Implicating Ultrasonication and Heat–Moisture Treatments as a Green and Eco-Friendly Approach for Dual Physical Modification of Eleocharis tuberosa Starch to Improve Its Physico-Chemical and Functional Properties
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Extraction of Starch from Eleocharis tuberosa
2.3. Single and Dual Modification of Eleocharis tuberosa Starch Samples
2.3.1. Modification Through HM (Heat Moisture) Treatment
2.3.2. Modification Through Ultrasound (US) Treatment
2.3.3. Dual Modification of CWCS Using Combined HM-US Treatments
2.4. Quantifying the Amylose Content
2.5. Morphological Study of the CWCS Samples Using a Scanning Electron Microscope (SEM)
2.6. Particle Size Analysis
2.7. Thermal Analysis of Starch Samples
2.8. X-Ray Diffraction
2.9. FT-IR Analyses of the Native and Modified CWCS Samples
2.10. Measurement of the Pasting Properties
2.11. Dynamic Rheological Characteristics
2.12. In Vitro Digestibility of the CWCS Starch Samples
2.13. Statistical Analyses
3. Results and Discussions
3.1. Amylose Contents of the Native and Modified CWCS
3.2. Morphology and SEM Analysis
3.3. Particle Size Distribution of Native, Single, and Dual Modified Starches
3.4. Thermal Characteristics of Starch Samples
3.5. Crystalline Structure Using XRD
3.6. FTIR
3.7. The Pasting Characteristics of the Native Single and Dual Modified CWCS Starches
3.8. The Dynamic Rheological Characteristics
3.9. In Vitro Digestion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kaur, S.; Kaur, G.; Kumari, A.; Ghosh, A.; Singh, G.; Bhardwaj, R.; Kumar, A.; Riar, A. Resurrecting Forgotten Crops: Food-Based Products from Potential Underutilized Crops a Path to Nutritional Security and Diversity. Future Foods 2025, 11, 100585. [Google Scholar] [CrossRef]
- Muhammad, Z.; Ramzan, R.; Zhang, R.; Zhang, M. Isolation, Physicochemical Characterization, Fractionation, and in Vitro Digestibility of Non-Conventional Starches from Pueraria Montana Var. Thomsonii and Eleocharis Tuberosa. Food Chem. Adv. 2025, 7, 100976. [Google Scholar] [CrossRef]
- Talucder, M.S.A.; Ruba, U.B.; Robi, M.A.S. Potentiality of Neglected and Underutilized Species (NUS) as a Future Resilient Food: A Systematic Review. J. Agric. Food Res. 2024, 16, 101116. [Google Scholar] [CrossRef]
- Su, Q.; Cai, S.; Duan, Q.; Huang, W.; Huang, Y.; Chen, P.; Xie, F. Combined Effect of Heat Moisture and Ultrasound Treatment on the Physicochemical, Thermal and Structural Properties of New Variety of Purple Rice Starch. Int. J. Biol. Macromol. 2024, 261, 129748. [Google Scholar] [CrossRef] [PubMed]
- Maleki, S.; Aarabi, A.; Far, F.A.; Dizaji, H.Z. Heat Moisture Treatment and Ultrasound-Induced Hydrothermal Wheat Starch Modification: Techno-Functional, Microstructural and Quality 3D Printed Characteristics. Int. J. Biol. Macromol. 2024, 276, 133992. [Google Scholar] [CrossRef]
- Yang, W.; Kong, X.; Zheng, Y.; Sun, W.; Chen, S.; Liu, D.; Zhang, H.; Fang, H.; Tian, J.; Ye, X. Controlled Ultrasound Treatments Modify the Morphology and Physical Properties of Rice Starch Rather than the Fine Structure. Ultrason. Sonochem. 2019, 59, 104709. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Peng, Y.; Wang, Q. Study on the Browning and Structure Properties of Fresh-Cut Chinese Water Chestnut (Eleocharis tuberosa). Food Sci. Technol. 2019, 39, 396–402. [Google Scholar] [CrossRef]
