Comparative Evaluation of 5-n-Alkylresorcinol Extraction Conditions from Wheat Bran via Metabolite Profiling: Implications for Antiproliferative Activity
Abstract
1. Introduction
2. Materials and Methods
2.1. Food Material and Extraction Procedure
2.2. Determination of Total-AR Content
2.3. Liquid Chromatography–Electrospray Ionization–Mass Spectrometry (LC-ESI-MS)
2.4. Antiproliferative Assay
2.5. Statistical Analysis
3. Results and Discussion
3.1. Variation of Total-AR Content by Different Extraction Methods
3.2. Chemical Characterization of Wheat Bran Extracts by LC-MS
3.3. Targeted Metabolite Profiling-Based Analysis of Wheat Bran Extracts
3.4. Antiproliferative Activity of Wheat Bran Extract Against the PC-3 Cell Line
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AR | Alkylresorcinol |
HPLC | High-performance liquid chromatography |
MS | Mass spectrometry |
ESI | Electrospray |
DAD | Diode array detector |
OSAM | Overnight solvent-assisted maceration |
SAO | Soxhlet with acetone only |
UAE | Ultrasound-assisted extraction |
SPFE | Supercritical fluid extraction |
ASE | Accelerated solvent extraction |
sPLS-DA | Sparse partial least squares discriminant analysis |
VIP | Variable importance in the projection |
TIC | Total ion current |
References
- Kozubek, A.; Tyman, J.H.P. Resorcinolic Lipids, the Natural Non-Isoprenoid Phenolic Amphiphiles and Their Biological Activity. Chem. Rev. 1999, 99, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Kozubek, A. Determination of Octanol/Water Partition Coefficients for Long-Chain Homologs of Orcinol from Cereal Grains. Acta Biochim. Pol. 1995, 42, 247–251. [Google Scholar] [CrossRef] [PubMed]
- Landberg, R.; Kamal-Eldin, A.; Salmenkallio-Marttila, M.; Rouau, X.; Åman, P. Localization of Alkylresorcinols in Wheat, Rye and Barley Kernels. J. Cereal Sci. 2008, 48, 401–406. [Google Scholar] [CrossRef]
- Sun, Y.; Yao, R.; Ji, X.; Wu, H.; Luna, A.; Wang, Z.; Jetter, R. Characterization of an Alkylresorcinol Synthase That Forms Phenolics Accumulating in the Cuticular Wax on Various Organs of Rye (Secale Cereale). Plant J. 2020, 102, 1294–1312. [Google Scholar] [CrossRef]
- Korycińska, M.; Czelna, K.; Jaromin, A.; Kozubek, A. Antioxidant Activity of Rye Bran Alkylresorcinols and Extracts from Whole-Grain Cereal Products. Food Chem. 2009, 116, 1013–1018. [Google Scholar] [CrossRef]
- Zarnowski, R.; Kozubek, A.; Pietr, S.J. Effect of Rye 5-n-Alkylresorcinols on In Vitro Growth of Phytopathogenic Fusarium and Rhizoctonia Fungi. Bull. Pol. Acad. Sci. Biol. 1999, 47, 231–235. [Google Scholar]
- Fu, J.; Soroka, D.N.; Zhu, Y.; Sang, S. Whole Grain Alkylresorcinols Induce Apoptosis and Cause Cell Cycle Arrest in Human Colon Cancer Cells by Activating p53 Pathway. J. Agric. Food Chem. 2018, 66, 11935–11942. [Google Scholar] [CrossRef]
