Effects of Rumen-Protected Methionine on Meat Quality, Fatty Acid Composition, Volatile Flavor Compounds and Transcriptomics of Longissimus lumborum of Yak (Bos grunniens)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Feeding and Management
2.2. Sample Collection and Indicator Determination
2.2.1. Meat Quality and Nutrient Content
2.2.2. Fatty Acid Composition
2.3. Determination of Volatile Flavor Compounds
2.4. RNA Quantification, Qualification, Quality Control and qPCR Validation
2.5. Statistical Analysis
3. Result
3.1. Effects of RPM on Meat Quality and Nutrients of Yak
3.2. Effects of RPM on Fatty Acid Profiles in Longissimus lumborum of Yak
3.3. Effects of RPM on Volatile Flavor Compounds in Longissimus lumborum of Yak
3.4. Transcriptomic Data Analysis
3.4.1. Differentially Expressed Gene Analysis
3.4.2. Differential Gene Ontology Functional Enrichment Analysis
3.4.3. Differential Gene KEGG Enrichment Analysis
3.4.4. Validation of Differentially Expressed Genes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ma, Z.; Zhao, Z.; Wang, H.; Zhou, J.; Zhang, C. Effect of Supplementary Levels of Rumen-Protected Lysine and Methionine on Growth Performance, Carcass Traits, and Meat Quality in Feedlot Yaks (Bos grunniens). Animals 2021, 11, 3384. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Wang, H.; Qin, C.; Yue, B.; Yang, Y.; Wang, J.; Zhong, J.; Wang, H. Combined Multi-Omics Analysis Reveals the Potential Role of ACADS in Yak Intramuscular Fat Deposition. Int. J. Mol. Sci. 2024, 25, 9131. [Google Scholar] [CrossRef] [PubMed]
- Zou, H.; Hu, R.; Wang, Z.; Shah, A.M.; Zeng, S.; Peng, Q.; Xue, B.; Wang, L.; Zhang, X.; Wang, X.; et al. Effects of Nutritional Deprivation and Re-Alimentation on the Feed Efficiency, Blood Biochemistry, and Rumen Microflora in Yaks (Bos grunniens). Animals 2019, 9, 807. [Google Scholar] [CrossRef] [PubMed]
- Long, R.J.; Apori, S.O.; Castro, F.B.; Ørskov, E.R. Feed value of native forages of the Tibetan Plateau of China. Anim. Feed. Sci. Technol. 1999, 80, 101–113. [Google Scholar] [CrossRef]
- Parkhitko, A.A.; Jouandin, P.; Mohr, S.E.; Perrimon, N. Methionine metabolism and methyltransferases in the regulation of aging and lifespan extension across species. Aging Cell 2019, 18, e13034. [Google Scholar] [CrossRef]
- Cardoso, F.F.; Donkin, S.S.; Pereira, M.N.; Pereira, R.A.N.; Peconick, A.P.; Santos, J.P.; Silva, R.B.; Caproni, V.R.; Parys, C.; Danes, M.A.C. Effect of protein level and methionine supplementation on dairy cows during the transition period. J. Dairy Sci. 2021, 104, 5467–5478. [Google Scholar] [CrossRef]
- Zhai, W.; Araujo, L.F.; Burgess, S.C.; Cooksey, A.M.; Pendarvis, K.; Mercier, Y.; Corzo, A. Protein expression in pectoral skeletal muscle of chickens as influenced by dietary methionine. Poult. Sci. 2012, 91, 2548–2555. [Google Scholar] [CrossRef]
- Wen, C.; Wu, P.; Chen, Y.; Wang, T.; Zhou, Y. Methionine improves the performance and breast muscle growth of broilers with lower hatching weight by altering the expression of genes associated with the insulin-like growth factor-I signalling pathway. Br. J. Nutr. 2014, 111, 201–206. [Google Scholar] [CrossRef]