- Zeng, F.; Chen, W.; He, P.; Zhan, Q.; Wang, Q.; Wu, H.; Zhang, M. Structural Characterization of Polysaccharides with Potential Antioxidant and Immunomodulatory Activities from Chinese Water Chestnut Peels. Carbohydr. Polym. 2020, 246, 116551. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liu, T.; Bian, X.; Hua, Z.; Chen, G.; Wu, X. Structural Characterization and Physicochemical Properties of Starch from Four Aquatic Vegetable Varieties in China. Int. J. Biol. Macromol. 2021, 172, 542–549. [Google Scholar] [CrossRef]
- Qiao, D.; Tu, W.; Zhang, B.; Wang, R.; Li, N.; Nishinari, K.; Riffat, S.; Jiang, F. Understanding the Multi-Scale Structure and Digestion Rate of Water Chestnut Starch. Food Hydrocoll. 2019, 91, 311–318. [Google Scholar] [CrossRef]
- Kaur, K.; Kaur, G.; Singh, A. Water Chestnut Starch: Extraction, Chemical Composition, Properties, Modifications, and Application Concerns. Sustain. Food Technol. 2023, 1, 228–262. [Google Scholar] [CrossRef]
- Muhammad, Z.; Ramzan, R.; Abdullah; Abbas, H.M.K.; Sun, W.; Zhang, G. Integrating the Modified Amphiphilic Eleocharis Tuberosa Starch to Stabilize Curcuminoid-Enriched Pickering Emulsions for Enhanced Bioavailability, Thermal Stability, and Retention of the Hydrophobic Bioactive Compound. Carbohydr. Polym. 2025, 352, 123199. [Google Scholar] [CrossRef]
- Choque-Quispe, D.; Obregón Gonzales, F.H.; Carranza-Oropeza, M.V.; Solano-Reynoso, A.M.; Ligarda-Samanez, C.A.; Palomino-Ríncón, W.; Choque-Quispe, K.; Torres-Calla, M.J. Physicochemical and Technofunctional Properties of High Andean Native Potato Starch. J. Agric. Food Res. 2024, 15, 100955. [Google Scholar] [CrossRef]
- Chandak, A.; Dhull, S.B.; Chawla, P.; Goksen, G.; Rose, P.K.; Al Obaid, S.; Ansari, M.J. Lotus (Nelumbo nucifera G.) Seed Starch: Understanding the Impact of Physical Modification Sequence (Ultrasonication and HMT) on Properties and in Vitro Digestibility. Int. J. Biol. Macromol. 2024, 278, 135032. [Google Scholar] [CrossRef]
- Ahsan, M.; Ali, T.M.; Hasnain, A. Use of Oxidized Potato Starch as Simultaneous Fat and Casein Replacer in Analogue Mozzarella Cheese-I: Impact on Rheological Properties of Cheese. Food Hydrocoll. 2024, 146, 109192. [Google Scholar] [CrossRef]
- Dhull, S.B.; Tanwar, M.; Khatkar, S.K.; Chandak, A.; Chawla, P.; Goksen, G. Exploring the Effects of Thermal and Non-Thermal Modification Methods on Morphological, Functional, and Pasting Properties of Mung Bean Starch. Innov. Food Sci. Emerg. Technol. 2024, 92, 103581. [Google Scholar] [CrossRef]
- Han, L.; Cao, S.; Yu, Y.; Xu, X.; Cao, X.; Chen, W. Modification in Physicochemical, Structural and Digestive Properties of Pea Starch during Heat-Moisture Process Assisted by Pre- and Post-Treatment of Ultrasound. Food Chem. 2021, 360, 129929. [Google Scholar] [CrossRef]