- Ross, A.B. Alkylresorcinols. In Whole Grains and Their Bioactives: Composition and Health; Johnson, J., Wallace, T., Eds.; John Wiley & Sons Ltd: Hoboken, NJ, USA, 2019; pp. 393–406. ISBN 9781119129486. [Google Scholar]
- Cheng, W.; Yujie, S.; Mingcong, F.; Yan, L.; Li, W.; Qian, H. Wheat Bran, as the Resource of Dietary Fiber: A Review. Crit. Rev. Food Sci. Nutr. 2022, 62, 7269–7281. [Google Scholar] [CrossRef]
- Zhou, K.; Su, L.; Yu, L. Phytochemicals and Antioxidant Properties in Wheat Bran. J. Agric. Food Chem. 2004, 52, 6108–6114. [Google Scholar] [CrossRef]
- Jefferson, A.; Adolphus, K. The Effects of Intact Cereal Grain Fibers, Including Wheat Bran on the Gut Microbiota Composition of Healthy Adults: A Systematic Review. Front. Nutr. 2019, 6, 33. [Google Scholar] [CrossRef]
- Deroover, L.; Yaxin, T.; Joran, V.; Christophe, M.C.; Verbeke, K. Modifying Wheat Bran to Improve Its Health Benefits. Crit. Rev. Food Sci. Nutr. 2020, 60, 1104–1122. [Google Scholar] [CrossRef] [PubMed]
- Katileviciute, A.; Plakys, G.; Budreviciute, A.; Onder, K.; Damiati, S.; Kodzius, R. A Sight to Wheat Bran: High Value-Added Products. Biomolecules 2019, 9, 887. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, K.; Suzauddula, M.; Bender, R.; Li, C.; Li, Y.; Sun, X.S.; Wang, W. Functional Properties and Potential Applications of Wheat Bran Extracts in Food and Cosmetics: A Review of Antioxidant, Enzyme-Inhibitory, and Anti-Aging Benefits. Foods 2025, 14, 515. [Google Scholar] [CrossRef]
- Yan, J.; Lv, Y.; Ma, S. Wheat Bran Enrichment for Flour Products: Challenges and Solutions. J. Food Process. Preserv. 2022, 46, e16977. [Google Scholar] [CrossRef]
- Hao, Y.; Yang, Z.; Liu, J.; Wang, Z.; Speakman, J.R.; Niu, C.; Sun, B.; Wang, J. Protective Effects of 5-Heptadecylresorcinol against Adipocyte Mitochondrial Dysfunction through Upregulation of Sirt3-Mediated Autophagy. J. Nutr. Biochem. 2022, 103, 108956. [Google Scholar] [CrossRef]
- Kruk, J.; Aboul-Enein, B.; Bernstein, J.; Marchlewicz, M. Dietary Alkylresorcinols and Cancer Prevention: A Systematic Review. Eur. Food Res. Technol. 2017, 243, 1693–1710. [Google Scholar] [CrossRef]
- El-Shabasy, R.M.; Farag, M.A. Dissecting Dietary Alkylresorcinols: A Compile of Their Distribution, Biosynthesis, Extraction and Functional Properties. Crit. Rev. Biotechnol. 2024, 44, 581–617. [Google Scholar] [CrossRef]
- Mullin, W.J.; Emery, J.P.H. Determination of Alkylresorcinols in Cereal-Based Foods. J. Agric. Food Chem. 1992, 40, 2127–2130. [Google Scholar] [CrossRef]
- Holt, M.D.; Moreau, R.A.; DerMarderosian, A.; McKeown, N.; Jacques, P.F. Accelerated Solvent Extraction of Alkylresorcinols in Food Products Containing Uncooked and Cooked Wheat. J. Agric. Food Chem. 2012, 60, 4799–4802. [Google Scholar] [CrossRef]
