A Novel Hyperspectral Microscope Imaging Technology for the Evaluation of Physicochemical Properties and Heterogeneity in ‘Xia Hui 6’ Peaches
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Hyperspectral Microscope Imaging Acquisition
2.3. HMI Data Extraction
2.4. Determination of Physical and Chemical Indicators
2.4.1. Determination of Color and Firmness
2.4.2. Determination of SSC and Titratable Acidity (TA)
2.5. Data Analysis
2.6. Statistical Analysis and Software
3. Results
3.1. Physicochemical Characterization Analysis
3.2. Spectral Characteristics of ‘Xia Hui 6’ Peaches
3.3. PCA Mapping
3.4. Pearson Correlation and Linear Fitting
4. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cai, H.F.; Han, S.; Yu, M.L.; Ma, R.J.; Yu, Z.F. Exogenous nitric oxide fumigation promoted the emission of volatile organic compounds in peach fruit during shelf life after long-term cold storage. Food Res. Int. 2020, 133, 109135. [Google Scholar] [CrossRef] [PubMed]
- Feng, C.; Ni, Y.; Zhang, Y.; Yang, J.; Xiong, R. Characteristic aroma identification of differentially colored peach fruits based on HS-SPME-GC-MS. Food Chem. 2025, 467, 142280. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.C.; Hao, W.Z.; Yan, L.; Zhang, H.Z.; Zhang, J.; Liu, C.H.; Zheng, L. Postharvest melatonin treatment enhanced antioxidant activity and promoted GABA biosynthesis in yellow-flesh peach. Food Chem. 2023, 419, 136088. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.L.; Ma, R.J.; Xu, J.L.; Zhang, B.B.; Yu, M.L.; Gao, Z.H. Transcriptomic analysis reveals genes associated with the regulation of peach fruit softening and senescence during storage. Foods 2023, 12, 1648. [Google Scholar] [CrossRef]
- Liu, G.G.; Bi, J.F.; Chen, Q.Q. Impact of postharvest ripening on peach quality: Aroma release and formation mechanism. Food Chem. 2025, 479, 143743. [Google Scholar] [CrossRef]
- Xu, Y.Y.; Wei, J.Y.; Wei, Y.Y.; Han, P.P.; Dai, K.; Zou, X.R.; Jiang, S.; Xu, F.; Wang, H.F.; Sun, J.C.; et al. Tea tree oil controls brown rot in peaches by damaging the cell membrane of Monilinia fructicola. Postharvest Biol. Technol. 2021, 175, 111474. [Google Scholar] [CrossRef]
- Zhu, L.; Yu, H.; Xu, X.; Yu, Z. Postharvest application of methyl jasmonate inhibited ethylene biosynthesis and signaling in peach through activating the negative feedback of JA-signaling pathway. Postharvest Biol. Technol. 2024, 213, 112965. [Google Scholar] [CrossRef]
- Özdogan, G.; Lin, X.H.; Sun, D.W. Rapid and noninvasive sensory analyses of food products by hyperspectral imaging: Recent application developments. Trends Food Sci. Technol. 2021, 111, 151–165. [Google Scholar] [CrossRef]
- Lu, Y.Z.; Saeys, W.; Kim, M.; Peng, Y.K.; Lu, R.F. Hyperspectral imaging technology for quality and safety evaluation of horticultural products: A review and celebration of the past 20-year progress. Postharvest Biol. Technol. 2020, 170, 111318. [Google Scholar] [CrossRef]
- Li, J.; Chen, L. Comparative analysis of models for robust and accurate evaluation of soluble solids content in ‘Pinggu’ peaches by hyperspectral imaging. Comput. Electron. Agric. 2017, 142, 524–535. [Google Scholar] [CrossRef]
- Xuan, G.; Gao, C.; Shao, Y. Spectral and image analysis of hyperspectral data for internal and external quality assessment of peach fruit. Spectrochim. Acta Part A-Mol. Biomol. Spectrosc. 2022, 272, 121016. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Zhou, D.D.; Tu, S.Y.; Xiao, H.; Zhang, B.; Sun, Y.; Pan, L.Q.; Tu, K. Quantitative visualization of fungal contamination in peach fruit using hyperspectral imaging. Food Anal. Methods 2020, 13, 1262–1270. [Google Scholar] [CrossRef]
