prop. 2022, 25, 1215–1233. [Google Scholar] [CrossRef]
- Dai, J.; Mumper, R.J. Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules 2010, 15, 7313–7352. [Google Scholar] [CrossRef]
- Dirar, A.I.; Alsaadi, D.H.M.; Wada, M.; Mohamed, M.A.; Watanabe, T.; Devkota, H.P. Effects of extraction solvents on total phenolic and flavonoid contents and biological activities of extracts from Sudanese medicinal plants. S. Afr. J. Bot. 2019, 120, 261–267. [Google Scholar] [CrossRef]
- Ugurlu, S.; Okumus, E.; Bakkalbasi, E. Reduction of bitterness in green walnuts by conventional and ultrasound-assisted maceration. Ultrason. Sonochem. 2020, 66, 105094. [Google Scholar] [CrossRef] [PubMed]
- Yuan, B.; Lu, M.; Eskridge, K.M.; Isom, L.D.; Hanna, M.A. Extraction, identification, and quantification of antioxidant phenolics from hazelnut (Corylus avellana L.) shells. Food Chem. 2018, 244, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Ismail, B.B.; Guo, M.M.; Pu, Y.F.; Wang, W.J.; Ye, X.Q.; Liu, D.H. Valorisation of baobab (Adansonia digitata) seeds by ultrasound assisted extraction of polyphenolics: Optimisation and comparison with conventional methods. Ultrason. Sonochem. 2019, 52, 257–267. [Google Scholar] [CrossRef]
- Osorio-Tobón, J.F. Recent advances and comparisons of conventional and alternative extraction techniques of phenolic compounds: A review. J. Food Sci. Technol. 2020, 57, 4299–4315. [Google Scholar] [CrossRef]
- Kitrytė, V.; Bagdonaitė, D.; Venskutonis, P.R. Biorefining of industrial hemp (Cannabis sativa L.) threshing residues into cannabinoid and antioxidant fractions by supercritical carbon dioxide, pressurized liquid and enzyme-assisted extractions. Food Chem. 2018, 267, 420–429. [Google Scholar] [CrossRef]
- Ersan, S.; Üstündağ, O.G.; Carle, R.; Schweiggert, R.M. Subcritical water extraction of phenolic and antioxidant constituents from pistachio (Pistacia vera L.) hulls. Food Chem. 2018, 253, 46–54. [Google Scholar] [CrossRef]
- Vasquez-Rojas, W.V.; Hernández, D.M.; Cano, M.P.; Reali, T.F. Extraction and analytical characterization of phenolic compounds from Brazil nut (Bertholletia excelsa) skin industrial by-product. Trends Sci. 2023, 20, 5457. [Google Scholar] [CrossRef]
- Floegel, A.; Kim, D.O.; Chung, S.J.; Koo, S.I.; Chun, O.K. Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. J. Food Compos. Anal. 2011, 24, 1043–1048. [Google Scholar] [CrossRef]
- Apak, R.; Güçlü, K.; Demirata, B.; Özyürek, M.; Çelik, S.E.; Bektaşoğlu, B.; Özyurt, D. Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC assay. Molecules 2007, 12, 1496–1547. [Google Scholar] [CrossRef]
- Capanoğlu, E.; Kamiloglu, S.; Ozkan, G.; Apak, R. Evaluation of antioxidant activity/capacity measurement methods for food products. In Measurement of Antioxidant Activity & Capacity: Recent Trends and Applications; Wiley: Hoboken, NJ, USA, 2018; pp. 273–286. [Google Scholar] [CrossRef]