- Noftsger, S.; St-Pierre, N.R. Supplementation of methionine and selection of highly digestible rumen undegradable protein to improve nitrogen efficiency for milk production. J. Dairy Sci. 2003, 86, 958–969. [Google Scholar] [CrossRef]
- Zhang, J.H.; Li, H.H.; Zhang, G.J.; Zhang, Y.H.; Liu, B.; Huang, S.; Guyader, J.; Zhong, R.Z. Supplementation of guanidinoacetic acid and rumen-protected methionine increased growth performance and meat quality of Tan lambs. Anim. Biosci. 2022, 35, 1556–1565. [Google Scholar] [CrossRef]
- Hosford, A.D.; Hergenreder, J.E.; Kim, J.K.; Baggerman, J.O.; Ribeiro, F.R.; Anderson, M.J.; Spivey, K.S.; Rounds, W.; Johnson, B.J. Effects of supplemental lysine and methionine with zilpaterol hydrochloride on feedlot performance, carcass merit, and skeletal muscle fiber characteristics in finishing feedlot cattle. J. Anim. Sci. 2015, 93, 4532–4544. [Google Scholar] [CrossRef] [PubMed]
- Gebeyew, K.; Yang, C.; Mi, H.; Cheng, Y.; Zhang, T.; Hu, F.; Yan, Q.; He, Z.; Tang, S.; Tan, Z. Lipid metabolism and m(6)A RNA methylation are altered in lambs supplemented rumen-protected methionine and lysine in a low-protein diet. J. Anim. Sci. Biotechnol. 2022, 13, 85. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Zhang, H.; Na, L.; Zhou, X.; Li, X.; Zhao, Y.; Wen, Z.; He, Q. Methionine restriction at the post-weanling period promotes muscle fiber transition in piglets and improves intramuscular fat content in growing-finishing pigs. Amino Acids 2019, 51, 1657–1666. [Google Scholar] [CrossRef]
- Zhang, X.; Zuo, Z.; Liu, Y.; Wang, C.; Peng, Z.; Zhong, J.; Zhang, M.; Wang, H. Effect of Methionine Analogues on Growth Performance, Serum Biochemical Parameters, Serum Free Amino Acids and Rumen Fermentation of Yaks. Animals 2022, 12, 3175. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Liu, Y.; Zuo, Z.; Wang, C.; Peng, Z.; Zhong, J.; Wang, H.J.F. Effect of Isopropyl Ester of Hydroxy Analogue of Methionine on Rumen Microbiome, Active Enzymes, and Protein Metabolism Pathways of Yak. Fermentation 2024, 10, 94. [Google Scholar] [CrossRef]
- Park, M.K.; Choi, Y.S. Effective Strategies for Understanding Meat Flavor: A Review. Food Sci. Anim. Resour. 2025, 45, 165–184. [Google Scholar] [CrossRef]
- Yu, T.-H.; Ho, C.-T. Volatile compounds generated from thermal reaction of methionine and methionine sulfoxide with or without glucose. J. Agric. Food Chem. 1995, 43, 1641–1646. [Google Scholar] [CrossRef]
- Honikel, K.O. Reference methods for the assessment of physical characteristics of meat. Meat Sci. 1998, 49, 447–457. [Google Scholar] [CrossRef]
- King, D.A.; Hunt, M.C.; Barbut, S.; Claus, J.R.; Cornforth, D.P.; Joseph, P.; Kim, Y.H.B.; Lindahl, G.; Mancini, R.A.; Nair, M.N.; et al. American Meat Science Association guidelines for meat color measurement. Meat Muscle Biol. 2023, 6, 12473. [Google Scholar] [CrossRef]
- O’Mahony, M. Sensory Evaluation of Food: Statistical Methods and Procedures; Routledge: London, UK, 2017. [Google Scholar]
- AOAC. Official Methods of Analysis of the Association of Official Analytical Chemists; AOAC International: Rockville, MD, USA, 2000; Volume 11. [Google Scholar]
- Song, S.Z.; Wu, J.P.; Zhao, S.G.; Casper, D.P.; He, B.; Liu, T.; Lang, X.; Gong, X.Y.; Liu, L.S. The effect of energy restriction on fatty acid profiles of longissimus dorsi and tissue adipose depots in sheep. J. Anim. Sci. 2017, 95, 3940–3948. [Google Scholar] [CrossRef]
