The Potential of Combining Faba Bean (Vicia faba L.) and Pea Pod (Pisum sativum L.) Flours to Enhance the Nutritional Qualities of Food Products
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials and Sample Preparation
2.2. Proximate Composition
2.3. Mineral Analysis
2.4. Phytochemical Composition
2.4.1. Extraction Procedure
2.4.2. Determination of Total Phenolic Content
2.4.3. Determination of Antioxidant Activity
2.5. Analyses of Anti-Nutritional Factors
2.5.1. Determination of Condensed Tannins
2.5.2. Determination of Trypsin Inhibitors
2.5.3. Phytic Acid Content
2.5.4. Galactosyl-Sucrose Oligosaccharides Content
2.6. In Vitro Protein Digestibility (IVPD)
2.7. Determination of Functional Properties
Water and Oil Absorption Capacity
2.8. Statistical Analysis
3. Results
3.1. Nutritional Composition
3.2. Phytochemical Composition
3.2.1. Total Phenolic Content (TPC) and Antioxidant Activity
3.2.2. Mineral Composition
3.3. Anti-Nutritional Factors (ANFs)
3.4. In Vitro Protein Digestibility (IVPD)
3.5. Functional Properties
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GHG | Greenhouse Gases |
DPPH | 2,2diphenyl-1-picrylhydrazyl |
FRAP | Ferric Reducing Antioxidant Power |
TPTZ | 2,4,6-Tripyridyl-S-Triazine |
α-GOS | Alpha Galactosyl-Sucrose-Oligosaccharides |
IVPD | In Vitro Protein Digestibility |
SSF | Simulated Salivary Fluid |
SGF | Simulated Gastric Fluid |
SIF | Simulated Intestinal Fluid |
TE | Trolox Equivalent |
GAE | Gallic Acid Equivalents |
EC | Equivalents Catechin |
WAC | Water Absorption Capacity |
OAC | Oil Absorption Capacity |
IDF | Insoluble Dietary Fibers |
DW | Dry Weight |
TPC | Total Phenolic Content |
ANFs | Anti-Nutritional Factors |
FB | Faba Bean |
TIA | Trypsin Inhibitor Activity |
RFOs | Raffinose Family Oligosaccharides |
References
- Pellinen, T.; Jallinoja, P.; Erkkola, M.; Pajari , A.M. Perceptions of three diets varying in animal- and plant-based protein contents: Analysis of participant experience diaries. Appetite 2024, 200, 107538. [Google Scholar] [CrossRef] [PubMed]
- Peeters, A.-L.; Tromp, N.; Bulah, B.M.; van der Meer, M.; van den Boom, L.; Hekkert, P.P.M. Framing for the protein transition: Eight pathways to foster plant-based diets through design. Environ. Innov. Soc. Transit. 2024, 52, 100848. [Google Scholar] [CrossRef]
- Lumsden, C.L.; Jägermeyr, J.; Ziska, L.; Fanzo, J. Critical overview of the implications of a global protein transition in the face of climate change: Key unknowns and research imperatives. One Earth 2024, 7, 1187–1201. [Google Scholar] [CrossRef]
- Ravindran, N.; Singh, S.K.; Singha, P. A comprehensive review on the recent trends in extractions, pretreatments and modifications of plant-based proteins. Food Res. Int. 2024, 190, 114575. [Google Scholar] [CrossRef]
- Du, S.-K.; Jiang, H.; Yu, X.; Jane, J.-l. Physicochemical and functional properties of whole legume flour. LWT-Food Sci. Technol. 2014, 55, 308–313. [Google Scholar] [CrossRef]
- Labba, I.-C.M.; Frøkiær, H.; Sandberg, A.-S. Nutritional and antinutritional composition of fava bean (Vicia faba L., var. minor) cultivars. Food Res. Int. 2021, 140, 110038. [Google Scholar] [CrossRef]
- Neme, K.; Bultosa, G.; Bussa, N. Nutrient and functional properties of composite flours processed from pregelatinised barley, sprouted faba bean and carrot flours. Int. J. Food Sci. Technol. 2015, 50, 2375–2382. [Google Scholar] [CrossRef]
- Sá, A.G.A.; Moreno, Y.M.F.; Carciofi, B.A.M. Plant proteins as high-quality nutritional source for human diet. Trends Food Sci. Technol. 2020, 97, 170–184. [Google Scholar] [CrossRef]