- Li, J.; Chen, L.; Huang, W. Detection of early bruises on peaches Amygdalus persic L. using hyperspectral imaging coupled with improved watershed segmentation algorithm. Postharvest Biol. Technol. 2018, 135, 104–113. [Google Scholar] [CrossRef]
- Lan, W.J.; Hui, X.; Nicolai, B.; Verboven, P.; Qin, J.W.; Renard, C.; Jaillais, B.; Tu, K.; Bureau, S.; Pan, L.Q. Visualizing the structural and chemical heterogeneity of fruit and vegetables using advanced imaging techniques: Fundamentals, instrumental aspects, applications and future perspectives. Crit. Rev. Food Sci. Nutr. 2024. online ahead of print. [Google Scholar] [CrossRef]
- Pu, H.B.; Lin, L.; Sun, D.W. Principles of hyperspectral microscope imaging techniques and their applications in food quality and safety detection: A review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 853–866. [Google Scholar] [CrossRef]
- Li, D.; Park, B.; Rang, R.; Chen, Q.; Ouyang, Q. Quantitative prediction and visualization of matcha color physicochemical indicators using hyperspectral microscope imaging technology. Food Control 2024, 163, 110531. [Google Scholar] [CrossRef]
- Kang, R.; Park, B.; Ouyang, Q.; Ren, N. Rapid identification of foodborne bacteria with hyperspectral microscopic imaging and artificial intelligence classification algorithms. Food Control 2021, 130, 108379. [Google Scholar] [CrossRef]
- You, S.; Li, Y.; Song, J.; Yu, X.; Tu, K.; Lan, W.; Pan, L. Evaluating the microstructure and physicochemical properties of ‘Korla’ fragrant pear disease caused by Alternaria alternata: Vis-NIR hyperspectral microscope imaging coupled with convolutional neural network. Postharvest Biol. Technol. 2024, 212, 112913. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, S.; Zuo, C.; Jiang, M.; Song, J.; Ding, F.; Tu, K.; Lan, W.; Pan, L. Exploring the variability and heterogeneity of apple firmness using visible and near-infrared hyperspectral imaging. Lwt-Food Sci. Technol. 2024, 192, 115704. [Google Scholar] [CrossRef]
- Jiang, M.; Li, Y.; Song, J.; Wang, Z.; Zhang, L.; Song, L.; Bai, B.; Tu, K.; Lan, W.; Pan, L. Study on black spot disease detection and pathogenic process visualization on winter jujubes using hyperspectral imaging system. Foods 2023, 12, 435. [Google Scholar] [CrossRef]
- Szymanska-Chargot, M.; Ekala, P.P.; Sieminska-Kuczer, A.; Zdunek, A. A determination of the composition and structure of the polysaccharides fractions isolated from apple cell wall based on FT-IR and FT-Raman spectra supported by PCA analysis. Food Hydrocoll. 2024, 150, 109688. [Google Scholar] [CrossRef]
- Chen, H.Y.; Wang, T.T.; Chen, T.; Deng, W. Hyperspectral image classification based on fusing S3-PCA, 2D-SSA and random patch network. Remote Sens. 2023, 15, 3402. [Google Scholar] [CrossRef]
- Neo, E.R.K.; Yeo, Z.Q.; Low, J.S.C.; Goodship, V.; Debattista, K. A review on chemometric techniques with infrared, Raman and laser-induced breakdown spectroscopy for sorting plastic waste in the recycling industry. Resour. Conserv. Recycl. 2022, 180, 106217. [Google Scholar] [CrossRef]
- Wang, Z.; Song, S.; Zhao, M.; Zuo, C. New insights into the relationship between optical response and physicochemical properties in apple flesh: Hyperspectral microscope imaging technology. Food Res. Int. 2024, 194, 114940. [Google Scholar] [CrossRef] [PubMed]
- Kan, J.; Gao, M.; Dong, W.X.; Tang, C.; Qian, C.L.; Liu, J. Impact of Ultraviolet-C light on softening and senescence during storage of peach fruit. J. Food Biochem. 2025, 2025, 5341034. [Google Scholar] [CrossRef]