- Wang, S.; Chen, H.; Sun, B. Recent progress in food flavor analysis using gas chromatography-ion mobility spectrometry (GC-IMS). Food Chem. 2020, 315, 126158. [Google Scholar] [CrossRef]
- Zhang, B.; Cao, M.; Wang, X.; Guo, S.; Ding, Z.; Kang, Y.; Hu, L.; Xiong, L.; Pei, J.; Ma, Y.; et al. The Combined Analysis of GC-IMS and GC-MS Reveals the Differences in Volatile Flavor Compounds between Yak and Cattle-Yak Meat. Foods 2024, 13, 2364. [Google Scholar] [CrossRef] [PubMed]
- Boada, L.D.; Henríquez-Hernández, L.A.; Luzardo, O.P. The impact of red and processed meat consumption on cancer and other health outcomes: Epidemiological evidences. Food Chem. Toxicol. 2016, 92, 236–244. [Google Scholar] [CrossRef] [PubMed]
- Mounier, L.; Dubroeucq, H.; Andanson, S.; Veissier, I. Variations in meat pH of beef bulls in relation to conditions of transfer to slaughter and previous history of the animals. J. Anim. Sci. 2006, 84, 1567–1576. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Farouk, M.M.; Clerens, S.; Rosenvold, K. Effect of beef ultimate pH and large structural protein changes with aging on meat tenderness. Meat Sci. 2014, 98, 637–645. [Google Scholar] [CrossRef]
- Suman, S.P.; Joseph, P. Myoglobin chemistry and meat color. Annu. Rev. Food Sci. Technol. 2013, 4, 79–99. [Google Scholar] [CrossRef]
- Bekhit, A.E.; Geesink, G.H.; Morton, J.D.; Bickerstaffe, R. Metmyoglobin reducing activity and colour stability of ovine longissimus muscle. Meat Sci. 2001, 57, 427–435. [Google Scholar] [CrossRef]
- Liu, B.; Wang, L.; Kou, Q.; Niu, W.; Zhang, Y.; Zhang, G. Effects of rumen protected methionine on growth, digestion, serum biochemical parameters and carcass quality of Tan lambs. Chin. J. Anim. Nutr. 2019, 31, 3181–3187. [Google Scholar]
- Destefanis, G.; Brugiapaglia, A.; Barge, M.T.; Dal Molin, E. Relationship between beef consumer tenderness perception and Warner-Bratzler shear force. Meat Sci. 2008, 78, 153–156. [Google Scholar] [CrossRef]
- Larick, D.; Turner, B.E. Flavor characteristics of forage-and grain-fed beef as influenced by phospholipid and fatty acid compositional differences. J. Food Sci. 1990, 55, 312–317. [Google Scholar] [CrossRef]
- Legako, J.F.; Dinh, T.T.; Miller, M.F.; Adhikari, K.; Brooks, J.C. Consumer palatability scores, sensory descriptive attributes, and volatile compounds of grilled beef steaks from three USDA Quality Grades. Meat Sci. 2016, 112, 77–85. [Google Scholar] [CrossRef]
- Pérez-Jiménez, F.; Ruano, J.; Perez-Martinez, P.; Lopez-Segura, F.; Lopez-Miranda, J. The influence of olive oil on human health: Not a question of fat alone. Mol. Nutr. Food Res. 2007, 51, 1199–1208. [Google Scholar] [CrossRef] [PubMed]
- Woollett, L.A.; Spady, D.K.; Dietschy, J.M. Saturated and unsaturated fatty acids independently regulate low density lipoprotein receptor activity and production rate. J. Lipid Res. 1992, 33, 77–88. [Google Scholar] [CrossRef]
- Grundy, S.M. What is the desirable ratio of saturated, polyunsaturated, and monounsaturated fatty acids in the diet? Am. J. Clin. Nutr. 1997, 66, 988s–990s. [Google Scholar] [CrossRef]