- Zhang, Q.W.; Lin, L.G.; Ye, W.C. Techniques for Extraction and Isolation of Natural Products: A Comprehensive Review. Chin. Med. 2018, 13, 1–26. [Google Scholar] [CrossRef]
- Zarnowski, R.; Suzuki, Y. Expedient Soxhlet Extraction of Resorcinolic Lipids from Wheat Grains. J. Food Compos. Anal. 2004, 17, 649–663. [Google Scholar] [CrossRef]
- Rebolleda, S.; Beltrán, S.; Sanz, M.T.; González-Sanjosé, M.L.; Solaesa, Á.G. Extraction of Alkylresorcinols from Wheat Bran with Supercritical CO2. J. Food Eng. 2013, 119, 814–821. [Google Scholar] [CrossRef]
- Athukorala, Y.; Hosseinian, F.S.; Mazza, G. Extraction and Fractionation of Alkylresorcinols from Triticale Bran by Two-Step Supercritical Carbon Dioxide. LWT Food Sci. Technol. 2010, 43, 660–665. [Google Scholar] [CrossRef]
- Hessel, V.; Tran, N.N.; Asrami, M.R.; Tran, Q.D.; Van Duc Long, N.; Escribà-Gelonch, M.; Tejada, J.O.; Linke, S.; Sundmacher, K. Sustainability of Green Solvents—Review and Perspective. Green Chem. 2022, 24, 410–437. [Google Scholar] [CrossRef]
- Usman, M.; Nakagawa, M.; Cheng, S. Emerging Trends in Green Extraction Techniques for Bioactive Natural Products. Processes 2023, 11, 3444. [Google Scholar] [CrossRef]
- Moldoveanu, S.; David, V. Solvent Extraction. In Modern Sample Preparation for Chromatography; Elsevier: Amsterdam, The Netherlands, 2015; pp. 131–189. ISBN 9780444543196. [Google Scholar]
- Panda, D.; Manickam, S. Cavitation Technology-the Future of Greener Extraction Method: A Review on the Extraction of Natural Products and Process Intensification Mechanism and Perspectives. Appl. Sci. 2019, 9, 766. [Google Scholar] [CrossRef]
- Marentes-Culma, R.; Orduz-Díaz, L.L.; Coy-Barrera, E. Targeted Metabolite Profiling-Based Identification of Antifungal 5-n-Alkylresorcinols Occurring in Different Cereals against Fusarium oxysporum. Molecules 2019, 24, 770. [Google Scholar] [CrossRef]
- Balachandran, C.; Duraipandiyan, V.; Arun, Y.; Sangeetha, B.; Emi, N.; Al-Dhabi, N.A.; Ignacimuthu, S.; Inaguma, Y.; Okamoto, A.; Perumal, P.T. Isolation and Characterization of 2-Hydroxy-9,10-Anthraquinone from Streptomyces olivochromogenes (ERINLG-261) with Antimicrobial and Antiproliferative Properties. Rev. Bras. Farmacogn. 2016, 26, 285–295. [Google Scholar] [CrossRef]
- Pang, Z.; Lu, Y.; Zhou, G.; Hui, F.; Xu, L.; Viau, C.; Spigelman, A.F.; MacDonald, P.E.; Wishart, D.S.; Li, S.; et al. MetaboAnalyst 6.0: Towards a Unified Platform for Metabolomics Data Processing, Analysis and Interpretation. Nucleic Acids Res. 2024, 52, W398–W406. [Google Scholar] [CrossRef]
- Sapirstein, H.D. Bioactives in Wheat Bran. Encycl. Food Grains 2016, 2, 1–9. [Google Scholar] [CrossRef]
- Arceusz, A.; Wesolowski, M.; Konieczynski, P. Methods for Extraction and Determination of Phenolic Acids in Medicinal Plants: A Review. Nat. Prod. Commun. 2013, 8, 1821–1829. [Google Scholar] [CrossRef] [PubMed]