- Etienne, A.; Genard, M.; Lobit, P.; Mbeguie-A-Mbeguie, D.; Bugaud, C. What controls fleshy fruit acidity? A review of malate and citrate accumulation in fruit cells. J. Exp. Bot. 2013, 64, 1451–1469. [Google Scholar] [CrossRef]
- Walsh, K.B.; Blasco, J.; Zude-Sasse, M.; Sun, X.D. Visible-NIR ‘point’ spectroscopy in postharvest fruit and vegetable assess ment: The science behind three decades of commercial use. Postharvest Biol. Technol. 2020, 168, 111246. [Google Scholar] [CrossRef]
- Zhao, Y.; Dong, W.; Zhu, Y.; Allan, A.C.; Kui, L.-W.; Xu, C. PpGST1, an anthocyanin-related glutathione S-transferase gene, is essential for fruit coloration in peach. Plant Biotechnol. J. 2020, 18, 1284–1295. [Google Scholar] [CrossRef]
- Munera, S.; Gomez-Sanchis, J.; Aleixos, N.; Vila-Frances, J.; Colelli, G.; Cubero, S.; Soler, E.; Blasco, J. Discrimination of common defects in loquat fruit cv. ‘Algerie’ using hyperspectral imaging and machine learning techniques. Postharvest Biol. Technol. 2021, 171, 111356. [Google Scholar] [CrossRef]
- Liu, G.; He, J.; Wang, S.; Luo, Y.; Wang, W.; Wu, L.; Si, Z.; He, X. Application of Near-Infrared hyperspectral imaging for detection of external insect infestations on jujube fruit. Int. J. Food Prop. 2016, 19, 41–52. [Google Scholar] [CrossRef]
- Magwaza, L.S.; Landahl, S.; Cronje, P.J.R.; Nieuwoudt, H.H.; Mouazen, A.M.; Nicolai, B.M.; Terry, L.A.; Opara, U.L. The use of Vis/NIRS and chemometric analysis to predict fruit defects and postharvest behaviour of ‘Nules Clementine’ mandarin fruit. Food Chem. 2014, 163, 267–274. [Google Scholar] [CrossRef] [PubMed]
- Siedliska, A.; Baranowski, P.; Zubik, M.; Mazurek, W.; Sosnowska, B. Detection of fungal infections in strawberry fruit by VNIR/SWIR hyperspectral imaging. Postharvest Biol. Technol. 2018, 139, 115–126. [Google Scholar] [CrossRef]
Parameter | Range | Side | Wavelength (nm) | Correlation Coefficient |
---|---|---|---|---|
L* value | 41.04–49.25 | Sunny | 430 | −0.940 |
64.98–69.41 | Shady | 862 | −0.810 | |
a* value | 21.96–27.75 | Sunny | 440 | 0.856 |
−3.24–6.5 | Shady | 986 | 0.810 | |
b* value | 12.24–17.13 | Sunny | 426 | −0.909 |
27.84–32.68 | Shady | 976 | −0.455 | |
SSC (°Brix) | 11.26–12.86 | Sunny | 684 | 0.742 |
10.68–12.46 | Shady | 982 | 0.797 | |
TA (%) | 0.33–0.37 | Sunny | 432 | −0.882 |
0.34–0.38 | Shady | 422 | 0.807 | |
Firmness (N) | 1.49–155.80 | Sunny | 588 | −0.994 |
1.68–17.80 | Shady | 988 | −0.797 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, S.; Wang, Z.; Pan, L.; Tu, K. A Novel Hyperspectral Microscope Imaging Technology for the Evaluation of Physicochemical Properties and Heterogeneity in ‘Xia Hui 6’ Peaches. Foods 2025, 14, 2099. https://doi.org/10.3390/foods14122099
Song S, Wang Z, Pan L, Tu K. A Novel Hyperspectral Microscope Imaging Technology for the Evaluation of Physicochemical Properties and Heterogeneity in ‘Xia Hui 6’ Peaches. Foods. 2025; 14(12):2099. https://doi.org/10.3390/foods14122099
Chicago/Turabian StyleSong, Shiyu, Zhenjie Wang, Leiqing Pan, and Kang Tu. 2025. "A Novel Hyperspectral Microscope Imaging Technology for the Evaluation of Physicochemical Properties and Heterogeneity in ‘Xia Hui 6’ Peaches" Foods 14, no. 12: 2099. https://doi.org/10.3390/foods14122099
APA StyleSong, S., Wang, Z., Pan, L., & Tu, K. (2025). A Novel Hyperspectral Microscope Imaging Technology for the Evaluation of Physicochemical Properties and Heterogeneity in ‘Xia Hui 6’ Peaches. Foods, 14(12), 2099. https://doi.org/10.3390/foods14122099