- Setia, R.; Dai, Z.; Nickerson, M.T.; Sopiwnyk, E.; Malcolmson, L.; Ai, Y. Impacts of short-term germination on the chemical compositions, technological characteristics and nutritional quality of yellow pea and faba bean flours. Food Res. Int. 2019, 122, 263–272. [Google Scholar] [CrossRef]
- Fraga, C.G.; Oteiza, P.I. Bioactives and their impact on human health. Mol. Asp. Med. 2018, 61, 1. [Google Scholar] [CrossRef]
- Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Med. Cell. Longev. 2009, 2, 270–278. [Google Scholar] [CrossRef] [PubMed]
- Williamson, G. The role of polyphenols in modern nutrition. Nutr. Bull. 2017, 42, 226–235. [Google Scholar] [CrossRef] [PubMed]
- Krenz, L.M.M.; Grebenteuch, S.; Zocher, K.; Rohn, S.; Pleissner, D. Valorization of faba bean (Vicia faba) by-products. Biomass Convers. Biorefin. 2023, 14, 26663–26680. [Google Scholar] [CrossRef]
- Schmelter, L.; Rohm, H.; Struck, S. Gluten-free bakery products: Cookies made from different Vicia faba bean varieties. Futur. Foods 2021, 4, 100038. [Google Scholar] [CrossRef]
- Dhull, S.B.; Kidwai, M.K.; Noor, R.; Chawla, P.; Rose, P.K. A review of nutritional profile and processing of faba bean (Vicia faba L.). Legum. Sci. 2021, 4, e129. [Google Scholar] [CrossRef]
- Sharan, S.; Zanghelini, G.; Zotzel, J.; Bonerz, D.; Aschoff, J.; Saint-Eve, A.; Maillard, M.N. Fava bean (Vicia faba L.) for food applications: From seed to ingredient processing and its effect on functional properties, antinutritional factors, flavor, and color. Compr. Rev. Food Sci. Food Saf. 2021, 20, 401–428. [Google Scholar] [CrossRef]
- Millar, K.A.; Gallagher , E.; Burke, R.; McCarthy, S.; Barry-Ryan , C. Proximate composition and anti-nutritional factors of fava-bean (Vicia faba), green-pea and yellow-pea (Pisum sativum) flour. J. Food Compos. Anal. 2019, 82, 103233. [Google Scholar] [CrossRef]
- Ghavidel, R.A.; Prakash, J. The impact of germination and dehulling on nutrients, antinutrients, in vitro iron and calcium bioavailability and in vitro starch and protein digestibility of some legume seeds. LWT Food Sci. Technol. 2007, 40, 1292–1299. [Google Scholar] [CrossRef]
- Luzzatto, L.; Arese, P. Favism and Glucose-6-Phosphate Dehydrogenase Deficiency. N. Engl. J. Med. 2018, 378, 60–71. [Google Scholar] [CrossRef]
- Mínguez, M.I.; Rubiales, D. Chapter 15—Faba bean, in Crop Physiology Case Histories for Major Crops; Sadras, V.O., Calderini, D.F., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 452–481. [Google Scholar]
- Toklu, F.; Sen Gupta, D.; Karaköy, T.; Özkan, H. Bioactives and Nutraceuticals in Food Legumes: Nutritional Perspective. In Breeding for Enhanced Nutrition and Bio-Active Compounds in Food Legumes; Gupta, D.S., Gupta, S., Kumar, J., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 229–245. [Google Scholar]
- Ghavidel, R.A.; Prakash, J. Effect of germination and dehulling on functional properties of legume flours. J. Sci. Food Agric. 2006, 86, 1189–1195. [Google Scholar] [CrossRef]
- Kalpanadevi, V.; Mohan, V. Effect of processing on antinutrients and in vitro protein digestibility of the underutilized legume, Vigna unguiculata (L.) Walp subsp. unguiculata. LWT Food Sci. Technol. 2013, 51, 455–461. [Google Scholar] [CrossRef]
- Lu, X.; Zhan, J.; Ma, R.; Tian, Y. Structure, thermal stability, and in vitro digestibility of rice starch-protein hydrolysate complexes prepared using different hydrothermal treatments. Int. J. Biol. Macromol. 2023, 230, 123130. [Google Scholar] [CrossRef] [PubMed]
- Badjona, A.; Bradshaw, R.; Millman, C.; Howarth, M.; Dubey, B. Faba Bean Flavor Effects from Processing to Consumer Acceptability. Foods 2023, 12, 2237. [Google Scholar] [CrossRef] [PubMed]