- Gillingham, L.G.; Harris-Janz, S.; Jones, P.J. Dietary monounsaturated fatty acids are protective against metabolic syndrome and cardiovascular disease risk factors. Lipids 2011, 46, 209–228. [Google Scholar] [CrossRef] [PubMed]
- Hanke, D.; Zahradka, P.; Mohankumar, S.K.; Clark, J.L.; Taylor, C.G. A diet high in α-linolenic acid and monounsaturated fatty acids attenuates hepatic steatosis and alters hepatic phospholipid fatty acid profile in diet-induced obese rats. Prostaglandins Leukot. Essent. Fat. Acids 2013, 89, 391–401. [Google Scholar] [CrossRef] [PubMed]
- Ravaut, G.; Légiot, A.; Bergeron, K.F.; Mounier, C. Monounsaturated Fatty Acids in Obesity-Related Inflammation. Int. J. Mol. Sci. 2020, 22, 330. [Google Scholar] [CrossRef] [PubMed]
- Zambon, A.; Sartore, G.; Passera, D.; Francini-Pesenti, F.; Bassi, A.; Basso, C.; Zambon, S.; Manzato, E.; Crepaldi, G. Effects of hypocaloric dietary treatment enriched in oleic acid on LDL and HDL subclass distribution in mildly obese women. J. Intern. Med. 1999, 246, 191–201. [Google Scholar] [CrossRef]
- Singer, P.; Richter-Heinrich, E. Stress and fatty liver--possible indications for dietary long-chain n-3 fatty acids. Med. Hypotheses 1991, 36, 90–94. [Google Scholar] [CrossRef]
- Eritsland, J. Safety considerations of polyunsaturated fatty acids. Am. J. Clin. Nutr. 2000, 71, 197S–201S. [Google Scholar] [CrossRef]
- Funk, C.D. Prostaglandins and leukotrienes: Advances in eicosanoid biology. Science 2001, 294, 1871–1875. [Google Scholar] [CrossRef]
- Zhang, S.G.; Liu, T.; Brown, M.A.; Wu, J.P. Comparison of longissimus dorsi Fatty Acids Profiles in Gansu Black Yak and Chinese Yellow Cattle Steers and Heifers. Korean J. Food Sci. Anim. Resour. 2015, 35, 286–292. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Vailati-Riboni, M.; Trevisi, E.; Drackley, J.K.; Luchini, D.N.; Loor, J.J. Better postpartal performance in dairy cows supplemented with rumen-protected methionine compared with choline during the peripartal period. J. Dairy Sci. 2016, 99, 8716–8732. [Google Scholar] [CrossRef] [PubMed]
- Dou, L.; Jin, Y.; Li, H.; Liu, C.; Yang, Z.; Chen, X.; Sun, L.; Zhao, L.; Su, L. Effect of Feeding System on Muscle Fiber Composition, Antioxidant Capacity, and Nutritional and Organoleptic Traits of Goat Meat. Animals 2023, 13, 172. [Google Scholar] [CrossRef]
- Li, Z.; Ha, M.; Frank, D.; McGilchrist, P.; Warner, R.D. Volatile Profile of Dry and Wet Aged Beef Loin and Its Relationship with Consumer Flavour Liking. Foods 2021, 10, 3113. [Google Scholar] [CrossRef] [PubMed]
- García-González, D.L.; Tena, N.; Aparicio-Ruiz, R.; Morales, M.T. Relationship between sensory attributes and volatile compounds qualifying dry-cured hams. Meat Sci. 2008, 80, 315–325. [Google Scholar] [CrossRef]
- Al-Dalali, S.; Li, C.; Xu, B. Effect of frozen storage on the lipid oxidation, protein oxidation, and flavor profile of marinated raw beef meat. Food Chem. 2021, 376, 131881. [Google Scholar] [CrossRef]
- Al-Dalali, S.; Li, C.; Xu, B. Insight into the effect of frozen storage on the changes in volatile aldehydes and alcohols of marinated roasted beef meat: Potential mechanisms of their formation. Food Chem. 2022, 385, 132629. [Google Scholar] [CrossRef]
- Fromm-Dornieden, C.; von der Heyde, S.; Lytovchenko, O.; Salinas-Riester, G.; Brenig, B.; Beissbarth, T.; Baumgartner, B.G. Novel polysome messages and changes in translational activity appear after induction of adipogenesis in 3T3-L1 cells. BMC Mol. Biol. 2012, 13, 9. [Google Scholar] [CrossRef]