- Karwasra, B.L.; Kaur, M.; Gill, B.S. Impact of Ultrasonication on Functional and Structural Properties of Indian Wheat (Triticum aestivum L.) Cultivar Starches. Int. J. Biol. Macromol. 2020, 164, 1858–1866. [Google Scholar] [CrossRef]
- Han, L.; Huang, J.; Yu, Y.; Thakur, K.; Wei, Z.; Xiao, L.; Yang, X. The Alterations in Granule, Shell, Blocklets, and Molecular Structure of Pea Starch Induced by Ultrasound. Int. J. Biol. Macromol. 2023, 240, 124319. [Google Scholar] [CrossRef]
- Yılmaz, A.; Tugrul, N. Effect of Ultrasound-Microwave and Microwave-Ultrasound Treatment on Physicochemical Properties of Corn Starch. Ultrason. Sonochem. 2023, 98, 106516. [Google Scholar] [CrossRef]
- Maniglia, B.C.; Castanha, N.; Le-Bail, P.; Le-Bail, A.; Augusto, P.E.D. Starch Modification through Environmentally Friendly Alternatives: A Review. Crit. Rev. Food Sci. Nutr. 2021, 61, 2482–2505. [Google Scholar] [CrossRef] [PubMed]
- Acevedo, B.A.; Villanueva, M.; Chaves, M.G.; Avanza, M.V.; Ronda, F. Modification of Structural and Physicochemical Properties of Cowpea (Vigna Unguiculata) Starch by Hydrothermal and Ultrasound Treatments. Food Hydrocoll. 2022, 124, 107266. [Google Scholar] [CrossRef]
- Chi, C.; Ren, W.; Yang, Y.; Guo, X.; Zhang, Y.; Chen, B.; He, Y.; Chen, H.; Zheng, X.; Wang, H. Starch Ordered Structures Control Starch Reassembly Behaviors during Heat–Moisture Treatment for Modulating Its Digestibility. Food Chem. 2024, 430, 136966. [Google Scholar] [CrossRef] [PubMed]
- Barua, S.; Hanewald, A.; Bächle, M.; Mezger, M.; Srivastav, P.P.; Vilgis, T.A. Insights into the Structural, Thermal, Crystalline and Rheological Behavior of Various Hydrothermally Modified Elephant Foot Yam (Amorphophallus paeoniifolius) Starch. Food Hydrocoll. 2022, 129, 107672. [Google Scholar] [CrossRef]
- Liu, K.; Zhang, B.; Chen, L.; Li, X.; Zheng, B. Hierarchical Structure and Physicochemical Properties of Highland Barley Starch Following Heat Moisture Treatment. Food Chem. 2019, 271, 102–108. [Google Scholar] [CrossRef]
- Olawoye, B.; Fagbohun, O.F.; Popoola, O.O.; Gbadamosi, S.O.; Akanbi, C.T. Understanding How Different Modification Processes Affect the Physiochemical, Functional, Thermal, Morphological Structures and Digestibility of Cardaba Banana Starch. Int. J. Biol. Macromol. 2022, 201, 158–172. [Google Scholar] [CrossRef]
- Zhang, B.; Xiao, Y.; Wu, X.; Luo, F.; Lin, Q.; Ding, Y. Changes in Structural, Digestive, and Rheological Properties of Corn, Potato, and Pea Starches as Influenced by Different Ultrasonic Treatments. Int. J. Biol. Macromol. 2021, 185, 206–218. [Google Scholar] [CrossRef]
- Lu, L.; Liu, Y.; Xu, H.; Li, X.; Sui, C.; Li, X.; Wang, L. Changes in the Structural Characteristics and Glycemic Index of Mung Bean Starch Treated with Exogenous GABA and Ultrasound during Germination. Mod. Food Sci. Technol. 2024, 40. [Google Scholar] [CrossRef]
- Ulfa, G.M.; Putri, W.D.R.; Fibrianto, K.; Widjanarko, S.B. Optimization of Temperature and Reaction Influence on Ultrasound-Modified Sweet Potato Starch. Food Res. 2023, 7, 133–138. [Google Scholar] [CrossRef]
- Van Ngo, T.; Luangsakul, N. Green Modification Techniques for Modulating the Properties and Starch Digestibility of Rich-Polyphenol Low-Amylose Riceberry Rice (Oryza sativa L.) Flour. Food Chem. X 2025, 25, 102208. [Google Scholar] [CrossRef]