- Rajhi, I.; Boulaaba, M.; Baccouri, B.; Rajhi, F.; Hammami, J.; Barhoumi, F.; Flamini, G.; Mhadhbi, H. Assessment of dehulling effect on volatiles, phenolic compounds and antioxidant activities of faba bean seeds and flours. S. Afr. J. Bot. 2022, 147, 741–753. [Google Scholar] [CrossRef]
- Hanan, E.; Rudra, S.G.; Sagar, V.R.; Sharma, V. Utilization of pea pod powder for formulation of instant pea soup powder. J. Food Process. Preserv. 2020, 44, e14888. [Google Scholar] [CrossRef]
- Ben Saıd, K.; Bellagha, S.; Gliguem, H. Effect of Blanching Time Variation on Nutritional and Functional Quality Attributes of Pea Pods. Int. J. Innov. Approaches Agric. Res. 2024, 8, 129–137. [Google Scholar]
- Garg, M. Nutritional Evaluation and Utilization of Pea Pod Powder for Preparation of Jaggery Biscuits. J. Food Process. Technol. 2015, 6, 435–452. [Google Scholar] [CrossRef]
- Mateos-Aparicio, I.; Redondo-Cuenca, A.; Villanueva-Suárez, M.J.; Zapata-Revilla, M.A.; Tenorio-Sanz, M.D. Pea pod, broad bean pod and okara, potential sources of functional compounds. LWT 2010, 43, 1467–1470. [Google Scholar] [CrossRef]
- Nasir, G.; Zaidi, S.; Tabassum, N.; Asfaq. A review on nutritional composition, health benefits and potential applications of by-products from pea processing. Biomass Convers. Biorefin. 2022, 14, 10829–10842. [Google Scholar] [CrossRef]
- Mejri, F.; Ben Khoud, H.; Njim, L.; Baati, T.; Selmi, S.; Martins, A.; Serralheiro, M.L.M.; Rauter, A.P.; Hosni, K. In vitro and in vivo biological properties of pea pods (Pisum sativum L.). Food Biosci. 2019, 32, 100482. [Google Scholar] [CrossRef]
- Pathak, P.D.; Mandavgane, S.A.; Kulkarni, B.D. Characterizing Fruit and Vegetable Peels as Bioadsorbents. Curr. Sci. 2016, 110, 2114. [Google Scholar] [CrossRef]
- Kumari, T.; Deka, S.C. Potential health benefits of garden pea seeds and pods: A review. Legum. Sci. 2021, 3, e82. [Google Scholar] [CrossRef]
- Wadhwa, M.; Kaushal, S.; Bakshi, M. Nutritive evaluation of vegetable wastes as complete feed for goat buck. Small Rumin. Res. 2006, 64, 279–284. [Google Scholar] [CrossRef]
- Mary, G.S.; Sugumaran, P.J.; Niveditha, S.B.; Ramalakshmi, B.; Ravichandran, P.; Seshadri, S. Production, characterization and evaluation of biochar from pod (Pisum sativum), leaf (Brassica oleracea) and peel (Citrus sinensis) wastes. Int. J. Recycl. Org. Waste Agric. 2016, 5, 43–53. [Google Scholar] [CrossRef]
- Vojvodić, A.; Komes, D.; Vovk, I.; Belščak-Cvitanović, A.; Bušić, A. Compositional evaluation of selected agro-industrial wastes as valuable sources for the recovery of complex carbohydrates. Food Res. Int. 2016, 89 Pt 1, 565–573. [Google Scholar] [CrossRef]
- Soest, V. Use of Detergents in the Analysis of Fibrous Feeds. II. A Rapid Method for the Determination of Fiber and Lignin. J. AOAC Int. 1963, 46, 829–835. [Google Scholar] [CrossRef]
- Howard, L.R.; Clark, J.R.; Brownmiller, C. Antioxidant capacity and phenolic content in blueberries as affected by genotype and growing season. J. Sci. Food Agric. 2003, 83, 1238–1247. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Yen, G.-C.; Chen, H.-Y. Antioxidant activity of various tea extracts in relation to their antimutagenicity. J. Agric. Food Chem. 1995, 43, 27–32. [Google Scholar] [CrossRef]
- Khandelwal, S.; Udipi, S.A.; Ghugre, P. Polyphenols and tannins in Indian pulses: Effect of soaking, germination and pressure cooking. Food Res. Int. 2010, 43, 526–530. [Google Scholar] [CrossRef]
- Kakade, M.L.; Rackis, J.J.; Mcghee, J.E.; Puski, G. Determination of trypsin inhibitor activity of soy products: A collaborative analysis of an improved procedure. Cereal Chemistry, 1974.