- Yamada, T.; Sasaki, S.; Sukegawa, S.; Miyake, T.; Fujita, T.; Kose, H.; Morita, M.; Takahagi, Y.; Murakami, H.; Morimatsu, F.; et al. Association of a single nucleotide polymorphism in ribosomal protein L27a gene with marbling in Japanese Black beef cattle. Anim. Sci. J. 2009, 80, 631–635. [Google Scholar] [CrossRef]
- Arnott, J.A.; Lambi, A.G.; Mundy, C.; Hendesi, H.; Pixley, R.A.; Owen, T.A.; Safadi, F.F.; Popoff, S.N. The role of connective tissue growth factor (CTGF/CCN2) in skeletogenesis. Crit. Rev. Eukaryot. Gene Expr. 2011, 21, 43–69. [Google Scholar] [CrossRef] [PubMed]
- Mason, R.M. Fell-Muir lecture: Connective tissue growth factor (CCN2)—A pernicious and pleiotropic player in the development of kidney fibrosis. Int. J. Exp. Pathol. 2013, 94, 1–16. [Google Scholar] [CrossRef]
- Toda, N.; Mori, K.; Kasahara, M.; Koga, K.; Ishii, A.; Mori, K.P.; Osaki, K.; Mukoyama, M.; Yanagita, M.; Yokoi, H. Deletion of connective tissue growth factor ameliorates peritoneal fibrosis by inhibiting angiogenesis and inflammation. Nephrol. Dial. Transplant. 2018, 33, 943–953. [Google Scholar] [CrossRef]
- Cawthorn, T.R.; Amir, E.; Broom, R.; Freedman, O.; Gianfelice, D.; Barth, D.; Wang, D.; Holen, I.; Done, S.J.; Clemons, M. Mechanisms and pathways of bone metastasis: Challenges and pitfalls of performing molecular research on patient samples. Clin. Exp. Metastasis 2009, 26, 935–943. [Google Scholar] [CrossRef]
- Kim, J.H.; You, K.R.; Kim, I.H.; Cho, B.H.; Kim, C.Y.; Kim, D.G. Over-expression of the ribosomal protein L36a gene is associated with cellular proliferation in hepatocellular carcinoma. Hepatology 2004, 39, 129–138. [Google Scholar] [CrossRef]
- Andersen, J.B.; Mazan-Mamczarz, K.; Zhan, M.; Gorospe, M.; Hassel, B.A. Ribosomal protein mRNAs are primary targets of regulation in RNase-L-induced senescence. RNA Biol. 2009, 6, 305–315. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Liu, J.; Sun, D.; Ma, P.; Ding, X.; Yu, Y.; Zhang, Q. Genome wide association studies for milk production traits in Chinese Holstein population. PLoS ONE 2010, 5, e13661. [Google Scholar] [CrossRef] [PubMed]
- Campos, R.K.; Wijeratne, H.R.S.; Shah, P.; Garcia-Blanco, M.A.; Bradrick, S.S. Ribosomal stalk proteins RPLP1 and RPLP2 promote biogenesis of flaviviral and cellular multi-pass transmembrane proteins. Nucleic Acids Res. 2020, 48, 9872–9885. [Google Scholar] [CrossRef]
- Most, P.; Remppis, A.; Pleger, S.T.; Katus, H.A.; Koch, W.J. S100A1: A novel inotropic regulator of cardiac performance. Transition from molecular physiology to pathophysiological relevance. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007, 293, R568–R577. [Google Scholar] [CrossRef]
- Vanden Broeck, A.; Klinge, S. Eukaryotic Ribosome Assembly. Annu. Rev. Biochem. 2024, 93, 189–210. [Google Scholar] [CrossRef]
- Waterman, R.C.; Ujazdowski, V.L.; Petersen, M.K. Effects of rumen-protected methionine on plasma amino acid concentrations during a period of weight loss for late gestating beef heifers. Amino Acids 2012, 43, 2165–2177. [Google Scholar] [CrossRef] [PubMed]