- Tian, S.; Zhao, R.; Peng, T.; Liu, C.; Yang, Y. Effect of Different Heat Treatment on Alkylresorcinol Contents of Wheat Bran. BioResources 2020, 15, 1500–1509. [Google Scholar] [CrossRef]
- Mubofu, E.; Mgaya, J.; Munissi, J. Aromatic Bio-Based Solvents. In Bio-Based Solvents; Jérôme, F., Luque, R., Eds.; Wiley: Oxford, UK, 2017; pp. 31–34. [Google Scholar]
- Knödler, M.; Kaiser, A.; Carle, R.; Schieber, A. Profiling of Alk(en)ylresorcinols in Cereals by HPLC-DAD-APcI-MS. Anal. Bioanal. Chem. 2008, 391, 221–228. [Google Scholar] [CrossRef] [PubMed]
- Sumner, L.W.; Samuel, T.; Noble, R.; Gmbh, S.D.; Barrett, D.; Beale, M.H.; Hardy, N. Proposed Minimum Reporting Standards for Chemical Analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics 2007, 3, 211–221. [Google Scholar] [CrossRef]
- Gunenc, A.; HadiNezhad, M.; Tamburic-Ilincic, L.; Mayer, P.M.; Hosseinian, F. Effects of Region and Cultivar on Alkylresorcinols Content and Composition in Wheat Bran and Their Antioxidant Activity. J. Cereal Sci. 2013, 57, 405–410. [Google Scholar] [CrossRef]
- Ross, A.B.; Kamal-Eldin, A.; Jung, C.; Shepherd, M.J.; Åman, P. Gas Chromatographic Analysis of Alkylresorcinols in Rye (Secale cereale L) Grains. J. Sci. Food Agric. 2001, 81, 1405–1411. [Google Scholar] [CrossRef]
- Suzuki, Y.; Esumi, Y.; Uramoto, M.; Sakurai, A. Structural Analyses of Carbon Chains in 5-Alk(en)ylresorcinols of Rye and Wheat Whole Flour by Tandem Mass Spectrometry. Biosci. Biotechnol. Biochem. 1997, 61, 480–486. [Google Scholar] [CrossRef]
- Ross, A.B.; Åman, P.; Andersson, R.; Kamal-Eldin, A. Chromatographic Analysis of Alkylresorcinols and Their Metabolites. J. Chromatogr. A 2004, 1054, 157–164. [Google Scholar] [CrossRef]
- Barnes, S.; Benton, H.P.; Casazza, K.; Cooper, S.J.; Cui, X.; Du, X.; Engler, J.; Kabarowski, J.H.; Li, S.; Pathmasiri, W.; et al. Training in Metabolomics Research. II. Processing and Statistical Analysis of Metabolomics Data, Metabolite Identification, Pathway Analysis, Applications of Metabolomics and Its Future. J. Mass Spectrom. 2016, 51, 535–548. [Google Scholar] [CrossRef]
- Lamichhane, S.; Sen, P.; Dickens, A.M.; Hyötyläinen, T.; Orešič, M. An Overview of Metabolomics Data Analysis: Current Tools and Future Perspectives. Compr. Anal. Chem. 2018, 82, 387–413. [Google Scholar] [CrossRef]
- Geerkens, C.H.; Matejka, A.E.; Carle, R.; Schweiggert, R.M. Development and Validation of an HPLC Method for the Determination of Alk(en)ylresorcinols Using Rapid Ultrasound-Assisted Extraction of Mango Peels and Rye Grains. Food Chem. 2015, 169, 261–269. [Google Scholar] [CrossRef]
