3D Printability of Lysine-Modified Myofibrillar Protein Emulsions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of the Lys-MP Solution
2.3. Characterization of Lys-MP Solutions
2.3.1. Sodium Dodecyl Sulphate-Polyacrylamide Gel Electrophoresis (SDS-PAGE)
2.3.2. Solubility and Turbidity Determination of Lys-MP Solutions
2.3.3. Zeta Potential and Size Determination of Lys-MP Particles
2.3.4. Fourier Transform Infrared Spectroscopy (FTIR) Determination of Lys-MP Solutions
2.3.5. Determination of Protein Tertiary Structure in Lys-MP Solutions
2.3.6. Molecular Docking
2.4. Preparation of HIPEs
2.5. Characterization of Lys-MP-Stabilized HIPEs
2.5.1. Visual Appearance, Confocal Laser Scanning Microscopy (CLSM), and Particle Size of HIPEs
2.5.2. Rheological Characteristics of HIPE Inks
2.6. Raman Spectroscopic Determination of HIPEs
2.7. Physical Stability of HIPEs
2.8. 3D Printing with HIPE Inks
2.9. Statistical Analysis
3. Results
3.1. Characterization of Lys-MP Solutions
Band | MHC Band Intensity | Actin Band Intensity | Tropomyosin Band Intensity |
---|---|---|---|
0 | 190,939 | 286,433 | 314,727 |
0.5 | 264,638 | 378,760 | 324,556 |
1.5 | 297,382 | 361,208 | 327,543 |
2.5 | 247,040 | 334,166 | 322,406 |
3.2. Molecular Docking
3.3. Characterization of Lys-MP-Stabilized HIPEs
3.3.1. Visual Appearance, Laser Confocal Microscopy (CLSM), and Particle Size of HIPEs
3.3.2. Rheological Characteristics of HIPE Inks
3.4. Raman Spectroscopic Determination of HIPEs
3.5. Physical Stability of HIPEs
3.6. HIPE Inks for 3D Printing
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Lys | Lysine |
MP | myofibrillar protein |
HIPEs | highly inwardly directed emulsions |
SDS-PAGE | Sodium dodecyl sulphate-polyacrylamide gel electrophoresis |
MHC | myosin heavy chain |
FTIR | Fourier transform infrared spectroscopy |
CLSM | Confocal laser scanning microscopy |
References
- Zhang, F.; Wang, P.; Huang, M.; Xu, X. Modulating the properties of myofibrillar proteins-stabilized high internal phase emulsions using chitosan for enhanced 3D-printed foods. Carbohydr. Polym. 2024, 324, 121540. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Liu, Z.; Zhi, L.; Jiao, B.; Tian, Y.; Liu, H.; Hu, H.; Ma, X.; Pignitter, M.; Wang, Q.; et al. Research Progress of Food-Grade High Internal Phase Pickering Emulsions and Their Application in 3D Printing. Nanomaterials 2022, 12, 2949. [Google Scholar] [CrossRef]
- Wan, Y.; Wang, R.; Feng, W.; Chen, Z.; Wang, T. High internal phase Pickering emulsions stabilized by co-assembled rice proteins and carboxymethyl cellulose for food-grade 3D printing. Carbohydr. Polym. 2021, 273, 118586. [Google Scholar] [CrossRef]
- Xu, Y.T.; Liu, T.X.; Tang, C.H. Novel pickering high internal phase emulsion gels stabilized solely by soy β-conglycinin. Food Hydrocoll. 2019, 88, 21–30. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, Y.; Xiang, H.; Chen, S.; Zhao, Y.; Cai, Q.; Wang, Y. Emulsification properties and oil-water interface properties of l-lysine-assisted ultrasonic treatment in sea bass myofibrillar proteins: Influenced by the conformation of interfacial proteins. Food Hydrocoll. 2024, 147, 109405. [Google Scholar] [CrossRef]
- Li, K.; Fu, L.; Zhao, Y.Y.; Xue, S.W.; Wang, P.; Xu, X.L.; Bai, Y.H. Use of high-intensity ultrasound to improve emulsifying properties of chicken myofibrillar protein and enhance the rheological properties and stability of the emulsion. Food Hydrocoll. 2020, 98, 105275. [Google Scholar] [CrossRef]