- Brodkorb, A.; Egger, L.; Alminger, M.; Alvito, P.; Assunção, R.; Ballance, S.; Bohn, T.; Bourlieu-Lacanal, C.; Boutrou, R.; Carrière, F.; et al. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nat. Protoc. 2019, 14, 991–1014. [Google Scholar] [CrossRef] [PubMed]
- Aziah, A.N.; Komathi, C. Physicochemical and functional properties of peeled and unpeeled pumpkin flour. J. Food Sci. 2009, 74, S328–S333. [Google Scholar] [CrossRef] [PubMed]
- Guéguen, J.; Walrand, S.; Bourgeois, O. Les protéines végétales: Contexte et potentiels en alimentation humaine. Cah. Nutr. Diététique 2016, 51, 177–185. [Google Scholar] [CrossRef]
- Bessada, S.M.; Barreira, J.C.; Oliveira, M.B.P. Pulses and food security: Dietary protein, digestibility, bioactive and functional properties. Trends Food Sci. Technol. 2019, 93, 53–68. [Google Scholar] [CrossRef]
- Riaz, M.N. (Ed.) Soy Applications in Food; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2006. [Google Scholar] [CrossRef]
- Vriesmann, L.C.; Amboni, R.D.d.M.C.; Petkowicz, C.L.d.O. Cacao pod husks (Theobroma cacao L.): Composition and hot-water-soluble pectins. Ind. Crop. Prod. 2011, 34, 1173–1181. [Google Scholar] [CrossRef]
- Korus, J.; Gumul, D.; Achremowicz, B. The Influence of Raw Material and Extrudates on the Content of Dietary Fiber Fractions.Electron. J. Pol. Agric. Univ. 2006, 9(1), Art. 10. Available online: http://www.ejpau.media.pl/volume9/issue1/art-10.html (accessed on 15 September 2024).
- Belghith-Fendri, L.; Chaari, F.; Kallel, F.; Zouari-Ellouzi, S.; Ghorbel, R.; Besbes, S.; Ellouz-Chaabouni, S.; Ghribi-Aydi, D. Pea and Broad Bean Pods as a Natural Source of Dietary Fiber: The Impact on Texture and Sensory Properties of Cake. J. Food Sci. 2016, 81, C2360–C2366. [Google Scholar] [CrossRef]
- Garcia-Amezquita, L.E.; Tejada-Ortigoza, V.; Torres, J.A.; Welti-Chanes, J. Extraction and Modification of Dietary Fiber Applying Thermal Processes. In Science and Technology of Fibers in Food Systems; Welti-Chanes, J., Ed.; Springer International Publishing: Cham, Switzerland, 2020; pp. 329–342. [Google Scholar]
- Elliott, C. The Nutritional Quality of Gluten-Free Products for Children. Pediatrics 2018, 142, e20180525. [Google Scholar] [CrossRef]
- Ambigaipalan, P.; Hoover, R.; Donner, E.; Liu, Q. Starch chain interactions within the amorphous and crystalline domains of pulse starches during heat-moisture treatment at different temperatures and their impact on physicochemical properties. Food Chem. 2014, 143, 175–184. [Google Scholar] [CrossRef]
- Ma, M.; Wang, Y.; Wang, M.; Jane, J.L.; Du, S.K. Physicochemical properties and in vitro digestibility of legume starches. Food Hydrocoll. 2017, 63, 249–255. [Google Scholar] [CrossRef]
- Nguyen, T.L.; Mitra, S.; Gilbert, R.G.; Gidley, M.J.; Fox, G.P. Influence of heat treatment on starch structure and physicochemical properties of oats. J. Cereal Sci. 2019, 89, 102805. [Google Scholar] [CrossRef]
- Marchal, L.; Tramper, J. Hydrolytic gain during hydrolysis reactions: Implications and correction procedures. Biotechnol. Tech. 1999, 13, 325–328. [Google Scholar] [CrossRef]