- Di Guida, R.; Engel, J.; Allwood, J.W.; Weber, R.J.M.; Jones, M.R.; Sommer, U.; Viant, M.R.; Dunn, W.B. Non-Targeted UHPLC-MS Metabolomic Data Processing Methods: A Comparative Investigation of Normalisation, Missing Value Imputation, Transformation and Scaling. Metabolomics 2016, 12, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Yun, Y.-H.; Deng, B.-C.; Cao, D.-S.; Wang, W.-T.; Liang, Y.-Z. Variable Importance Analysis Based on Rank Aggregation with Applications in Metabolomics for Biomarker Discovery. Anal. Chim. Acta 2016, 911, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Winter, K.M.; Stevenson, L.; Morris, C.; Leach, D.N. Wheat Bran Lipophilic Compounds with In Vitro Anticancer Effects. Food Chem. 2012, 130, 156–164. [Google Scholar] [CrossRef]
- Smuda, S.S.; Mohsen, S.M.; Olsen, K.; Aly, M.H. Bioactive Compounds and Antioxidant Activities of Some Cereal Milling By-Products. J. Food Sci. Technol. 2018, 55, 1134–1142. [Google Scholar] [CrossRef]
Extraction Method | Solvent | Type | Duration | Acronym |
---|---|---|---|---|
Soxhlet | acetone | Continuous Hot | ~6 h | SAO |
Soxhlet (sequential) | n-hexane | Sequential | ~6 h each | S-H |
Soxhlet (sequential) | acetone | Sequential | ~6 h each | S-A |
Soxhlet (sequential) | methanol | Sequential | ~6 h each | S-M |
Overnight maceration | acetone | Static | 24 h | OSAM |
Ultrasound-assisted | acetone | Ultrasound | 10 min | UA-10 |
Ultrasound-assisted | acetone | Ultrasound | 15 min | UA-15 |
Ultrasound-assisted | acetone | Ultrasound | 20 min | UA-20 |
Extraction Method | Yield (mg DE/g PM) a | Total AR (µg OE/g DE) b | |
---|---|---|---|
Overnight solvent-assisted maceration (OSAM) c | 40.2 ± 2.5 C | 910.3 ± 3.7 B | |
Ultrasound-assisted c | 10 min | 30.0 ± 3.2 DE | 1236.1 ± 15.0 A |
15 min | 34.0 ± 0.2 D | 1257.6 ± 6.6 A | |
20 min | 29.1 ± 1.3 EF | 1330.8 ± 16.4 A | |
Soxhlet with acetone only (SAO) c | 48.5 ± 1.8 B | 1157.1 ± 9.0 A | |
Soxhlet | n-hexane | 26.2 ± 1.6 EF | 733.8 ± 10.1 C |
acetone | 25.0 ± 4.1 EF | 230.6 ± 4.3 D | |
methanol | 59.3 ± 2.1 A | 205.6 ± 4.4 D |
No | Retention Time (min) | [M-H]− (m/z) | Molecular Formula | Homologs | Name |
---|---|---|---|---|---|
1 | 17.9 | 347 | C23H40O2 | C17 | 5-n-heptadecylresorcinol |
2 | 18.2 | 373 | C25H42O2 | C19:1 | 5-n-nonadecenylresorcinol |
3 | 18.5 | 417 | C27H46O3 | C21:Oxo | 5-n-oxoheneicosanylresorcinol |
4 | 20.4 | 375 | C25H44O2 | C19 | 5-n-nonadecanylresorcinol |
5 | 21.7 | 401 | C27H46O2 | C21:1 | 5-n-heneicosenylresorcinol |
6 | 21.1 | 445 | C29H50O3 | C23:Oxo | 5-n-oxotricosanylresorcinol |
7 | 22.6 | 403 | C27H48O2 | C21 | 5-n-heneicosylresorcinol |
8 | 23.1 | 473 | C31H54O3 | C25:Oxo | 5-n-oxopentacosanylresorcinol |
9 | 23.4 | 429 | C27H48O2 | C23:1 | 5-n-tricosenylresorcinol |
10 | 24.4 | 431 | C29H52O2 | C23 | 5-n-tricosylresorcinol |
11 | 25.3 | 457 | C29H52O2 | C25:1 | 5-n-pentacosenylresorcinol |
12 | 26.0 | 459 | C31H56O2 | C25 | 5-n-pentacosylresorcinol |
Sample | AR Quantitative Data a | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