- Osorio, J.S.; Jacometo, C.B.; Zhou, Z.; Luchini, D.; Cardoso, F.C.; Loor, J.J. Hepatic global DNA and peroxisome proliferator-activated receptor alpha promoter methylation are altered in peripartal dairy cows fed rumen-protected methionine. J. Dairy Sci. 2016, 99, 234–244. [Google Scholar] [CrossRef]
- Rosa Velazquez, M.; Batistel, F.; Pinos Rodriguez, J.M.; Relling, A.E. Effects of maternal dietary omega-3 polyunsaturated fatty acids and methionine during late gestation on fetal growth, DNA methylation, and mRNA relative expression of genes associated with the inflammatory response, lipid metabolism and DNA methylation in placenta and offspring’s liver in sheep. J. Anim. Sci. Biotechnol. 2020, 11, 111. [Google Scholar]
- Mancini, R.A.; Ramanathan, R. Effects of postmortem storage time on color and mitochondria in beef. Meat Sci. 2014, 98, 65–70. [Google Scholar] [CrossRef]
- Belskie, K.; Ramanathan, R.; Suman, S.; Mancini, R. Effects of muscle type and display time on beef mitochondria. Meat Sci. 2015, 101, 157–158. [Google Scholar] [CrossRef]
- Carrasco-Chaumel, E.; Roselló-Catafau, J.; Bartrons, R.; Franco-Gou, R.; Xaus, C.; Casillas, A.; Gelpí, E.; Rodés, J.; Peralta, C. Adenosine monophosphate-activated protein kinase and nitric oxide in rat steatotic liver transplantation. J. Hepatol. 2005, 43, 997–1006. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Wu, W.; Tian, X.; Jia, F.; Xu, L.; Dai, R.; Li, X. Comparative proteomics to reveal muscle-specific beef color stability of Holstein cattle during post-mortem storage. Food Chem. 2017, 229, 769–778. [Google Scholar] [CrossRef]
- Zhu, X.; Yang, C.; Wang, L.; Liu, W.; Tan, S.; Han, L.; Yu, Q. Feedback regulation between AMPK and HIF-1α contributes to color stability via energy metabolism and mitochondrial efficiency regulation of yak meat. LWT 2024, 199, 116031. [Google Scholar] [CrossRef]
- Villa, E.; Sahu, U.; O’Hara, B.P.; Ali, E.S.; Helmin, K.A.; Asara, J.M.; Gao, P.; Singer, B.D.; Ben-Sahra, I. mTORC1 stimulates cell growth through SAM synthesis and m(6)A mRNA-dependent control of protein synthesis. Mol. Cell 2021, 81, 2076–2093.e2079. [Google Scholar] [CrossRef]
Item | |
---|---|
Ingredients (% DM 1) | |
Soybean | 4.50 |
Corn meal | 15.75 |
Rapeseed meal | 2.25 |
Soybean meal | 7.65 |
Soybean hull | 3.15 |
Sprayed corn bran | 4.50 |
Corn germ meal | 3.60 |
Molasses | 2.25 |
Corn straw silage | 55.0 |
Premix 2 | 1.35 |
Chemical composition | |
Net energy for gain (MJ/kg) | 3.52 |
Net energy for maintenance (MJ/kg) | 5.58 |
Crude protein (% DM) | 13.13 |
Neutral detergent fiber (% DM) | 43.92 |
Acid detergent fiber (% DM) | 15.63 |
Organic matter (% DM) | 90.75 |
Index | Treatments | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|
CON | RPM5 | RPM10 | RPM15 | Linear | Quadratic | ||
Final body weight (kg) | 306.5 | 311.3 | 311.6 | 314.8 | 4.124 | 0.504 | 0.801 |
Hot carcass weight (kg) | 147.0 | 150.8 | 156.7 | 156.0 | 3.459 | 0.298 | 0.558 |
Dressing percent (%) | 47.86 | 48.37 | 50.13 | 49.40 | 0.538 | 0.190 | 0.366 |
pH | 5.34 | 5.36 | 5.41 | 5.43 | 0.025 | 0.162 | 0.384 |
L* | 34.33 | 34.46 | 33.86 | 35.50 | 0.288 | 0.269 | 0.231 |
a* | 20.14 | 20.02 | 19.25 | 20.67 | 0.289 | 0.760 | 0.407 |
b* | 6.78 | 6.57 | 5.99 | 7.01 | 0.244 | 0.930 | 0.466 |
Dripping loss (%) | 13.26 | 14.56 | 13.10 | 14.07 | 0.662 | 0.876 | 0.982 |