- Luangsakul, N.; Van Ngo, T. Sustainable Techniques to Enhance Novel Techno-Functional Properties and Modulate Starch Digestibility of Polyphenol-Rich Red Rice Flours with Varying Amylose Content. Food Chem. 2025, 480, 143915. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Liu, Y.; Chen, L.; Li, X.; Wang, J.; Xie, F. Insights into the Multi-Scale Structure and Digestibility of Heat-Moisture Treated Rice Starch. Food Chem. 2018, 242, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Luo, J.; Fu, L.; Cai, D.; Lu, X.; Liang, Z.; Zhu, J.; Li, L. Structural, Physicochemical, and Digestibility Properties of Starch-Soybean Peptide Complex Subjected to Heat Moisture Treatment. Food Chem. 2019, 297, 124957. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Hao, H.; Wu, Y.; Liu, Y.; Ouyang, J. Influence of Moisture and Amylose on the Physicochemical Properties of Rice Starch during Heat Treatment. Int. J. Biol. Macromol. 2021, 168, 656–662. [Google Scholar] [CrossRef]
- Han, L.; Wei, Q.; Cao, S.; Yu, Y.; Cao, X.; Chen, W. The Assisting Effects of Ultrasound on the Multiscale Characteristics of Heat-Moisture Treated Starch from Agriophyllum Squarrosum Seeds. Int. J. Biol. Macromol. 2021, 187, 471–480. [Google Scholar] [CrossRef]
- Wang, L.; Wang, M.; Zhou, Y.; Wu, Y.; Ouyang, J. Influence of Ultrasound and Microwave Treatments on the Structural and Thermal Properties of Normal Maize Starch and Potato Starch: A Comparative Study. Food Chem. 2022, 377, 131990. [Google Scholar] [CrossRef]
- Wang, Q.; Li, L.; Liu, C.; Zheng, X. Heat-Moisture Modified Blue Wheat Starch: Physicochemical Properties Modulated by Its Multi-Scale Structure. Food Chem. 2022, 386, 132771. [Google Scholar] [CrossRef]
- Cui, R.; Zhu, F. Effect of Ultrasound on Structural and Physicochemical Properties of Sweetpotato and Wheat Flours. Ultrason. Sonochem 2020, 66, 105118. [Google Scholar] [CrossRef]
- Wu, C.; McClements, D.J.; He, M.; Zheng, L.; Tian, T.; Teng, F.; Li, Y. Preparation and Characterization of Okara Nanocellulose Fabricated Using Sonication or High-Pressure Homogenization Treatments. Carbohydr. Polym. 2021, 255, 117364. [Google Scholar] [CrossRef]
- Taniguchi, A.; Miura, M.; Ikeda, T.M.; Kaneko, S.; Kobayashi, R. Factors Affecting Rheological Properties of Barley Flour-Derived Batter and Dough Examined from Particle Properties. Food Hydrocoll. 2022, 129, 107645. [Google Scholar] [CrossRef]
- Ali, N.A.; Dash, K.K.; Routray, W. Physicochemical Characterization of Modified Lotus Seed Starch Obtained through Acid and Heat Moisture Treatment. Food Chem. 2020, 319, 126513. [Google Scholar] [CrossRef]
- Sindhu, R.; Devi, A.; Khatkar, B.S. Morphology, Structure and Functionality of Acetylated, Oxidized and Heat Moisture Treated Amaranth Starches. Food Hydrocoll. 2021, 118, 106800. [Google Scholar] [CrossRef]
- Colussi, R.; Kringel, D.; Kaur, L.; da Rosa Zavareze, E.; Dias, A.R.G.; Singh, J. Dual Modification of Potato Starch: Effects of Heat-Moisture and High Pressure Treatments on Starch Structure and Functionalities. Food Chem. 2020, 318, 126475. [Google Scholar] [CrossRef]