- Li, L.; Yuan, T.Z.; Setia, R.; Raja, R.B.; Zhang, B.; Ai, Y. Characteristics of pea, lentil and faba bean starches isolated from air-classified flours in comparison with commercial starches. Food Chem. 2019, 276, 599–607. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Wang, S.; Copeland, L.; Wang, S. Physicochemical properties and in vitro digestibility of starches from field peas grown in China. LWT 2015, 64, 829–836. [Google Scholar] [CrossRef]
- Zia ur, R. Domestic processing effects on available carbohydrate content and starch digestibility of black grams (Vigna mungo) and chick peas (Cicer arietium). Food Chem. 2007, 100, 764–767. [Google Scholar] [CrossRef]
- Giménez, M.A.; Drago, S.R.; De Greef, D.; Gonzalez, R.J.; Lobo, M.O.; Samman, N.C. Rheological, functional and nutritional properties of wheat/broad bean (Vicia faba) flour blends for pasta formulation. Food Chem. 2012, 134, 200–206. [Google Scholar] [CrossRef]
- Kaur, M.; Singh, N. Relationships Between Selected Properties of Seeds, Flours, and Starches from Different Chickpea Cultivars. Int. J. Food Prop. 2006, 9, 597–608. [Google Scholar] [CrossRef]
- Marinangeli, C.P.F.; Jones, P.J.H. Whole and fractionated yellow pea flours reduce fasting insulin and insulin resistance in hypercholesterolaemic and overweight human subjects. Br. J. Nutr. 2011, 105, 110–117. [Google Scholar] [CrossRef]
- Arribas, C.; Cabellos, B.; Sanchez, C.; Cuadrado, C.; Guillamon, E.; Pedrosa, M.M. The impact of extrusion on the nutritional composition, dietary fiber and in vitro digestibility of gluten-free snacks based on rice, pea and carob flour blends. Food Funct. 2017, 8, 3654–3663. [Google Scholar] [CrossRef]
- Nadeesha Dilrukshi, H.N.; Torrico, D.D.; Brennan, M.A.; Brennan, C.S. Effects of extrusion processing on the bioactive constituents, in vitro digestibility, amino acid composition, and antioxidant potential of novel gluten-free extruded snacks fortified with cowpea and whey protein concentrate. Food Chem. 2022, 389, 133107. [Google Scholar] [CrossRef]
- Arribas, C.; Pereira, E.; Barros, L.; Alves, M.J.; Calhelha, R.C.; Guillamon, E.; Pedrosa, M.M.; Ferreira, I. Healthy novel gluten-free formulations based on beans, carob fruit and rice: Extrusion effect on organic acids, tocopherols, phenolic compounds and bioactivity. Food Chem. 2019, 292, 304–313. [Google Scholar] [CrossRef] [PubMed]
- Slawinska, N.; Olas, B. The current state of knowledge about thermal processing of edible seeds; a special emphasis on their bioactive constituents and antioxidant activity. Food Chem. 2024, 458, 140526. [Google Scholar] [CrossRef] [PubMed]
- Siah, S.; Wood, J.A.; Agboola, S.; Konczak, I.; Blanchard, C.L. Effects of soaking, boiling and autoclaving on the phenolic contents and antioxidant activities of faba beans (Vicia faba L.) differing in seed coat colours. Food Chem. 2014, 142, 461–468. [Google Scholar] [CrossRef] [PubMed]
- Oomah, B.D.; Caspar, F.; Malcolmson, L.J.; Bellido, A.S. Phenolics and antioxidant activity of lentil and pea hulls. Food Res. Int. 2011, 44, 436–441. [Google Scholar] [CrossRef]
- Singh, B.; Singh, J.P.; Shevkani, K.; Singh, N.; Kaur, A. Bioactive constituents in pulses and their health benefits. J. Food Sci. Technol. 2017, 54, 858–870. [Google Scholar] [CrossRef]
- El-Hady, E.A.; Habiba, R. Effect of soaking and extrusion conditions on antinutrients and protein digestibility of legume seeds. LWT 2003, 36, 285–293. [Google Scholar] [CrossRef]
