An Integrated PMA Pretreatment Instrument for Simultaneous Quantitative Detection of Vibrio parahaemolyticus and Vibrio cholerae in Aquatic Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials for PMA Pretreatment Instrument
2.2. V. parahaemolyticus and V. cholerae Strains
2.3. Design of the Integrated PMA Pretreatment Instrument
2.4. PMA Pretreatment Process Based on Integrated PMA Pretreatment Instrument
2.5. Primers, Probes, and PCR Reaction Conditions
2.6. Specificity Analysis of PMA Duplex qPCR Technology
2.7. Construction of the Standard Curve for PMA Duplex qPCR Technology
2.8. Preparation of Inactivated Pathogenic Vibrio
2.9. Application of PMA Duplex qPCR in Artificially Inoculated Samples
2.10. Application of PMA Duplex qPCR in Actual Aquatic Samples
2.11. Statistical Analysis
3. Results and Discussion
3.1. Construction of Integrated PMA Pretreatment Instrument
3.2. Specificity Analysis of PMA Duplex qPCR
3.3. Amplification Efficiency of PMA Duplex qPCR
3.4. Minimum Quantification Limit of PMA Duplex qPCR
3.5. Study on the Differentiation of Viable and Nonviable Bacteria in Artificially Inoculated Samples Using PMA Dual qPCR
Number of Infections | PMA | qPCR Quantification Results |
---|---|---|
106 VP nonviable + 104 VP viable | − | 5.96 ± 0.83 CFU/mL (VP) |
+ | 4.23 ± 0.25 CFU/mL (VP) * | |
106 VP nonviable + 103 VP viable | − | 6.13 ± 0.03 CFU/mL (VP) |
+ | 2.98 ± 0.15 CFU/mL (VP) * | |
106 VP nonviable + 102 VP viable | − | 6.47 ± 0.19 CFU/mL (VP) |
+ | 2.17 ± 0.37 CFU/mL (VC) * | |
106 VC nonviable + 104 VC viable | − | 6.28 ± 0.53 CFU/mL (VC) |
+ | 4.16 ± 0.61 CFU/mL (VC) * | |
106 VC nonviable + 103 VC viable | − | 5.79 ± 0.38 CFU/mL (VC) |
+ | 3.18 ± 0.95 CFU/mL (VC) * | |
106 VC nonviable + 102 VC viable | − | 6.12 ± 0.36 CFU/mL (VC) |
+ | 1.98 ± 0.62 CFU/mL (VC) * | |
106 VP nonviable + 104 VP viable + 106 VC nonviable + 104 VC viable | − | 6.35 ± 0.75 CFU/mL (VP) |
6.51 ± 0.31 CFU/mL (VC) | ||
+ | 3.61 ± 0.16 CFU/mL (VP) * | |
3.72 ± 0.86 CFU/mL (VC) * | ||
106 VP nonviable + 103 VP viable + 106 VC nonviable + 103 VC viable | − | 6.45 ± 0.88 CFU/mL (VP) |
5.88 ± 0.37 CFU/mL (VC) | ||
+ | 2.89 ± 0.63 CFU/mL (VP) * | |
3.38 ± 0.95 CFU/mL (VC) * | ||
106 VP nonviable + 102 VP viable + 106 VC nonviable + 102 VC viable | − | 5.81 ± 0.68 CFU/mL (VP) |
6.71 ± 0.27 CFU/mL (VC) | ||
+ | 2.28 ± 0.76 CFU/mL (VP) * | |
2.42 ± 0.69 CFU/mL (VC) * |
Number of Infections | PMA | qPCR Quantification Results |
---|---|---|
106 VP nonviable + 104 VP viable | − | 6.34 ± 0.45 CFU/g (VP) |
+ | 4.23 ± 0.36 CFU/g (VP) * | |
106 VP nonviable + 103 VP viable | − | 5.82 ± 0.61 CFU/g (VP) |
+ | 3.19 ± 0.44 CFU/g (VP) * | |
106 VP nonviable + 102 VP viable | − | 6.17 ± 0.59 CFU/g (VP) |
+ | 2.37 ± 0.37 CFU/g (VP) * | |
106 VC nonviable + 104 VC viable | − | 6.27 ± 0.23 CFU/g (VC) |
+ | 4.63 ± 0.34 CFU/g (VC) * | |
106 VC nonviable + 103 VC viable | − | 5.98 ± 0.68 CFU/g (VC) |