- Ferrara, E.; Cice, D.; Piccolella, S.; Esposito, A.; Petriccione, M.; Pacifico, S. ‘Sorrento’ and ‘Tulare’ walnut cultivars: Morphological traits and phytochemical enhancement of their shell waste. Molecules 2024, 29, 805. [Google Scholar] [CrossRef]
- Wang, S.; Fu, W.; Han, H.; Rakita, M.; Han, Q.; Xu, Q. Optimization of ultrasound-assisted extraction of phenolic compounds from walnut shells and characterization of their antioxidant activities. J. Food Nutr. Res. 2020, 8, 50–57. [Google Scholar]
- Ganesapillai, M.; Mathew, M.; Singh, A.; Simha, P. Influence of microwave and ultrasound pretreatment on solvent extraction of bio-components from walnut (Juglans regia L.) shells. Period. Polytech. Chem. Eng. 2016, 60, 40–48. [Google Scholar] [CrossRef]
- Ziaolhagh, S.H.; Zare, S. Effect of ultrasound on the extraction of phenolic compounds and antioxidant activity of different parts of walnut fruit. Iran. Food Sci. Technol. Res. J. 2022, 18, 85–98. [Google Scholar]
- Nour, V.; Trandafir, I.; Cosmulescu, S. Optimization of ultrasound-assisted hydroalcoholic extraction of phenolic compounds from walnut leaves using response surface methodology. Pharm. Biol. 2016, 54, 2176–2187. [Google Scholar] [CrossRef]
- Sheldon, R.A.; van Pelt, S. Enzyme immobilisation in biocatalysis: Why, what and how. Chem. Soc. Rev. 2013, 42, 6223–6235. [Google Scholar] [CrossRef]
- Nadar, S.S.; Rao, P.; Rathod, V.K. Enzyme assisted extraction of biomolecules as an approach to novel extraction technology: A review. Food Res. Int. 2018, 108, 309–330. [Google Scholar] [CrossRef]
- Van Thanh, H.; Phi, N.T.L.; Khoi, N.T.; Hoan, N.X.; Van Hung, P. Green extraction and biological activity of phenolic extracts from cashew nut testa using a combination of enzyme and ultrasound-assisted treatments. J. Sci. Food Agric. 2023, 103, 5626–5633. [Google Scholar] [CrossRef]
- Patil, N.; Yadav, P.; Gogate, P.R. Ultrasound assisted intensified enzymatic extraction of total phenolic compounds from pomegranate peels. Sep. Purif. Technol. 2024, 350, 127967. [Google Scholar] [CrossRef]
- Zhang, Y.G.; Kan, H.; Chen, S.X.; Thakur, K.; Wang, S.Y.; Zhang, J.G.; Wei, Z.J. Comparison of phenolic compounds extracted from Diaphragma juglandis fructus, walnut pellicle, and flowers of Juglans regia using methanol, ultrasonic wave, and enzyme-assisted extraction. Food Chem. 2020, 321, 126672. [Google Scholar] [CrossRef]
- Das, S.; Nadar, S.S.; Rathod, V.K. Integrated strategies for enzyme assisted extraction of bioactive molecules: A review. Int. J. Biol. Macromol. 2021, 191, 899–917. [Google Scholar] [CrossRef]
- Buvaneshwaran, M.; Radhakrishnan, M.; Natarajan, V. Influence of ultrasound-assisted extraction techniques on the valorization of agro-based industrial organic waste—A review. J. Food Process Eng. 2023, 46, e14012. [Google Scholar] [CrossRef]