- Khattab, R.; Arntfield, S. Nutritional quality of legume seeds as affected by some physical treatments 2. Antinutritional factors. LWT 2009, 42, 1113–1118. [Google Scholar] [CrossRef]
- Arise, A.K.; Malomo, S.A.; Ihuoma Cynthia, C.; Aliyu, N.A.; Arise, R.O. Influence of processing methods on the antinutrients, morphology and in-vitro protein digestibility of jack bean. Food Chem. Adv. 2022, 1, 100078. [Google Scholar] [CrossRef]
- Alonso, R.; Aguirre, A.; Marzo, F. Effects of extrusion and traditional processing methods on antinutrients and in vitro digestibility of protein and starch in faba and kidney beans. Food Chem. 2000, 68, 159–165. [Google Scholar] [CrossRef]
- Rahate, K.A.; Madhumita, M.; Prabhakar, P.K. Nutritional composition, anti-nutritional factors, pretreatments-cum-processing impact and food formulation potential of faba bean (Vicia faba L.): A comprehensive review. LWT Food Sci. Technol. 2021, 138, 110796. [Google Scholar] [CrossRef]
- Nikmaram, N.; Leong, S.Y.; Koubaa, M.; Zhu, Z.; Barba, F.J.; Greiner, R.; Oey, I.; Roohinejad, S. Effect of extrusion on the anti-nutritional factors of food products: An overview. Food Control. 2017, 79, 62–73. [Google Scholar] [CrossRef]
- Martínez-Villaluenga, C.; Frias, J.; Vidal-Valverde, C. Alpha-galactosides: Antinutritional factors or functional ingredients? Crit. Rev. Food Sci. Nutr. 2008, 48, 301–316. [Google Scholar] [CrossRef] [PubMed]
- Badjona, A.; Bradshaw, R.; Millman, C.; Howarth, M.; Dubey, B. Faba Bean Processing: Thermal and Non-Thermal Processing on Chemical, Antinutritional Factors, and Pharmacological Properties. Molecules 2023, 28, 5431. [Google Scholar] [CrossRef] [PubMed]
- Martín-Cabrejas, M.A.; Aguilera, Y.; Pedrosa, M.M.; Cuadrado, C.; Hernández, T.; Díaz, S.; Esteban, R.M. The impact of dehydration process on antinutrients and protein digestibility of some legume flours. Food Chem. 2009, 114, 1063–1068. [Google Scholar] [CrossRef]
- Rafiq, A.; Sharma, S.; Singh, B. In vitro starch digestibility, degree of gelatinization and functional properties of twin screw prepared cereal-legume pasta. J. Cereal Sci. 2017, 74, 279–287. [Google Scholar] [CrossRef]
- Adeleye, O.O.; Awodiran, S.T.; Ajayi, A.O.; Ogunmoyela, T.F. Effect of high-temperature, short-time cooking conditions on in vitro protein digestibility, enzyme inhibitor activity and amino acid profile of selected legume grains. Heliyon 2020, 6, e05419. [Google Scholar] [CrossRef]
- Li, Y.; Wang, H.; Wang, L.; Qiu, J.; Li, Z.; Wang, L. Milling of wheat bran: Influence on digestibility, hydrolysis and nutritional properties of bran protein during in vitro digestion. Food Chem. 2023, 404 Pt A, 134559. [Google Scholar] [CrossRef]
- Rachman, A.; Brennan, M.A.; Morton, J.; Torrico, D.; Brennan, C.S. In-vitro digestibility, protein digestibility corrected amino acid, and sensory properties of banana-cassava gluten-free pasta with soy protein isolate and egg white protein addition. Food Sci. Hum. Wellness 2023, 12, 520–527. [Google Scholar] [CrossRef]
- Tang, C.-H.; Chen, L.; Ma, C.-Y. Thermal aggregation, amino acid composition and in vitro digestibility of vicilin-rich protein isolates from three Phaseolus legumes: A comparative study. Food Chem. 2009, 113, 957–963. [Google Scholar] [CrossRef]