+ | 3.45 ± 0.46 CFU/g (VC) * | |
106 VC nonviable + 102 VC viable | − | 6.72 ± 0.13 CFU/g (VC) |
+ | 2.15 ± 0.81 CFU/g (VC) * | |
106 VP nonviable + 104 VP viable + 106 VC nonviable + 104 VC viable | − | 6.43 ± 0.83 CFU/g (VP) |
6.15 ± 0.38 CFU/g (VC) | ||
+ | 3.89 ± 0.22 CFU/g (VP) * | |
4.28 ± 0.19 CFU/g (VC) * | ||
106 VP nonviable + 103 VP viable + 106 VC nonviable + 103 VC viable | − | 6.18 ± 0.76 CFU/g (VP) |
5.82 ± 0.51 CFU/g (VC) | ||
+ | 3.49 ± 0.29 CFU/g (VP) * | |
3.38 ± 0.41 CFU/g (VC) * | ||
106 VP nonviable + 102 VP viable + 106 VC nonviable + 102 VC viable | − | 6.61 ± 0.17 CFU/g (VP) |
6.45 ± 0.32 CFU/g (VC) | ||
+ | 2.52 ± 0.75 CFU/g (VP) * | |
2.44 ± 0.64 CFU/g (VC) * |
Number of Infections | PMA | qPCR Quantification Results |
---|---|---|
106 VP nonviable + 104 VP viable | − | 5.84 ± 0.68 CFU/g (VP) |
+ | 3.89 ± 0.47 CFU/g (VP) * | |
106 VP nonviable + 103 VP viable | − | 6.13 ± 0.03 CFU/g (VP) |
+ | 2.98 ± 0.15 CFU/g (VP) * | |
106 VP nonviable + 102 VP viable | − | 6.34 ± 0.23 CFU/g (VP) |
+ | 2.08 ± 0.38 CFU/g (VP) * | |
106 VC nonviable + 104 VC viable | − | 6.25 ± 0.49 CFU/g (VC) |
+ | 4.27 ± 0.89 CFU/g (VC) * | |
106 VC nonviable + 103 VC viable | − | 5.79 ± 0.38 CFU/g (VC) |
+ | 3.18 ± 0.95 CFU/g (VC) * | |
106 VC nonviable + 102 VC viable | − | 6.16 ± 0.83 CFU/g (VC) |
+ | 2.27 ± 0.05 CFU/g (VC) * | |
106 VP nonviable + 104 VP viable + 106 VC nonviable + 104 VC viable | − | 6.48 ± 0.66 CFU/g (VP) |
6.19 ± 0.24 CFU/g (VC) | ||
+ | 3.51 ± 0.67 CFU/g (VP) * | |
3.83 ± 0.46 CFU/g (VC) * | ||
106 VP nonviable + 103 VP viable + 106 VC nonviable + 103 VC viable | − | 6.45 ± 0.88 CFU/g (VP) |
5.88 ± 0.37 CFU/g (VC) | ||
+ | 2.79 ± 0.23 CFU/g (VP) * | |
3.58 ± 0.95 CFU/g (VC) * | ||
106 VP nonviable + 102 VP viable + 106 VC nonviable + 102 VC viable | − | 5.86 ± 0.42 CFU/g (VP) |
6.34 ± 0.28 CFU/g (VC) | ||
+ | 2.36 ± 0.19 CFU/g (VP) * | |
2.27 ± 0.83 CFU/g (VC) * |
3.6. Application of PMA Dual qPCR in Actual Aquatic Samples
Sample Type | Number of Samples | Number of VP Positive Samples | Number of VC Positive Samples | ||
---|---|---|---|---|---|
PMA-qPCR | ISO | PMA-qPCR | ISO | ||
Shrimp | 48 | 48 | 48 | 7 | 7 |
Shellfish | 23 | 23 | 23 | 13 | 13 |
Fish | 18 | 18 | 18 | 3 | 3 |
Algae | 19 | 7 | 7 | 1 | 1 |
Total | 108 | 96 | 96 | 24 | 24 |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PMA | Propidium monoazide |
APW | Alkaline peptone water |
LOD | limit of detection |
TSB | Tryptic soy broth |
TSA | Tryptic soy agar |
ELISA | Enzyme-linked immunosorbent assay |
TDH | Thermostable direct hemolysin |
TRH | TDH-related hemolysin |
References
- Su, Y.C.; Liu, C. Vibrio parahaemolyticus: A concern of seafood safety. Food Microbiol. 2007, 24, 549–558. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Urtaza, J.; Baker-Austin, C. Vibrio parahaemolyticus. Trends Microbiol. 2020, 28, 867–868. [Google Scholar] [CrossRef]