- Beddou, F.; Bekhechi, C.; Ksouri, R.; Chabane Sari, D.; Atik Bekkara, F. Potential assessment of Rumex vesicarius L. as a source of natural antioxidants and bioactive compounds. J. Food Sci. Technol. 2015, 52, 3549–3560. [Google Scholar] [CrossRef] [PubMed]
- Biskup, I.; Golonka, I.; Sroka, Z.; Gamian, A. Antioxidant activity of selected phenols estimated by ABTS and FRAP methods. Adv. Hyg. Exp. Med. 2013, 67, 958–963. [Google Scholar] [CrossRef] [PubMed]
- Sheng, F.; Hu, B.Y.; Jin, Q.; Wang, J.B.; Wu, C.Y.; Luo, Z.R. The analysis of phenolic compounds in walnut husk and pellicle by UPLC-Q-Orbitrap HRMS and HPLC. Molecules 2021, 26, 3013. [Google Scholar] [CrossRef]
- Ventura, G.; Mesto, D.; Blasi, D.; Cataldi, T.R.I.; Calvano, C.D. The effect of milling on the ethanolic extract composition of dried walnut (Juglans regia L.) shells. Int. J. Mol. Sci. 2023, 24, 13059. [Google Scholar] [CrossRef]
- Liu, P.Z.; Li, L.L.; Song, L.J.; Sun, X.T.; Yan, S.J.; Huang, W.J. Characterisation of phenolics in fruit septum of Juglans regia Linn. by ultra performance liquid chromatography coupled with Orbitrap mass spectrometer. Food Chem. 2019, 286, 669–677. [Google Scholar] [CrossRef]
- Perez-Vazquez, A.; Carpena, M.; Barciela, P.; Cassani, L.; Simal-Gandara, J.; Prieto, M.A. Pressurized liquid extraction for the recovery of bioactive compounds from seaweeds for food industry application: A review. Antioxidants 2023, 12, 612. [Google Scholar] [CrossRef]
- Ju, Z.Y.; Howard, L.R. Effects of solvent and temperature on pressurized liquid extraction of anthocyanins and total phenolics from dried red grape skin. J. Agric. Food Chem. 2003, 51, 5207–5213. [Google Scholar] [CrossRef]
- Santos, D.T.; Veggi, P.C.; Meireles, M.A.A. Optimization and economic evaluation of pressurized liquid extraction of phenolic compounds from jabuticaba skins. J. Food Eng. 2012, 108, 444–452. [Google Scholar] [CrossRef]
- Barp, L.; Višnjevec, A.M.; Moret, S. Pressurized Liquid Extraction: A powerful tool to implement extraction and purification of food contaminants. Foods 2023, 12, 2017. [Google Scholar] [CrossRef]
- Pavez, I.C.; Lozano-Sánchez, J.; Borrás-Linares, I.; Nuñez, H.; Robert, P.; Segura-Carretero, A. Obtaining an extract rich in phenolic compounds from olive pomace by pressurized liquid extraction. Molecules 2019, 24, 3108. [Google Scholar] [CrossRef] [PubMed]
- Albuquerque, B.R.; Prieto, M.A.; Barreiro, M.F.; Rodrigues, A.E.; Curran, T.P.; Barros, L.; Ferreira, I.C.F.R. Catechin-based extract optimization obtained from Arbutus unedo L. fruits using maceration/microwave/ultrasound extraction techniques. Ind. Crops Prod. 2017, 95, 404–415. [Google Scholar] [CrossRef]
- Medic, A.; Jakopic, J.; Solar, A.; Hudina, M.; Veberic, R. Walnut (Juglans regia) agro-residues as a rich source of phenolic compounds. Biology 2021, 10, 535. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Tian, X.; Xiao, C.; Han, B.; Jiang, B. Chemical constituents and bioactivity studies of Diaphragma Juglandis Fructus. Nat. Prod. Res. Dev. 2012, 24, 1707–1711. [Google Scholar]