- Liu, X.; Xi, C.; Liang, W.; Zheng, J.; Zhao, W.; Ge, X.; Shen, H.; Zeng, J.; Gao, H.; Li, W. Influence of Pre- or Post-Electron Beam Irradiation on Heat-Moisture Treated Maize Starch for Multiscale Structure, Physicochemical Properties and Digestibility. Carbohydr. Polym. 2023, 313, 120891. [Google Scholar] [CrossRef]
- Wang, H.; Xu, K.; Ma, Y.; Liang, Y.; Zhang, H.; Chen, L. Impact of Ultrasonication on the Aggregation Structure and Physicochemical Characteristics of Sweet Potato Starch. Ultrason. Sonochem. 2020, 63, 104868. [Google Scholar] [CrossRef]
- Zanella Pinto, V.; Goncalves Deon, V.; Moomand, K.; Levien Vanier, N.; Pilatti-Riccio, D.; da Rosa Zavareze, E.; Lim, L.T.; Guerra Dias, A.R. Characteristics of Modified Carioca Bean Starch upon Single and Dual Annealing, Heat-Moisture-Treatment, and Sonication. Starch/Staerke 2019, 71, 1800173. [Google Scholar] [CrossRef]
- Duan, Q.; Bao, X.; Yu, L.; Cui, F.; Zahid, N.; Liu, F.; Zhu, J.; Liu, H. Study on Hydroxypropyl Corn Starch/Alkyl Ketene Dimer Composite Film with Enhanced Water Resistance and Mechanical Properties. Int. J. Biol. Macromol. 2023, 253, 126613. [Google Scholar] [CrossRef]
- Hu, R.; Wu, L.; Liao, X.; Zhang, F.; Zheng, J. Synergistic Modification of Ultrasound and Bamboo Leaf Flavonoid on the Rheological Properties, Multi-Scale Structure, and in Vitro Digestibility of Pea Starch. Food Chem. 2023, 429, 136959. [Google Scholar] [CrossRef]
- Zailani, M.A.; Kamilah, H.; Husaini, A.; Awang Seruji, A.Z.R.; Sarbini, S.R. Functional and Digestibility Properties of Sago (Metroxylon Sagu) Starch Modified by Microwave Heat Treatment. Food Hydrocoll. 2022, 122, 107042. [Google Scholar] [CrossRef]
- Bao, W.; Li, Q.; Wu, Y.; Ouyang, J. Insights into the Crystallinity and in Vitro Digestibility of Chestnut Starch during Thermal Processing. Food Chem. 2018, 269, 244–251. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhang, Y.; Su, P.; Pan, N.; Liu, X.; Zhang, Y.; Zhang, H. Insights into the Aggregation Structure and Physicochemical Properties of Heat-Moisture Treated Wheat Starch and Its Associated Effects on Noodle Quality. J. Cereal Sci. 2023, 112, 103704. [Google Scholar] [CrossRef]
- Zhu, F. Impact of Ultrasound on Structure, Physicochemical Properties, Modifications, and Applications of Starch. Trends Food Sci. Technol. 2015, 43, 1–17. [Google Scholar] [CrossRef]
- Lin, Z.; Zhang, R.; Wu, Z.; Qiao, D.; Zhao, S.; Pi, X.; Zhang, B. Prolonging Heat-Moisture Treatment Time at Medium Moisture Content Optimizes the Quality Attributes of Cooked Brown Rice through Starch Structural Alteration. Int. J. Biol. Macromol. 2024, 279, 135561. [Google Scholar] [CrossRef]
- Piecyk, M.; Drużyńska, B.; Ołtarzewska, A.; Wołosiak, R.; Worobiej, E.; Ostrowska-Ligęza, E. Effect of Hydrothermal Modifications on Properties and Digestibility of Grass Pea Starch. Int. J. Biol. Macromol. 2018, 118, 2113–2120. [Google Scholar] [CrossRef]
- Ding, Y.; Cheng, J.; Lin, Q.; Wang, Q.; Wang, J.; Yu, G. Effects of Endogenous Proteins and Lipids on Structural, Thermal, Rheological, and Pasting Properties and Digestibility of Adlay Seed (Coix lacryma-jobi L.) Starch. Food Hydrocoll. 2021, 111, 106254. [Google Scholar] [CrossRef]