- Awuchi, C.; Victory, I.; Echeta, C. The Functional Properties of Foods and Flours. Int. J. Adv. Acad. Res. 2019, 5, 139–160. [Google Scholar]
- Sun, G.; Ni, P.; Lam, E.; Hrapovic, S.; Bing, D.; Yu, B.; Ai, Y. Exploring the functional attributes and in vitro starch and protein digestibility of pea flours having a wide range of amylose content. Food Chem. 2023, 405 Pt B, 134938. [Google Scholar] [CrossRef]
- Sreerama, Y.N.; Sashikala, V.B.; Pratape, V.M.; Singh, V. Nutrients and antinutrients in cowpea and horse gram flours in comparison to chickpea flour: Evaluation of their flour functionality. Food Chem. 2012, 131, 462–468. [Google Scholar] [CrossRef]
- Duguma, H.T.; Forsido, S.F.; Belachew, T.; Hensel, O. Changes in Anti-nutritional Factors and Functional Properties of Extruded Composite Flour. Front. Sustain. Food Syst. 2021, 5. [Google Scholar] [CrossRef]
- Kaur, M.; Singh, N. Studies on functional, thermal and pasting properties of flours from different chickpea (Cicer arietinum L.) cultivars. Food Chem. 2005, 91, 403–411. [Google Scholar] [CrossRef]
- Iwe, M.O.; Onyeukwu, U.; Agiriga, A.N.; Yildiz, F. Proximate, functional and pasting properties of FARO 44 rice, African yam bean and brown cowpea seeds composite flour. Cogent Food Agric. 2016, 2, 1142409. [Google Scholar] [CrossRef]
Parameters | Faba Bean Flours | Pea Pod Flour | ||||
---|---|---|---|---|---|---|
Thermally Treated (30 min) | ||||||
Raw | 80 °C | 120 °C | 150 °C | 180 °C | ||
Dry matter | 92.40 ± 0.27 a | 96.04 ± 0.40 b | 99.27 ± 0.11 c | 99.33 ± 0.43 c | 99.37 ± 0.01 c | 91.72 ± 0.16 |
Protein | 32.22 ± 0.36 ab | 32.12 ± 0.16 ab | 31.89 ± 0.10 a | 32.62 ± 0.33 b | 32 ± 0.16 ab | 12.13 ± 0.05 |
Ash | 3.67 ± 0.05 a | 3.29 ± 0.10 b | 3.34 ± 0.01 b | 3.27 ± 0.07 b | 3.38 ± 0.08 b | 3.98 ± 0.05 |
Hemicellulose | 23.08 ± 0.12 a | 20.62 ± 0.89 b | 19.77 ± 0.42 b | 18.02 ± 0.01 c | 16.47 ± 0.09 d | 16.86 ± 0.18 |
Cellulose | 9.65 ± 0.33 a | 8.86 ± 0.51 ab | 8.44 ± 0.27 b | 6.58 ± 0.03 c | 6.61 ± 0.04 c | 18.08 ± 0.07 |
Lignin | 0.64 ± 0.01 a | 0.62 ± 0.00 a | 0.62 ± 0.02 a | 0.57 ± 0.01 b | 0.55 ± 0.02 b | 2.51 ± 0.03 |
Total IDF | 33.37 | 30.10 | 28.82 | 25.16 | 23.63 | 37.45 |
Starch | 45.45 ± 0.97 a | 44.41 ± 2.35 a | 42.36 ± 1.29 a | 43.37 ± 2.37 a | 43.98 ± 0.72 a | 8.76 ± 0.03 |
Fat | 1.63 ± 0.07 a | 1.60 ± 0.01 a | 1.58 ± 0.02 a | 1.59 ± 0.08 a | 1.57 ± 0.17 a | 1.48 ± 0.05 |
Parameters | Faba Bean Flours | Pea Pod Flour | ||||
---|---|---|---|---|---|---|
Thermally Treated (30 min) | ||||||
Raw | 80 °C | 120 °C | 150 °C | 180 °C | ||
TPC (mg GAE/100 g DW) | 152.79 ± 1.47 a | 152.49 ± 4.37 a | 147.50 ± 3.16 ab | 134.93 ± 1.77 c | 139 ± 4.69 bc | 377.36 ± 11.67 |
DPPH (mgET/100 g DW) | 156.63 ± 3.66 a | 157.15 ± 9.46 a | 150.18 ± 4.23 a | 150.60 ± 3.45 a | 117.86 ± 9.49 b | 267.96 ± 1.29 |
FRAP (mgET/100 g DW) | 554.27 ± 2.02 a | 533.07 ± 2.37 b | 501.89 ± 1.54 c | 461.20 ± 2.25 d | 399.41 ± 8.09 e | 285.03 ± 1.40 |
Faba Beans | Pea Pods | |||||
---|---|---|---|---|---|---|
Thermized (30 min) | ||||||
Raw | at 80 °C | at 120 °C | at 150 °C | at 180 °C | ||
Potassium * | 1.64 ± 0.01 a | 1.62 ± 0.00 ab | 1.60 ± 0.00 b | 1.60 ± 0.01 b | 1.61 ± 0.01 b | 0.77 ± 0.02 |
Sodium * | 0.02 ± 0.00 a | 0.02 ± 0.00 a | 0.02 ± 0.00 a | 0.02 ± 0.00 a | 0.02 ± 0.00 a | 0.23 ± 0.00 |