- Queirós, C.; Cardoso, S.; Lourenço, A.; Ferreira, J.; Miranda, I.; Lourenço, M.J.V.; Pereira, H. Characterization of walnut, almond, and pine nut shells regarding chemical composition and extract composition. Biomass Convers. Biorefinery 2020, 10, 175–188. [Google Scholar] [CrossRef]
- Simsek, M.; Süfer, Ö. Infusion of walnut (Juglans regia L.) shell tea: Multi response optimization and antioxidant potential. J. Appl. Res. Med. Aromat. Plants 2021, 20, 100278. [Google Scholar] [CrossRef]
- Ratner, B. The correlation coefficient: Its values range between +1/−1, or do they? J. Target. Meas. Anal. Mark. 2009, 17, 139–142. [Google Scholar] [CrossRef]
- Shi, B.B.; Zhang, W.N.; Li, X.; Pan, X.J. Seasonal variations of phenolic profiles and antioxidant activity of walnut (Juglans sigillata Dode) green husks. Int. J. Food Prop. 2018, 20, S2635–S2646. [Google Scholar] [CrossRef]
- Apak, R.; Özyürek, M.; Güçlü, K.; Capanoğlu, E. Antioxidant activity/capacity measurement. 1. Classification, physicochemical principles, mechanisms, and electron transfer (ET)-based assays. J. Agric. Food Chem. 2016, 64, 997–1027. [Google Scholar] [CrossRef]
- Manterola-Barroso, C.; Sánchez, K.G.; Scheuermann, E.; Padilla-Contreras, D.; Morina, F.; Meriño-Gergichevich, C. Total phenolics, oxygen radical absorbance capacity, color and microstructure of walnut and hazelnut shells by-products from southern Chile agro-industry. Preprints 2024, 2024060993. [Google Scholar] [CrossRef]
- Iwashina, T. The structure and distribution of the flavonoids in plants. J. Plant Res. 2000, 113, 287–299. [Google Scholar] [CrossRef]
- Cozzolino, D.; Power, A.; Chapman, J.J. Interpreting and reporting principal component analysis in food science analysis and beyond. Food Anal. Methods 2019, 12, 2469–2473. [Google Scholar] [CrossRef]
- Patras, A.; Brunton, N.; Downey, G.; Rawson, A.; Warriner, K.; Gernigon, G. Application of principal component and hierarchical cluster analysis to classify fruits and vegetables commonly consumed in Ireland based on in vitro antioxidant activity. J. Food Compos. Anal. 2011, 24, 250–256. [Google Scholar] [CrossRef]
Sample | Moisture Content (%) | Lipid Content (%) | Protein Content (%) | Ash Content (%) | Dietary Fiber (g/100 g) |
---|---|---|---|---|---|
Walnut Shell | 8.50 ± 0.14 | 1.10 ± 0.21 | 1.14 ± 0.04 | 1.42 ± 0.02 | 65.21 ± 0.27 |
Assay | Extracts | ||||||
---|---|---|---|---|---|---|---|
PLE-EtOH | PLE-AC | EAE | UAE | US-EAE | M-EtOH | M-Water | |
Yield g/100 g | 2.84 ± 0.03 e | 1.58 ± 0.04 f | 7.50 ± 0.22 a | 4.69 ± 0.14 c | 6.66 ± 0.16 b | 2.44 ± 0.02 e | 3.57 ± 0.02 d |
TPC mg GAE/100 g dw | 1788 ± 54 c | 566.8 ± 20.0 e | 1439 ±24 d | 4129 ±93 b | 5625 ±76 a | 242.7 ± 7.1 f | 529.7 ± 14.6 e |
ABTS mg TE/100 g dw | 6861 ± 101 c | 2201 ± 57 e | 3436 ± 85 d | 11,150 ± 61 b | 14,478 ± 89 a | 901.4 ± 35.1 f | 2275 ± 83 e |