- Lu, X.; Chen, J.; Zheng, M.; Guo, J.; Qi, J.; Chen, Y.; Miao, S.; Zheng, B. Effect of High-Intensity Ultrasound Irradiation on the Stability and Structural Features of Coconut-Grain Milk Composite Systems Utilizing Maize Kernels and Starch with Different Amylose Contents. Ultrason. Sonochem. 2019, 55, 135–148. [Google Scholar] [CrossRef]
- Kaur, H.; Gill, B.S. Effect of High-Intensity Ultrasound Treatment on Nutritional, Rheological and Structural Properties of Starches Obtained from Different Cereals. Int. J. Biol. Macromol. 2019, 126, 367–375. [Google Scholar] [CrossRef]
- Zhou, S.; Hong, Y.; Gu, Z.; Cheng, L.; Li, Z.; Li, C. Effect of Heat-Moisture Treatment on the in Vitro Digestibility and Physicochemical Properties of Starch-Hydrocolloid Complexes. Food Hydrocoll. 2020, 104, 105736. [Google Scholar] [CrossRef]
- Sullivan, A.C.; Pangloli, P.; Dia, V.P. Impact of Ultrasonication on the Physicochemical Properties of Sorghum Kafirin and in Vitro Pepsin-Pancreatin Digestibility of Sorghum Gluten-like Flour. Food Chem. 2018, 240, 1121–1130. [Google Scholar] [CrossRef]
- Zhang, Y.; Dai, Y.; Hou, H.; Li, X.; Dong, H.; Wang, W.; Zhang, H. Ultrasound-Assisted Preparation of Octenyl Succinic Anhydride Modified Starch and Its Influence Mechanism on the Quality. Food Chem. X 2020, 5, 100077. [Google Scholar] [CrossRef]
- Bharti, I.; Singh, S.; Saxena, D.C. Exploring the Influence of Heat Moisture Treatment on Physicochemical, Pasting, Structural and Morphological Properties of Mango Kernel Starches from Indian Cultivars. LWT 2019, 110, 197–206. [Google Scholar] [CrossRef]
Starch Type | D[2,3] | D[4,3] | D[0.5] | SSA |
---|---|---|---|---|
µm | µm | µm | m2/g | |
CWCS | 5.78 ± 0.08 ij | 12.95 ± 0.05 k | 9.84 ± 0.03 k | 1.08 ± 0.01 a |
HM15%-CWCS | 6.75 ± 0.01 f | 19.19 ± 0.08 g | 15.15 ± 0.16 g | 0.89 ± 0.02 f |
HM20%-CWCS | 6.96 ± 0.04 e | 21.27 ± 0.04 e | 17.51 ± 0.093 | 0.86 ± 0.00 g |
HM25%-CWCS | 7.20 ± 0.12 d | 23.64 ± 0.17 d | 19.76 ± 0.02 d | 0.83 ± 0.03 g h |
US200-CWCS | 5.85 ± 0.02 i | 13.42 ± 0.01 j | 10.08 ± 0.01 j | 1.05 ± 0.01 b |
US400-CWCS | 5.97 ± 0.01 h | 13.90 ± 0.09 i | 10.82 ± 0.02 i | 1.02 ± 0.02 c |
US600-CWCS | 6.09 ± 0.16 g | 14.79 ± 0.02 h | 10.93 ± 0.04 h | 0.98 ± 0.02 d |
HM15%-US200-CWCS | 6.90 ± 0.09 e | 20.66 ± 0.05 f | 16.78 ± 0.06 f | 0.87 ± 0.01 g |
HM15%-US600-CWCS | 7.83 ± 0.02 b | 25.91 ± 0.01 b | 20.61 ± 0.07 b | 0.76 ± 0.01 i |
HM25%-US200-CWCS | 7.56 ± 0.05 c | 25.08 ± 0.13 c | 20.35 ± 0.01 c | 0.80 ± 0.00 h |
HM25%-US600-CWCS | 8.04 ± 0.01 a | 26.16 ± 0.11 a | 21.38 ± 0.08 a | 0.69 ± 0.01 j |
Starch Type | To (°C) | Tp (°C) | Tc (°C) | ΔH ((J/g) | Tr (°C) | PHI (Jg−1 °C−1) |
---|---|---|---|---|---|---|
CWCS | 58.08 ± 0.22 g | 67.32 ± 0.41 fg | 79.14 ± 0.66 h | 19.65 ± 0.41 a | 21.06 ± 0.32 a | 2.12 ± 0.01 a |
HM15%-CWCS | 59.91 ± 0.11 c | 69.24 ± 0.25 c | 82.37 ± 0.72 d | 18.86 ± 0.39 b | 22.46 ± 0.71 a | 2.03 ± 0.01 a |
HM20%-CWCS | 60.75 ± 0.75 ab | 69.65 ± 0.09 ab | 83.59 ± 0.14 b | 17.43 ± 0.16 d | 22.84 ± 0.96 a | 1.95 ± 0.06 b |