- Rajasekaran, B.; Singh, A.; Ponnusamy, A.; Patil, U.; Zhang, B.; Hong, H.; Benjakul, S. Ultrasound treated fish myofibrillar protein: Physicochemical properties and its stabilizing effect on shrimp oil-in-water emulsion. Ultrason. Sonochem. 2023, 98, 106513. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; He, D.; Li, C.; Xue, C.; Yi, X.; Gao, X.; Pei, Z.; Shen, X. 3D printed emulsion based on arginine-myofibrillar protein. J. Food Eng. 2024, 375, 112049. [Google Scholar] [CrossRef]
- Tan, S.; Du, M.; Yuan, G.; Rong, L.; Li, R.; Li, G. Evolution of the structure of meat protein particles at the oil–water interface facilitates the ultra-long storage stability of high internal pickering emulsion. Food Hydrocoll. 2023, 140, 108658. [Google Scholar] [CrossRef]
- Cao, Y.; Li, Z.; Li, B.; Fan, X.; Liu, M.; Zhao, J. Mitigation of oxidation-induced loss of myofibrillar protein gelling potential by the combination of pyrophosphate and l-lysine. LWT 2022, 157, 113068. [Google Scholar] [CrossRef]
- Li, S.; Li, L.; Zhu, X.; Ning, C.; Cai, K.; Zhou, C. Conformational and charge changes induced by l-Arginine and l-lysine increase the solubility of chicken myosin. Food Hydrocoll. 2019, 89, 330–336. [Google Scholar] [CrossRef]
- Li, L.; Chen, L.; Ning, C.; Bao, P.; Fang, H.; Zhou, C. l–Arginine and l–Lysine improve the physical stability of soybean oil–myosin emulsions by changing penetration and unfolding behaviors of interfacial myosin. Food Hydrocol. 2020, 98, 105265. [Google Scholar] [CrossRef]
- Pei, Z.; Wang, H.; Xia, G.; Hu, Y.; Xue, C.; Lu, S.; Li, C.; Shen, X. Emulsion gel stabilized by tilapia myofibrillar protein: Application in lipid-enhanced surimi preparation. Food Chem. 2023, 403, 134424. [Google Scholar] [CrossRef] [PubMed]
- Bao, P.; Chen, L.; Hu, Y.; Wang, Y.; Zhou, C. l-Arginine and l-lysine retard aggregation and polar residue modifications of myofibrillar proteins: Their roles in solubility of myofibrillar proteins in frozen porcine Longissimus lumborum. Food Chem. 2022, 393, 133347. [Google Scholar] [CrossRef]
- Su, C.; He, Z.; Wang, Z.; Zhang, D.; Li, H. Aggregation and deaggregation: The effect of high-pressure homogenization cycles on myofibrillar proteins aqueous solution. Int. J. Biol. Macromol. 2021, 189, 567–576. [Google Scholar] [CrossRef]
- Li, R.; Guo, X.; Liu, P.; Li, Y.; Qiu, S.; Wang, Y. Effect of carrageenan on stability and 3D printing performance of high internal phase pickering emulsion stabilized by soy protein isolate aggregates under neutral condition. Carbohydr. Polym. 2025, 349, 123020. [Google Scholar] [CrossRef]
- Du, X.; Zhao, M.; Pan, N.; Wang, S.; Xia, X.; Zhang, D. Tracking aggregation behaviour and gel properties induced by structural alterations in myofibrillar protein in mirror carp (Cyprinus carpio) under the synergistic effects of pH and heating. Food Chem. 2021, 362, 130222. [Google Scholar] [CrossRef]
- Bian, Y.; Zheng, Z.; Fang, X.; Jiang, H.; Zhu, M.; Yu, J.; Zhao, H.; Zhang, L.; Yao, J.; Lu, L.; et al. Artificial Intelligence to Predict Lymph Node Metastasis at CT in Pancreatic Ductal Adenocarcinoma. Radiology 2023, 306, 160–169. [Google Scholar] [CrossRef]
- Fan, X.; Gao, X.; Zhou, C. l-arginine and l-lysine supplementation to NaCl tenderizes porcine meat by promoting myosin extraction and actomyosin dissociation. Food Chem. 2024, 446, 138809. [Google Scholar] [CrossRef]
- Ren, Z.; Cui, Y.; Wang, Y.; Shi, L.; Yang, S.; Hao, G.; Qiu, X.; Wu, Y.; Zhao, Y.; Weng, W. Effect of ionic strength on the structural properties and emulsion characteristics of myofibrillar proteins from hairtail (Trichiurus haumela). Food Res. Int. 2022, 157, 111248. [Google Scholar] [CrossRef]