Cooking loss (%) | 29.96 | 30.58 | 31.43 | 30.77 | 0.570 | 0.534 | 0.715 |
Shear force (N) | 45.72 | 43.73 | 46.61 | 45.79 | 1.207 | 0.783 | 0.938 |
Dry matter (%) | 24.80 | 24.95 | 24.07 | 25.01 | 0.238 | 0.914 | 0.717 |
Fat (%, DM) | 12.03 | 12.07 | 12.33 | 13.53 | 0.266 | 0.042 | 0.068 |
Protein (%, DM) | 80.14 | 80.22 | 80.61 | 80.94 | 0.377 | 0.426 | 0.725 |
Index | Treatments | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|
CON | RPM5 | RPM10 | RPM15 | Linear | Quadratic | ||
C14:0 | 2.08 | 2.60 | 1.61 | 2.42 | 0.150 | 0.981 | 0.767 |
C14:1 | 1.40 | 1.75 | 1.13 | 1.24 | 0.101 | 0.238 | 0.427 |
C15:1 | 1.83 | 2.39 | 2.41 | 2.44 | 0.205 | 0.325 | 0.515 |
C16:0 | 17.83 a | 15.70 b | 16.54 b | 18.70 a | 0.466 | 0.417 | 0.042 |
C16:1 | 4.53 | 3.17 | 7.09 | 2.85 | 0.482 | 0.798 | 0.330 |
C17:1 | 0.91 | 0.81 | 0.84 | 0.91 | 0.036 | 0.928 | 0.550 |
C18:0 | 12.45 | 10.08 | 11.44 | 12.41 | 0.493 | 0.785 | 0.238 |
C18:1n9t + C18:1n9c | 28.11 | 28.73 | 29.02 | 30.56 | 0.579 | 0.142 | 0.322 |
C18:2n6c | 17.20 | 18.58 | 16.70 | 14.05 | 0.688 | 0.063 | 0.055 |
C18:3n6 | 2.40 | 2.86 | 2.12 | 2.33 | 0.153 | 0.500 | 0.740 |
C20:3n3 + C20:4n6 | 6.77 | 9.05 | 7.43 | 8.07 | 0.521 | 0.631 | 0.669 |
C22:2 | 1.89 | 1.99 | 1.25 | 1.91 | 0.128 | 0.568 | 0.487 |
SFA | 32.36 a | 28.38 b | 29.59 b | 33.53 a | 0.822 | 0.531 | 0.037 |
MUFA | 36.78 | 36.85 | 40.48 | 38.01 | 0.546 | 0.137 | 0.166 |
PUFA | 28.26 | 32.47 | 27.50 | 26.36 | 0.923 | 0.203 | 0.152 |
MUFA/SFA | 1.14 b | 1.30 ab | 1.41 a | 1.15 b | 0.042 | 0.743 | 0.030 |
PUFA/SFA | 0.89 | 1.15 | 0.97 | 0.95 | 0.050 | 0.346 | 0.069 |
Index | Treatments | SEM | p-value | ||||
---|---|---|---|---|---|---|---|
CON | RPM5 | RPM10 | RPM15 | Linear | Quadratic | ||
Aldehyde | |||||||
Benzaldehyde | 17.88 | 18.91 | 16.06 | 14.11 | 1.483 | 0.296 | 0.520 |
3-Methylcrotonaldehyde | 0.37 | 0.40 | 0.28 | 0.37 | 0.014 | 0.053 | 0.016 |
heptanal | 1.32 | 1.48 | 1.54 | 0.88 | 0.114 | 0.505 | 0.792 |
Lauric aldehyde | 0.22 | 0.25 | 0.34 | 0.34 | 0.024 | 0.022 | 0.070 |
1-Octanal | 2.34 a | 1.67 b | 2.01 ab | 1.58 b | 0.093 | 0.160 | 0.004 |
1-Nonanal | 4.17 | 3.06 | 4.57 | 2.26 | 0.499 | 0.798 | 0.606 |
5-Methoxy-3,4-methylenedioxybenzaldehyde | 3.11 | 2.99 | 5.73 | 2.57 | 0.496 | 0.097 | 0.143 |
γ-Nonalactone | 0.18 | 0.16 | 0.13 | − | 0.006 | − | − |
Hexanal | 2.12 | 2.12 | 2.59 | 1.89 | 0.111 | 0.103 | 0.177 |
Ketones | |||||||
Methylisohexenyl ketone | 0.58 | 0.44 | 0.40 | 0.35 | 0.042 | 0.060 | 0.149 |
2-Octanone | 0.30 b | 0.23 bc | 0.15 c | 0.45 a | 0.031 | 0181 | 0.001 |
Hydrocarbon | |||||||
Methylbenzene | 0.67 | 0.68 | 0.51 | 0.67 | 0.049 | 0.693 | 0.702 |
Ethylbenzene | 0.19 | 0.20 | − | 0.17 | 0.011 | − | − |
n-Octane | 0.33 a | 0.13 c | 0.18 b | 0.17 b | 0.0017 | 0.001 | <0.001 |
n-Heptadecane | 0.88 | − | 0.99 | 0.68 | 0.046 | − | − |
n-Nonadecane | 0.83 a | 0.28 b | 0.26 b | 0.94 a | 0.079 | 0.669 | <0.001 |
Alcohols | |||||||
Hexanol | 0.66 b | 0.83 ab | 0.67 b | 1.02 a | 0.044 | 0.161 | 0.020 |
Heptanol | 2.83 ab | 3.39 a | 2.26 b | 2.92 ab | 0.141 | 0.317 | 0.032 |
octanol | 8.54 | 8.58 | 8.27 | 8.73 | 0.477 | 0.915 | 0.948 |
1-octen-3-ol | 4.96 b | 5.37 b | 4.92 b | 9.60 a | 0.706 | 0.038 | 0.035 |
Trans-2-octen-1-ol | − | 0.23 | 0.24 | 1.29 | 0.175 | − | − |