DPPH mg TE/100 g dw | 55.16 ± 0.45 a | 21.72 ± 0.26 c | 12.30 ± 0.32 d | 45.25 ± 0.82 b | 45.38 ± 0.75 b | 11.35 ± 0.23 d | 22.08 ± 0.42 c |
Compounds | Retention Time (RT) | Ionization Mode | Mass (m/z) | Main Fragment (m/z) | Other Fragmental Ions (m/z) |
---|---|---|---|---|---|
Flavonoids | |||||
Catechin | 2.16 | ESI− | 289.1 | 205.1 | 145.1 |
Isoquercitrin | 3.45 | ESI− | 463.1 | 300.0 | 271.0 |
Taxifolin | 3.87 | ESI− | 303.1 | 285.1 | 125.0 |
Quercitrin | 4.05 | ESI− | 447.1 | 300.0 | 271.0 |
Sinapaldehyde | 4.45 | ESI− | 206.9 | 192.1 | 177.1 |
Naringenin | 6.83 | ESI− | 270.9 | 151.0 | 119.1 |
Acacetin | 9.46 | ESI+ | 285.0 | 242.0 | 153.0 |
Phenolic acids and other bioactive compounds | |||||
Gallic acid | 1.74 | ESI− | 168.9 | 125.1 | 169.00; 79.00 |
Protocatechuic Acid | 1.99 | ESI− | 152.9 | 109.0 | 90.9 |
4-Hydroxybenzoic Acid | 2.60 | ESI− | 137.0 | 93.0 | 65.1; 75.1 |
Caffeic Acid | 2.67 | ESI− | 178.8 | 135.1 | 89.2 |
Ellagic Acid | 3.40 | ESI− | 301.0 | 284.0 | 300.0 |
Vanillin | 3.55 | ESI− | 151.0 | 136.1 | 92.1 |
o-Salicylic Acid | 5.06 | ESI− | 137.1 | 93.0 | 65.0; 75.0 |
Compounds (mg/100 g) | US-EAE | UAE | EAE | PLE-ETOH | PLE-AC | M-Water | M-ETOH |
---|---|---|---|---|---|---|---|
Acacetin | ND | ND | ND | 205.5 ± 5.7 a | 214.2 ± 3.9 a | ND | 51.77 ± 0.44 b |
Catechin | 206.0 ± 3.9 c | 306.6 ± 1.4 b | 175.6 ± 1.4 c | 380.2 ± 1.1 b | 307.5 ± 2.3 b | 171.8 ± 1.3 c | 813.5 ± 5.8 a |
Isoquercitrin | 13.83 ±0.45 d | 18.44 ± 0.51 c | 7.65 ± 0.45 e | 45.95 ± 1.57 a | 38.75 ± 1.91 b | 8.25 ± 3.57 e | 20.22 ± 1.92 c |
Taxifolin | 266.3 ± 8.9 b | 165.4 ± 1.8 d | 271.6 ± 5.1 b | 282.6 ± 10.2 b | 393.2 ± 2.9 a | 64.25 ± 3.79 e | 207.5 ± 1.7 c |
Quercitrin | 605.7 ± 18.6 d | 754.7 ± 29.6 c | 352.5 ± 12.4 e | 1073 ± 46 b | 1221 ± 52 a | 231.4 ± 6.9 f | 585.6 ± 15.5 d |
Sinapaldehyde | 74.98 ± 0.54 b | 51.69 ± 1.59 c | 36.22 ± 1.27 cd | 260.8 ± 10.1 a | 247.3 ± 12.4 a | 34.31 ± 1.66 d | 87.32 ± 3.4 b |
Naringenin | 2.99 ± 0.08 d | 1.15 ± 0.04 ef | 1.54 ± 0.02 e | 8.29 ± 0.88 c | 16.32 ± 0.38 a | 0.42 ± 0.01 f | 12.95 ± 0.40 b |
Compounds (mg/100 g) | US-EAE | UAE | EAE | PLE-ETOH | PLE-AC | M-Water | M-ETOH |
---|---|---|---|---|---|---|---|
Gallic acid | 131.7 ± 3.5 b | 39.04 ± 1.74 f | 141.7 ± 4.5 a | 72.36 ± 3.03 d | 99.44 ± 1.57 c | 58.36 ± 0.70 e | 72.08 ± 0.66 d |
Protocatechuic Acid | 14.86 ± 1.34 bcd | 10.87 ± 0.43 e | 12.87 ± 0.50 cde | 16.14 ± 0.88 b | 26.83 ± 0.02 a | 12.31 ± 0.16 de | 15.53 ± 0.33 bc |
Caffeic Acid | 56.38 ± 0.66 b | 8.95 ± 0.05 e | 134.41 ± 2.83 a | 8.40 ± 0.10 e | 24.07 ± 0.29 c | 13.72 ± 0.32 d | 10.82 ± 0.08 de |
o-Salicylic Acid | 7.01 ± 0.24 a | 3.92 ± 0.36 bc | 4.61 ± 0.04 b | 2.61 ± 0.04 d | 6.86 ± 0.11 a | 6.63 ± 0.35 a | 3.10 ± 0.12 cd |
4-Hydroxybenzoic Acid | 596.9 ± 4.5 a | 188.8 ± 2.1 e | 492.7 ± 4.1 b | 163.1 ± 4.3 f | 439.6 ± 5.7 c | 300.5 ± 6.7 d | 200.3 ± 1.3 e |
Ellagic Acid | 929.5 ± 10.1 b | 287.3 ± 5.9 d | 654.2 ± 2.62 c | 1021 ± 36 a | 999.2 ± 20.3 | 75.84 ± 0.92 e | 668.4 ± 4.5 c |