- Wang, X.; Jia, L.; Xie, Y.; He, T.; Wang, S.; Jin, X.; Xie, F. Deciphering the interaction mechanism between soy protein isolate and fat-soluble anthocyanin on experiments and molecular simulations. Int. J. Biol. Macromol. 2024, 266, 131308. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, Y.; Sun, Y.; Zhao, M.; Liu, Z.; Shi, H.; Zhang, X.; Zhao, Y.; Xia, G.; Shen, X. Effect of non-covalent binding of tannins to sodium caseinate on the stability of high-internal-phase fish oil emulsions. Int. J. Biol. Macromol. 2024, 277, 134171. [Google Scholar] [CrossRef]
- Zhao, Q.; Fan, L.; Liu, Y.; Li, J. Mayonnaise-like high internal phase Pickering emulsions stabilized by co-assembled phosphorylated perilla protein isolate and chitosan for extrusion 3D printing application. Food Hydrocoll. 2023, 135, 108133. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, J.; Xu, Y.; Mi, H.; Yi, S.; Gao, R.; Li, X.; Li, J. Effects of chickpea protein-stabilized Pickering emulsion on the structure and gelling properties of hairtail fish myosin gel. Food Chem. 2023, 417, 135821. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, X.; Han, M.; Bai, Y.; Liu, Y.; Xing, L.; Xu, X.L.; Zhou, G.-h. Insight into the mechanism of myofibrillar protein gel improved by insoluble dietary fiber. Food Hydrocoll. 2018, 74, 219–226. [Google Scholar] [CrossRef]
- Feng, Z.; Li, C.; Yi, X.; Xue, C.; Gao, X.; Liao, L.; Xiang, Q.; Shen, X.; Pei, Z. Raman spectroscopy and molecular dynamics simulations of protein microgels at the oil-water interface. Int. J. Biol. Macromol. 2024, 279, 135398. [Google Scholar] [CrossRef]
- Lu, F.; Ma, Y.; Zang, J.; Qing, M.; Ma, Z.; Chi, Y.; Chi, Y. High-temperature glycosylation modifies the molecular structure of ovalbumin to improve the freeze-thaw stability of its high internal phase emulsion. Int. J. Biol. Macromol. 2023, 233, 123560. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, S.; Liu, Q.; Chen, Q.; Liu, H.; Kong, B. High internal phase emulsions stabilized by pea protein isolate modified by ultrasound and pH-shifting: Effect of chitosan self-assembled particles. Food Hydrocoll. 2023, 141, 108715. [Google Scholar] [CrossRef]
- Liu, Z.; Geng, S.; Jiang, Z.; Liu, B. Fabrication and characterization of food-grade Pickering high internal emulsions stabilized with β-cyclodextrin. LWT 2020, 134, 110134. [Google Scholar] [CrossRef]
- Hu, W.; Chen, C.; Wang, Y.; He, W.; He, Z.; Chen, J.; Li, Z.; Li, J.; Li, W. Development of high internal phase emulsions with noncovalent crosslink of soy protein isolate and tannic acid: Mechanism and application for 3D printing. Food Chem. 2023, 427, 136651. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, L.; Feng, Z.; Yow, Y.-Y.; Song, Y.; Liu, Y.; Qin, L.; Wu, X.; Pei, Z.; Xue, C. 3D Printability of Lysine-Modified Myofibrillar Protein Emulsions. Foods 2025, 14, 2138. https://doi.org/10.3390/foods14122138
Liao L, Feng Z, Yow Y-Y, Song Y, Liu Y, Qin L, Wu X, Pei Z, Xue C. 3D Printability of Lysine-Modified Myofibrillar Protein Emulsions. Foods. 2025; 14(12):2138. https://doi.org/10.3390/foods14122138
Chicago/Turabian StyleLiao, Lin, Zilan Feng, Yoon-Yen Yow, Yajie Song, Yuxiao Liu, Lixiang Qin, Xiaofei Wu, Zhisheng Pei, and Changfeng Xue. 2025. "3D Printability of Lysine-Modified Myofibrillar Protein Emulsions" Foods 14, no. 12: 2138. https://doi.org/10.3390/foods14122138
APA StyleLiao, L., Feng, Z., Yow, Y.-Y., Song, Y., Liu, Y., Qin, L., Wu, X., Pei, Z., & Xue, C. (2025). 3D Printability of Lysine-Modified Myofibrillar Protein Emulsions. Foods, 14(12), 2138. https://doi.org/10.3390/foods14122138