C17 | C19:1 | C21:Oxo | C19 | C21:1 | C23:Oxo | C21 | C25:Oxo | C23:1 | C23 | C25:1 | C25 | |
OSAM | 43.5 ± 1.6 | 31.8 ± 1.3 | 25.3 ± 1.2 | 236.7 ± 18.9 | 29.3 ± 1.6 | 45.1 ± 1.9 | 271.2 ± 13.9 | 18.0 ± 0.9 | 9.0 ± 0.5 | 100 ± 7.6 | 19.0 ± 1 | 71.4 ± 5.4 |
S-H | 49.3 ± 2.4 | 20.3 ± 0.9 | 3.7 ± 0.2 | 205.3 ± 12.8 | 31.5 ± 1.5 | 5.6 ± 0.3 | 103.7 ± 7.2 | 6.9 ± 0.4 | 32.8 ± 1.8 | 145.6 ± 8.3 | 16.8 ± 1.2 | 96.2 ± 8.7 |
S-A | 15.3 ± 0.3 | 23.8 ± 0.2 | 32.7 ± 0.1 | 80.8 ± 3.9 | 3.4 ± 0.1 | 62.4 ± 3.1 | 78.5 ± 3.1 | 17.1 ± 0.2 | 5.3 ± 0.2 | 14.4 ± 0.5 | 4.8 ± 0.2 | 15.5 ± 0.4 |
S-M | 10.3 ± 1.2 | 14.5 ± 1.3 | 7.6 ± 1.1 | 23.0 ± 1.8 | 3.1 ± 0.2 | 3.6 ± 0.1 | 17.1 ± 0.7 | 2.2 ± 0.3 | 3.6 ± 0.3 | 5.0 ± 0.4 | 1.9 ± 0.2 | 6.3 ± 0.5 |
SAO | 47.5 ± 2.3 | 32.1 ± 0.7 | 29.9 ± 1.3 | 325.0 ± 16.8 | 27.6 ± 1.3 | 45.5 ± 2.5 | 404.0 ± 14.5 | 21.7 ± 0.7 | 14.8 ± 0.7 | 146.6 ± 7.1 | 19.2 ± 1.5 | 81.8 ± 3.6 |
UA-10 | 59.4 ± 3.4 | 36.5 ± 2.1 | 48.2 ± 2.2 | 362.0 ± 13.5 | 32.7 ± 0.9 | 54.2 ± 1.5 | 370.9 ± 7.5 | 23.0 ± 1.1 | 12.2 ± 0.5 | 115.2 ± 9.4 | 30.4 ± 1.4 | 100.5 ± 5.9 |
UA-15 | 60.0 ± 3.0 | 37.9 ± 2.6 | 48.9 ± 3.1 | 386.9 ± 19.1 | 31.5 ± 1.7 | 59.7 ± 1.9 | 372.7 ± 16.5 | 24.2 ± 1.2 | 13.0 ± 1.1 | 118.5 ± 9.2 | 30.1 ± 0.9 | 103.0 ± 4.2 |
UA-20 | 67.1 ± 3.6 | 34.7 ± 2.7 | 52.0 ± 2.2 | 411.5 ± 14.0 | 33.6 ± 1.3 | 69.3 ± 2.5 | 390.8 ± 10.5 | 25.3 ± 0.9 | 13.6 ± 0.5 | 125.9 ± 3.6 | 31.0 ± 1.5 | 108.1 ± 4.1 |
Sample a | OSAM | S-H | S-A | S-M | SAO | UA-10 | UA-15 | UA-20 |
---|---|---|---|---|---|---|---|---|
IC50 (µg/mL) b | 20.3 | 22.6 | 30.5 | 55.6 | 18.3 | 17.5 | 14.3 | 13.3 |
CI (95%) c | 21.2–19.3 | 23.8–21.1 | 32.1–28.8 | 56.9–54.2 | 19.8–17.4 | 18.5–16.6 | 15.2–13.5 | 14.8–11.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marentes-Culma, R.; Coy-Barrera, E. Comparative Evaluation of 5-n-Alkylresorcinol Extraction Conditions from Wheat Bran via Metabolite Profiling: Implications for Antiproliferative Activity. Foods 2025, 14, 2108. https://doi.org/10.3390/foods14122108
Marentes-Culma R, Coy-Barrera E. Comparative Evaluation of 5-n-Alkylresorcinol Extraction Conditions from Wheat Bran via Metabolite Profiling: Implications for Antiproliferative Activity. Foods. 2025; 14(12):2108. https://doi.org/10.3390/foods14122108
Chicago/Turabian StyleMarentes-Culma, Ronald, and Ericsson Coy-Barrera. 2025. "Comparative Evaluation of 5-n-Alkylresorcinol Extraction Conditions from Wheat Bran via Metabolite Profiling: Implications for Antiproliferative Activity" Foods 14, no. 12: 2108. https://doi.org/10.3390/foods14122108
APA StyleMarentes-Culma, R., & Coy-Barrera, E. (2025). Comparative Evaluation of 5-n-Alkylresorcinol Extraction Conditions from Wheat Bran via Metabolite Profiling: Implications for Antiproliferative Activity. Foods, 14(12), 2108. https://doi.org/10.3390/foods14122108