- Liston, J. Microbial hazards of seafood consumption. Food Technol. 1990, 44, 58–62. [Google Scholar]
- Centers for Disease Control and Prevention (CDC). Vibrio illnesses after Hurricane Katrina—Multiple states, August–September 2005. MMWR Morb. Mortal. Wkly. Rep. 2005, 54, 928–931. [Google Scholar]
- Dziejman, M.; Balon, E.; Boyd, D.; Fraser, C.M.; Heidelberg, J.F.; Mekalanos, J.J. Comparative genomic analysis of Vibrio cholerae: Genes that correlate with cholera endemic and pandemic disease. Proc. Natl. Acad. Sci. USA 2002, 99, 1556–1561. [Google Scholar] [CrossRef]
- Ramamurthy, T.; Mutreja, A.; Weill, F.-X.; Das, B.; Ghosh, A.; Nair, G.B. Revisiting the Global Epidemiology of Cholera in Conjunction with the Genomics of Vibrio cholerae. Front. Public Health 2019, 7, 203. [Google Scholar]
- Rabbani, G.H.; Greenough, W.B., 3rd. Food as a vehicle of transmission of cholera. J. Diarrhoeal Dis. Res. 1999, 17, 1–9. [Google Scholar] [PubMed]
- Kim, H.-J.; Lee, H.-J.; Lee, K.-H.; Cho, J.-C. Simultaneous detection of Pathogenic Vibrio species using multiplex real-time PCR. Food Control 2012, 23, 491–498. [Google Scholar] [CrossRef]
- Garrido, A.; Chapela, M.-J.; Román, B.; Fajardo, P.; Lago, J.; Vieites, J.M.; Cabado, A.G. A new multiplex real-time PCR developed method for Salmonella spp. and Listeria monocytogenes detection in food and environmental samples. Food Control 2013, 30, 76–85. [Google Scholar] [CrossRef]
- Guan, H.; Xue, P.; Zhou, H.; Sha, D.; Wang, D.; Gao, H.; Li, J.; Diao, B.; Zhao, H.; Kan, B.; et al. A multiplex PCR assay for the detection of five human pathogenic Vibrio species and Plesiomonas. Mol. Cell. Probes 2021, 55, 101689. [Google Scholar] [CrossRef]
- Kumar, B.K.; Raghunath, P.; Devegowda, D.; Deekshit, V.K.; Venugopal, M.N.; Karunasagar, I.; Karunasagar, I. Development of monoclonal antibody based sandwich ELISA for the rapid detection of pathogenic Vibrio parahaemolyticus in seafood. Int. J. Food Microbiol. 2011, 145, 244–249. [Google Scholar] [CrossRef] [PubMed]
- Zeng, D.; Chen, S.; Jiang, L.; Ren, J.; Ling, N.; Su, J.; Zhao, Y.; Jiang, Y.; Xue, F.; Tang, F.; et al. A polymerase chain reaction based lateral flow test strip with propidium monoazide for detection of viable Vibrio parahaemolyticus in codfish. Microchem. J. 2020, 159, 105418. [Google Scholar] [CrossRef]
- Zhao, L.; Lv, X.; Cao, X.; Zhang, J.; Gu, X.; Zeng, H.; Wang, L. Improved quantitative detection of VBNC Vibrio parahaemolyticus using immunomagnetic separation and PMAxx-qPCR. Food Control 2020, 110, 106962. [Google Scholar] [CrossRef]
- Zi, C.; Zeng, D.; Ling, N.; Dai, J.; Xue, F.; Jiang, Y.; Li, B. An improved assay for rapid detection of viable Staphylococcus aureus cells by incorporating surfactant and PMA treatments in qPCR. BMC Microbiol. 2018, 18, 132. [Google Scholar] [CrossRef]