Butyl carbinol | 0.53 b | 0.88 b | 0.75 b | 1.51 a | 0.102 | 0.031 | 0.013 |
3,7,11-trimethyl-1-ol | 0.78 | 0.30 | 0.33 | 0.33 | 0.067 | 0.618 | 0.865 |
Esters | |||||||
Isopropyl myristate | 0.46 | 0.67 | 0.17 | 0.30 | 0.061 | 0.068 | 0.189 |
Octano-1,4-lactone | 0.17 | 0.13 | − | − | 0.007 | − | − |
Methyl N,N-diethylcarbamodithioate | 8.56 | 10.25 | 7.66 | 6.25 | 0.803 | 0.191 | 0.270 |
Other categories | |||||||
Pentylfuran | 0.73 | 0.64 | 0.92 | 0.88 | 0.081 | 0.342 | 0.637 |
Carbon disulfide | 1.08 | 0.82 | 1.06 | 1.02 | 0.077 | 0.963 | 0.787 |
Trimethylamine | 0.22 | 0.21 | 0.18 | 0.19 | 0.008 | 0.096 | 0.217 |
Formamide, N,N-dibutyl | 17.88 | 18.91 | 16.06 | 14.11 | 1.483 | 0.296 | 0.520 |
Index | ROAV | Perception Threshold (μg/kg) | |||
---|---|---|---|---|---|
CON | RPM5 | RPM10 | RPM15 | ||
Aldehyde | |||||
Benzaldehyde | 0.60 | 0.70 | 0.51 | 0.29 | 750.89 |
Hptanal | 11.87 | 14.78 | 13.21 | 4.89 | 2.8 |
Lauric aldehyde | 42.00 | 54.45 | 62.09 | 40.56 | 0.13 |
1-Octanal | 100.00 | 78.83 | 82.08 | 41.84 | 0.59 |
1-Nonanal | 95.82 | 77.74 | 100.00 | 32.08 | 1.1 |
5-Methoxy-3,4-methylenedioxybenzaldehyde | 0.71 | 0.76 | 1.25 | 0.37 | 110 |
γ-Nonalactone | 0.47 | 0.45 | 0.32 | − | 9.7 |
Hexanal | 10.69 | 11.86 | 12.43 | 5.92 | 5 |
Ketones | |||||
Methylisohexenyl ketone | 0.21 | 0.18 | 0.14 | 0.08 | 68 |
2-Octanone | 0.15 | 0.13 | 0.07 | 0.14 | 50.2 |
Hydrocarbon | |||||
Methylbenzene | 0.03 | 0.04 | 0.02 | 0.02 | 524 |
Alcohols | |||||
Hexanol | 2.98 | 4.15 | 2.89 | 2.85 | 5.6 |
Heptanol | 13.24 | 17.52 | 10.07 | 8.45 | 5.4 |
Octanol | 1.71 | 1.90 | 1.58 | 1.08 | 125.8 |
1-octen-3-ol | 83.53 | 100.00 | 78.89 | 100.00 | 1.5 |
Trans-2-octen-1-ol | − | 0.32 | 0.29 | 1.01 | 20 |
Butyl carbinol | 0.09 | 0.16 | 0.12 | 0.16 | 150.2 |
Others | |||||
Octano-1,4-lactone | 0.67 | 0.56 | − | − | 6.5 |
Pentylfuran | 3.19 | 3.10 | 3.81 | 2.36 | 5.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, X.; Zuo, Z.; Li, J.; Fu, J.; Zhong, J.; Wang, H.; Shi, H.; Huang, Y.; Wang, H. Effects of Rumen-Protected Methionine on Meat Quality, Fatty Acid Composition, Volatile Flavor Compounds and Transcriptomics of Longissimus lumborum of Yak (Bos grunniens). Foods 2025, 14, 2102. https://doi.org/10.3390/foods14122102
Wu X, Zuo Z, Li J, Fu J, Zhong J, Wang H, Shi H, Huang Y, Wang H. Effects of Rumen-Protected Methionine on Meat Quality, Fatty Acid Composition, Volatile Flavor Compounds and Transcriptomics of Longissimus lumborum of Yak (Bos grunniens). Foods. 2025; 14(12):2102. https://doi.org/10.3390/foods14122102
Chicago/Turabian StyleWu, Xia, Zizhen Zuo, Jiajia Li, Jianhui Fu, Jincheng Zhong, Hui Wang, Haitao Shi, Yanling Huang, and Haibo Wang. 2025. "Effects of Rumen-Protected Methionine on Meat Quality, Fatty Acid Composition, Volatile Flavor Compounds and Transcriptomics of Longissimus lumborum of Yak (Bos grunniens)" Foods 14, no. 12: 2102. https://doi.org/10.3390/foods14122102
APA StyleWu, X., Zuo, Z., Li, J., Fu, J., Zhong, J., Wang, H., Shi, H., Huang, Y., & Wang, H. (2025). Effects of Rumen-Protected Methionine on Meat Quality, Fatty Acid Composition, Volatile Flavor Compounds and Transcriptomics of Longissimus lumborum of Yak (Bos grunniens). Foods, 14(12), 2102. https://doi.org/10.3390/foods14122102