Vanillin | 330.1 ± 13.3 ab | 207.2 ± 1.4 c | 171.5 ± 6.9 d | 205.8 ± 4.8 c | 355.1 ± 2.1 a | 196.2 ± 6.7 cd | 328.3 ± 1.3 b |
Variables | PC1 | PC2 | PC3 | PC4 | PC5 |
---|---|---|---|---|---|
Eigenvalue | 7.002 | 4.002 | 3.063 | 1.446 | 1.259 |
Percentage % | 41.20 | 23.50 | 18.00 | 8.50 | 7.40 |
Cumulative | 41.20 | 64.70 | 82.80 | 91.30 | 98.70 |
TPC | −0.291 | 0.433 | 0.785 | 0.197 | 0.251 |
ABTS•+ | −0.219 | 0.361 | 0.869 | 0.163 | 0.196 |
DPPH• | 0.136 | −0.024 | 0.978 | −0.045 | −0.061 |
Acacetin | 0.945 | −0.085 | 0.047 | −0.183 | −0.243 |
Catechin | 0.382 | −0.547 | −0.276 | 0.184 | 0.665 |
Isoquercitrin | 0.916 | −0.193 | 0.286 | −0.164 | −0.114 |
Taxifolin | 0.776 | 0.550 | −0.021 | −0.207 | 0.122 |
Naringenin | 0.906 | −0.081 | −0.338 | 0.183 | 0.155 |
Quercitrin | 0.907 | 0.003 | 0.342 | −0.006 | −0.077 |
Gallic acid | 0.013 | 0.899 | −0.248 | −0.258 | 0.203 |
Protocatechuic Acid | 0.865 | 0.287 | −0.263 | 0.194 | −0.230 |
Caffeic Acid | −0.356 | 0.686 | −0.305 | −0.524 | 0.149 |
o-Salicylic Acid | −0.131 | 0.642 | −0.144 | 0.535 | −0.510 |
4-Hydroxybenzoic Acid | −0.130 | 0.970 | −0.155 | 0.119 | −0.043 |
Ellagic Acid | 0.774 | 0.475 | 0.133 | −0.194 | 0.297 |
Vanillin | 0.574 | 0.298 | −0.159 | 0.682 | 0.301 |
Sinapaldehyde | 0.943 | −0.027 | 0.179 | −0.163 | −0.197 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acoglu Celik, B.; Celik, M.A.; Jūrienė, L.; Jovaišaitė, J.; Kazernavičiūtė, R.; Bekar, E.; Yolci Omeroglu, P.; Venskutonis, P.R.; Kamiloglu, S. Biorefining of Walnut Shells into Polyphenol-Rich Extracts Using Ultrasound-Assisted, Enzyme-Assisted, and Pressurized Liquid Extraction Coupled with Chemometrics. Foods 2025, 14, 2245. https://doi.org/10.3390/foods14132245
Acoglu Celik B, Celik MA, Jūrienė L, Jovaišaitė J, Kazernavičiūtė R, Bekar E, Yolci Omeroglu P, Venskutonis PR, Kamiloglu S. Biorefining of Walnut Shells into Polyphenol-Rich Extracts Using Ultrasound-Assisted, Enzyme-Assisted, and Pressurized Liquid Extraction Coupled with Chemometrics. Foods. 2025; 14(13):2245. https://doi.org/10.3390/foods14132245
Chicago/Turabian StyleAcoglu Celik, Busra, Muhammed Alpgiray Celik, Laura Jūrienė, Jovita Jovaišaitė, Rita Kazernavičiūtė, Erturk Bekar, Perihan Yolci Omeroglu, Petras Rimantas Venskutonis, and Senem Kamiloglu. 2025. "Biorefining of Walnut Shells into Polyphenol-Rich Extracts Using Ultrasound-Assisted, Enzyme-Assisted, and Pressurized Liquid Extraction Coupled with Chemometrics" Foods 14, no. 13: 2245. https://doi.org/10.3390/foods14132245
APA StyleAcoglu Celik, B., Celik, M. A., Jūrienė, L., Jovaišaitė, J., Kazernavičiūtė, R., Bekar, E., Yolci Omeroglu, P., Venskutonis, P. R., & Kamiloglu, S. (2025). Biorefining of Walnut Shells into Polyphenol-Rich Extracts Using Ultrasound-Assisted, Enzyme-Assisted, and Pressurized Liquid Extraction Coupled with Chemometrics. Foods, 14(13), 2245. https://doi.org/10.3390/foods14132245