- Campbell, G.R.; Prosser, J.; Glover, A.; Killham, K. Detection of Escherichia coli O157:H7 in soil and water using multiplex PCR. J. Appl. Microbiol. 2001, 91, 1004–1010. [Google Scholar] [CrossRef] [PubMed]
- Nocker, A.; Camper, A.K. Selective removal of DNA from dead cells of mixed bacterial communities by use of ethidium monoazide. Appl. Environ. Microbiol. 2006, 72, 1997–2004. [Google Scholar] [CrossRef] [PubMed]
- Soejima, T.; Iida, K.; Qin, T.; Taniai, H.; Seki, M.; Yoshida, S. Method To Detect Only Live Bacteria during PCR Amplification. J. Clin. Microbiol. 2008, 46, 2305–2313. [Google Scholar] [CrossRef]
- Ling, N.; Shen, J.; Guo, J.; Zeng, D.; Ren, J.; Sun, L.; Jiang, Y.; Xue, F.; Dai, J.; Li, B. Rapid and accurate detection of viable Vibrio parahaemolyticus by sodium deoxycholate-propidium monoazide-qPCR in shrimp. Food Control 2020, 109, 106883. [Google Scholar] [CrossRef]
- Cao, X.; Zhao, L.; Zhang, J.; Chen, X.; Shi, L.; Fang, X.; Xie, H.; Chang, Y.; Wang, L. Detection of viable but nonculturable Vibrio parahaemolyticus in shrimp samples using improved real-time PCR and real-time LAMP methods. Food Control 2019, 103, 145–152. [Google Scholar] [CrossRef]
- Nocker, A.; Camper, A.K. Novel approaches toward preferential detection of viable cells using nucleic acid amplification techniques. FEMS Microbiol. Lett. 2009, 291, 137–142. [Google Scholar] [CrossRef]
- Liu, Y.; Zhong, Q.; Wang, J.; Lei, S. Enumeration of Vibrio parahaemolyticus in VBNC state by PMA-combined real-time quantitative PCR coupled with confirmation of respiratory activity. Food Control 2018, 91, 85–91. [Google Scholar] [CrossRef]
- Cawthorn, D.-M.; Witthuhn, R.C. Selective PCR detection of viable Enterobacter sakazakii cells utilizing propidium monoazide or ethidium bromide monoazide. J. Appl. Microbiol. 2008, 105, 1178–1185. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Liu, H.; Zhang, Z.; Xiao, L.; Sun, X.; Xie, J.; Pan, Y.; Zhao, Y. Reducing bias in complex microbial community analysis in shrimp based on propidium monoazide combined with PCR-DGGE. Food Control 2016, 68, 139–144. [Google Scholar] [CrossRef]
- Wu, Q.; Liu, J.; Malakar, P.K.; Pan, Y.; Zhao, Y.; Zhang, Z. Modeling naturally-occurring Vibrio parahaemolyticus in post-harvest raw shrimps. Food Res. Int. 2023, 173, 113462. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Liu, H.; Lou, Y.; Xiao, L.; Liao, C.; Malakar, P.K.; Pan, Y.; Zhao, Y. Quantifying viable Vibrio parahaemolyticus and Listeria monocytogenes simultaneously in raw shrimp. Appl. Microbiol. Biotechnol. 2015, 99, 6451–6462. [Google Scholar] [CrossRef]
- ISO 6579; In Microbiology of Food and Animal Feeding Stuffs-Horizontal Method for the Detection of Salmonella spp. ISO: Geneva, Switzerland, 2002.
- ISO 21872-1:2017; In MMicrobiology of the Food Chain—Horizontal Method for the Determination of Vibrio spp. Part 1: Detection of Potentially Enteropathogenic Vibrio parahaemolyticus, Vibrio cholerae and Vibrio vulnificus. ISO: Geneva, Switzerland, 2007.