HM25%-CWCS | 61.72 ± 0.95 a | 70.23 ± 0.74 a | 84.75 ± 0.26 a | 16.54 ± 0.34 e | 23.03 ± 0.83 a | 1.94 ± 0.03 b |
US200-CWCS | 58.32 ± 0.32 f | 67.85 ± 0.54 f | 79.68 ± 0.48 gh | 19.25 ± 0.62 a | 21.36 ± 0.48 a | 2.01 ± 0.04 a |
US400-CWCS | 58.86 ± 0.14 e | 68.20 ± 0.97 ef | 80.34 ± 0.07 g | 18.93 ± 0.19 ab | 21.48 ± 0.51 a | 2.02 ± 0.05 a |
US600-CWCS | 59.29 ± 0.25 d | 68.64 ± 0.05 de | 80.72 ± 0.85 f | 18.08 ± 0.21 c | 21.43 ± 0.45 a | 1.93 ± 0.01 bc |
HM15%-US200-CWCS | 59.32 ± 0.13 d | 68.50 ± 0.38 e | 81.18 ± 0.74 e | 15.39 ± 0.52 ef | 21.93 ± 0.65 a | 1.66 ± 0.09 c |
HM15%-US600-CWCS | 59.60 ± 0.98 cd | 68.87 ± 0.44 d | 81.73 ± 0.21 e | 14.64 ± 0.31 g | 22.13 ± 0.28 a | 1.57 ± 0.07 cd |
HM25%-US200-CWCS | 60.07 ± 0.32 b | 69.06 ± 0.28 b | 82.54 ± 0.39 cd | 13.63 ± 0.14 h | 22.47 ± 0.38 a | 1.51 ± 0.02 d |
HM25%-US600-CWCS | 60.68 ± 0.54 b | 69.43 ± 0.13 ab | 82.89 ± 0.94 c | 12.18 ± 0.25 i | 22.21 ± 0.61 a | 1.49 ± 0.03d e |
Starch Type | R1025/995 | R1048/1025 |
---|---|---|
CWCS | 0.52 ± 0.07 | 1.60 ± 0.02 a |
HM15%-CWCS | 0.62 ± 0.14 d | 1.55 ± 0.17 b |
HM20%-CWCS | 0.66 ± 0.09 cd | 1.46 ± 0.05 d |
HM25%-CWCS | 0.71 ± 0.06 c | 1.38 ± 0.01 e |
US200-CWCS | 0.60 ± 0.10 d | 1.57 ± 0.06 b |
US400-CWCS | 0.64 ± 0.11 cd | 1.50 ± 0.09 bc |
US600-CWCS | 0.67 ± 0.13 c | 1.47 ± 0.13 d |
HM15%-US200-CWCS | 0.67 ± 0.10 c | 1.54 ± 0.07 bc |
HM15%-US600-CWCS | 0.70 ± 0.04 c | 1.45 ± 0.03 d |
HM25%-US200-CWCS | 0.76 ± 0.02 b | 1.36 ± 0.01 ef |
HM25%-US600-CWCS | 0.79 ± 0.01 a | 1.30 ± 0.04 f |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muhammad, Z.; Ramzan, R.; Ana, C.; Afzaal, M.; Abbas, A.; Virk, M.S.; Abdullah; Sun, W.; Zhang, G. Implicating Ultrasonication and Heat–Moisture Treatments as a Green and Eco-Friendly Approach for Dual Physical Modification of Eleocharis tuberosa Starch to Improve Its Physico-Chemical and Functional Properties. Foods 2025, 14, 2185. https://doi.org/10.3390/foods14132185
Muhammad Z, Ramzan R, Ana C, Afzaal M, Abbas A, Virk MS, Abdullah, Sun W, Zhang G. Implicating Ultrasonication and Heat–Moisture Treatments as a Green and Eco-Friendly Approach for Dual Physical Modification of Eleocharis tuberosa Starch to Improve Its Physico-Chemical and Functional Properties. Foods. 2025; 14(13):2185. https://doi.org/10.3390/foods14132185
Chicago/Turabian StyleMuhammad, Zafarullah, Rabia Ramzan, Chen Ana, Muhammad Afzaal, Adnan Abbas, Muhammad Safiullah Virk, Abdullah, Wu Sun, and Guoqiang Zhang. 2025. "Implicating Ultrasonication and Heat–Moisture Treatments as a Green and Eco-Friendly Approach for Dual Physical Modification of Eleocharis tuberosa Starch to Improve Its Physico-Chemical and Functional Properties" Foods 14, no. 13: 2185. https://doi.org/10.3390/foods14132185
APA StyleMuhammad, Z., Ramzan, R., Ana, C., Afzaal, M., Abbas, A., Virk, M. S., Abdullah, Sun, W., & Zhang, G. (2025). Implicating Ultrasonication and Heat–Moisture Treatments as a Green and Eco-Friendly Approach for Dual Physical Modification of Eleocharis tuberosa Starch to Improve Its Physico-Chemical and Functional Properties. Foods, 14(13), 2185. https://doi.org/10.3390/foods14132185