Calcium * | 0.07 ± 0.01 a | 0.08 ± 0.00 a | 0.07 ± 0.01 a | 0.07 ± 0.00 a | 0.07 ± 0.00 a | 1.48 ± 0.00 |
Magnesium * | 0.18 ± 0.00 a | 0.18 ± 0.01 ab | 0.17 ± 0.01 ab | 0.16 ± 0.01 b | 0.16 ± 0.01 b | 0.59 ± 0.01 |
Phosphorus * | 0.57 ± 0.00 a | 0.58 ± 0.01 ab | 0.57 ± 0.00 b | 0.56 ± 0.01 b | 0.58 ± 0.00 a | 0.38 ± 0.01 |
Manganese ** | 5.93 ± 0.01 a | 5.89 ± 0.03 a | 5.86 ± 0.04 a | 5.92 ± 0.09 a | 5.97 ± 0.08 a | 4.66 ± 0.03 |
Zinc ** | 4.91 ± 0.01 a | 4.96 ± 0.04 a | 4.90 ± 0.03 a | 4.95 ± 0.05 a | 4.91 ± 0.00 a | 0.55 ± 0.01 |
Iron ** | 5.16 ± 0.02 a | 5.12 ± 0.06 a | 5 ± 0.02 b | 5.08 ± 0.04 ab | 5.12 ± 0.01 a | 2.46 ± 0.01 |
Sample | Condensed Tannins | Phytic Acid | Trypsin Inhibitor | α-Galactosides |
---|---|---|---|---|
(mg EC/100 g DW) | (g/100 g DW) | (TUI/mg DW) | (g/100 g DW) | |
Raw FB | 362.54 ± 2.81 a | 1.25 ± 0.03 a | 0.92 ± 0.03 a | 4.04 ± 0.07 a |
Thermally treated FB at 80 °C | 274.41 ± 6.83 b | 1.21 ± 0.02 ab | 0.90 ± 0.01 a | 3.70 ± 0.06 b |
Thermally treated FB at 120 °C | 196.22 ± 4.99 c | 1.17 ± 0.02 b | 0.46 ± 0.02 b | 3.15 ± 0.12 c |
Thermally treated FB at 150 °C | 186.89 ± 5.27 cd | 1.07 ± 0.04 c | 0.44 ± 0.01 b | 3.38 ± 0.26 c |
Thermally treated FB at 180 °C | 184.18 ± 5.91 d | 0.90 ± 0.01 d | 0.49 ± 0.01 c | 2.26 ± 0.03 d |
Pea Pod | 226.90 ± 2.41 | 0.14 ± 0.01 | 0.93 ± 0.01 | 0.73 ± 0.03 |
Sample | % IVPD |
---|---|
Raw FB | 64.54 ± 0.07 a |
Thermally treated FB at 80 °C | 71.63 ± 1.74 b |
Thermally treated FB at 120 °C | 71.60 ± 0.57 b |
Thermally treated FB at 150 °C | 71.48 ± 1.58 b |
Thermally treated FB at 180 °C | 72.27 ± 0.82 b |
Pea pod | 45.29 ± 1.81 |
Parameters | Faba Bean Flours | Pea Pod Flour | ||||
---|---|---|---|---|---|---|
Thermally Treated (30 min) | ||||||
Raw | 80 °C | 120 °C | 150 °C | 180 °C | ||
Water absorption capacity (g water/g DW) | 1.77 ± 0.02 a | 1.81 ± 0.01 b | 1.86 ± 0.01 b | 1.95 ± 0.01 c | 2.39 ± 0.01 d | 3.62 ± 0.07 |
Oil absorption capacity (g oil/g DW) | 1.69 ± 0.07 a | 1.65 ± 0.01 a | 1.67 ± 0.04 a | 1.60 ± 0.02 a | 1.55 ± 0.04 b | 2.58 ± 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ben Said, K.; Hedhili, A.; Bellagha, S.; Gliguem, H.; Dufrechou, M. The Potential of Combining Faba Bean (Vicia faba L.) and Pea Pod (Pisum sativum L.) Flours to Enhance the Nutritional Qualities of Food Products. Foods 2025, 14, 2167. https://doi.org/10.3390/foods14132167
Ben Said K, Hedhili A, Bellagha S, Gliguem H, Dufrechou M. The Potential of Combining Faba Bean (Vicia faba L.) and Pea Pod (Pisum sativum L.) Flours to Enhance the Nutritional Qualities of Food Products. Foods. 2025; 14(13):2167. https://doi.org/10.3390/foods14132167
Chicago/Turabian StyleBen Said, Khaoula, Amel Hedhili, Sihem Bellagha, Hela Gliguem, and Marie Dufrechou. 2025. "The Potential of Combining Faba Bean (Vicia faba L.) and Pea Pod (Pisum sativum L.) Flours to Enhance the Nutritional Qualities of Food Products" Foods 14, no. 13: 2167. https://doi.org/10.3390/foods14132167
APA StyleBen Said, K., Hedhili, A., Bellagha, S., Gliguem, H., & Dufrechou, M. (2025). The Potential of Combining Faba Bean (Vicia faba L.) and Pea Pod (Pisum sativum L.) Flours to Enhance the Nutritional Qualities of Food Products. Foods, 14(13), 2167. https://doi.org/10.3390/foods14132167