- Kong, Y.; Zheng, Y. Diverse Flowering Response to Blue Light Manipulation: Application of Electric Lighting in Controlled-Environment Plant Production. Horticulturae 2024, 10, 578. [Google Scholar] [CrossRef]
- Schneider, L.F.; Consani, S.; Correr-Sobrinho, L.; Correr, A.B.; Sinhoreti, M.A. Halogen and LED light curing of composite: Temperature increase and Knoop hardness. Clin. Oral. Investig. 2006, 10, 66–71. [Google Scholar] [CrossRef]
- Liu, Y.; Mustapha, A. Detection of viable Escherichia coli O157:H7 in ground beef by propidium monoazide real-time PCR. Int. J. Food Microbiol. 2014, 170, 48–54. [Google Scholar] [CrossRef]
- Macé, S.; Mamlouk, K.; Chipchakova, S.; Prévost, H.; Joffraud, J.J.; Dalgaard, P.; Pilet, M.F.; Dousset, X. Development of a rapid real-time PCR method as a tool to quantify viable Photobacterium phosphoreum bacteria in salmon (Salmo salar) steaks. Appl. Environ. Microbiol. 2013, 79, 2612–2619. [Google Scholar] [CrossRef]
- Microbiology of Food and Animal Feeding Stuffs. Horizontal method for the detection of potentially enteropathogenic Vibrio spp. Pt. 1: Detection of Vibrio parahaemolyticus and Vibrio cholerae—Pt. 2: Detection of species other than Vibrio parahaemolyticus and Vibrio cholerae; ISO Technical Specification: Geneva, Switzerland, 2007. [Google Scholar]
Bacterium | Primers and Probes | Fluorophores | Quencher | Target Gene |
---|---|---|---|---|
VP | Forward primers: ACTCAACACAAGAAGAGATCGACAA | FAM | BHQ1 | tlh (208 bp) |
Reverse primer: GATGAGCGGTTGATGTCCAA | ||||
Probes: FAM-CGCTCGCGTTCACGAAACCGT-BHQ1 | ||||
VC | Forward primers: CCGTTGAGGCGAGTTTGGTGAGA | Cy3 | BHQ1 | lolB (137 bp) |
Reverse primer: GTGCGCGGGTCGAAACTTATGAT | ||||
Probes: Cy3-ATGGGTTGCTTGGGTCGGCAAGCCT-BHQ1 |
Strain Species | Strain No. | Number of Strains |
---|---|---|
Vibrio spp. | ||
V. parahaemolyticus | ATCC 33847 | 1 |
ATCC 17802 | 1 | |
VPD1-VPD20 (from seafood samples) | 20 | |
VPC1-VPC40 (from clinical samples) | 40 | |
V. cholerae | GIM1.449 | 1 |
VCW1-VCW30 (from clinical samples) | 30 | |
V. anguillarum | CICC 10475 | 1 |
V. fluvialis | CGMCC 1.1611 | 1 |
V. vulnificus | MCCC 1H0006 | 1 |
Other spp. | ||
Listeria monocytogenes | ATCC 19112 | 1 |
Listeria innocua | ATCC 33090 | 1 |
Listeria welshimeri | ATCC 43548 | 1 |
Salmonella Enteritidis | CMCC 50041 | 1 |
Salmonella Typhimurium | CICC 21484 | 1 |
Escherichia coli O157:H7 | ATCC 43889 | 1 |
Staphylococcus aureus | CCTCC AB 91093 | 1 |
Strain Species | Number of Strains | FAM (tlh) | Cy3 (lolB) |
---|---|---|---|
V. parahaemolyticus | 62 | + | − |
V. cholerae | 31 | − | + |
Other Vibrio | 3 | − | − |
Other genera | 7 | − | − |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, Y.; Xiong, R.; Zhao, Y.; Zhang, Z.; Yin, Y. An Integrated PMA Pretreatment Instrument for Simultaneous Quantitative Detection of Vibrio parahaemolyticus and Vibrio cholerae in Aquatic Products. Foods 2025, 14, 2166. https://doi.org/10.3390/foods14132166
Qin Y, Xiong R, Zhao Y, Zhang Z, Yin Y. An Integrated PMA Pretreatment Instrument for Simultaneous Quantitative Detection of Vibrio parahaemolyticus and Vibrio cholerae in Aquatic Products. Foods. 2025; 14(13):2166. https://doi.org/10.3390/foods14132166
Chicago/Turabian StyleQin, Yulong, Rongrong Xiong, Yong Zhao, Zhaohuan Zhang, and Yachang Yin. 2025. "An Integrated PMA Pretreatment Instrument for Simultaneous Quantitative Detection of Vibrio parahaemolyticus and Vibrio cholerae in Aquatic Products" Foods 14, no. 13: 2166. https://doi.org/10.3390/foods14132166
APA StyleQin, Y., Xiong, R., Zhao, Y., Zhang, Z., & Yin, Y. (2025). An Integrated PMA Pretreatment Instrument for Simultaneous Quantitative Detection of Vibrio parahaemolyticus and Vibrio cholerae in Aquatic Products. Foods, 14(13), 2166. https://doi.org/10.3390/foods14132166